интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Регулятор мощности: делаем самостоятельно симисторный вариант. Схемы тиристорные регуляторы мощности своими руками


Простой регулятор мощности на двух тиристорах / Песочница / Хабр

Здравствуйте, уважаемые хабровчане!

Данный пост посвящен созданию устройства для регулировки мощности бытовых приборов (лампочки, паяльники, обогреватели, электроплитки). Конструкция устройства очень простая, количество элементов минимальное, его способен собрать даже начинающий. Без радиаторов мощность нагрузки до 1 кВт, с использованием радиаторов можно увеличить до 1,5 кВт. Мной устройство было собрано за один вечер. Ниже видео, демонстрирующее работу.

Подробности:

Девайс был размещен в корпусе от старого CD-ROM-а. Для передней и задней стороны корпуса необходимо вырезать пластмассовые стороны 4х14,5 см., и либо прикрутить либо приклеить к корпусу. Девайс в сборе выгладит так:

image

image

Перечень элементов, принципиальная схема и описание работы:
Нам понадобится:
  • Тиристоры: КУ-202Н, М — 2 шт.
  • Динисторы: КН-102А, Б — 2 шт
  • Резисторы: Любые, R=220 Ом, мощностью 0,5 Вт
  • Конденсаторы: 0,1 мкФ, 400 В — 2 шт.
  • Любой переменный резистор сопротивлением 220 — 330 кОм (в случае с 220 кОм нижний предел регулировки будет выше чем 330 кОм)
  • Провод с вилкой для подключения к сети и розетка для подключения нагрузки
  • Для защиты можно добавить предохранитель
Принципиальная электрическая схема выглядит так:

image

Данный регулятор использует принцип фазового управления. Он основан на изменении момента включения тиристора относительно перехода сетевого напряжения через ноль. На начало полу периода тиристор закрыт, ток через него не идет. Через некоторое время (в зависимости от текущего сопротивления переменного резистора) напряжение на конденсаторе достигает уровня необходимого для открытия динистора, он открывается и в свою очередь открывает тиристор. Для второго полу периода все аналогично. График прохождения тока через нагрузку:

image

Подробности сборки и окончательный вид:
На момент сборки устройства в моем арсенале не было приспособлений для изготовления печатных плат, поэтому сборка делалась на куске старой платы, на которой до этого был какой то прибор. После соединения всех деталей и упаковки всего внутрь корпуса от CD-ROM-а готовое изделие внутри выглядит вот так:

image

image

Итоги:
За очень короткое время собрана полезная вещь из старых деталей. Но есть и некоторые недостатки, это то что пределы регулировки немного изменяются в зависимости от нагрузки, наличие радиопомех и некоторая нестабильность на небольшом участке регулировки.

habr.com

Схемы тиристорных регуляторов мощности паяльника, подробно

Чтобы пайка была красивой и качественной, необходимо правильно выбрать мощность паяльника, обеспечить температуру жала. Все это зависит от марки припоя. На ваш выбор предоставляю несколько схем тиристорных регуляторов регулирования температуры паяльника, которые можно изготовить в домашних условиях. Они просты легко заменят промышленные аналоги, к тому же цена и сложность будет отличаться.

Электрические принципиальные схемы регуляторов температуры паяльника

Осторожно! Прикосновение к элементам тиристорной схемы может привести к получению травмы опасной для жизни!

Чтоб регулировать температуру жала паяльника используются паяльные станции, которые в автоматическом и ручном режимах поддерживает заданную температуру. Доступность паяльной станции ограничивается размером кошелька. Я решил эту проблему, изготовив ручной регулятор температура, имеющий плавную регулировку. Схема легко дорабатывается до автоматического поддержания заданного режима температуры. Но я сделал вывод, что ручной регулировки достаточно, так как температура помещения и ток сети стабильны.

Классическая тиристорная схема регулятора

Классическая схема регулятора была плоха тем, что имела излучающие помехи, издаваемые в эфир и сеть. Радиолюбителям эти помехи мешают при работе. Если доработать схему, включив в нее фильтр, размеры конструкции значительно увеличатся. Но это схема может использоваться и в других случаях, например, если необходимо отрегулировать яркость ламп накаливания или нагревательных приборов, мощность которых 20-60 Вт. Поэтому я представляю эту схему.

Схема классического тиристорного регулятора

Чтобы понять, как это работает, рассмотрим принцип работы тиристора. Тиристор представляет собой полупроводниковый прибор закрытого или открытого типа. Чтоб открыть его, на управляющий электрод подается напряжение равное 2-5 В. Оно зависит от выбранного тиристора, относительно катода (буква k на схеме). Тиристор открылся, между катодом и анодом образовалось напряжение равное нулю. Через электрод его невозможно закрыть. Он будет открыт до того времени, пока значение напряжения катода (k) и анода (a) не будет близко к нулю. Вот такой принцип. Схема работает следующим образом: через нагрузку (обмотка паяльника или лампа накаливания) подается напряжение на диодный мост выпрямителя, выполненный диодами VD1-VD4. Он служит для преобразования переменного тока в постоянный, который меняется по синусоидальному закону (1 диаграмма). В крайнем левом положении сопротивление среднего вывода резистора равно 0. При увеличении напряжения происходит зарядка конденсатора С1. Когда напряжение С1 будет равно 2-5 В, на VS1 пойдет ток через R2. При этом произойдет открытие тиристора, закорачивание диодного моста, максимальный ток пройдет через нагрузку (диаграмма сверху). Если повернуть ручку резистора R1, произойдет увеличение сопротивления, конденсатор С1 будет заряжаться дольше. Следовательно, открытие резистора произойдет не сразу. Чем мощнее R1, тем больше времени уйдет на заряд С1. Вращая ручку вправо или влево, можно регулировать температуру нагрева жала паяльника.

Схема классического тиристорного регулятора на тиристоре КУ202Н

На фото выше предоставлена схема регулятора, собранная на тиристоре КУ202Н. Чтоб управлять этим тиристором (в паспорте указан ток 100мА, реально – 20 мА), необходимо уменьшить номиналы резисторов R1, R2, R3 исключаем, емкость конденсатора увеличиваем. Емкость С1 необходимо повысить до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще один вариант схемы, только упрощенный, деталей минимум. 4 диода заменены одним VD1. Отличие данной схемы заключается в том, что регулировка происходит при положительном периоде сети. Отрицательный период, проходя через диод VD1, остается без изменений, мощность можно регулировать от 50% до 100%. Если исключить VD1 из схемы, мощность можно будет регулировать в диапазоне от 0% до 50%.

Схема простейшего тиристорного регулятора

Если применить динистор КН102А в разрыв от R1 и R2, придется заменить С1 на конденсатор емкостью 0,1 мкФ. Для этой схемы подойдут такие номиналы тиристоров: КУ201Л (К), КУ202К (Н,М,Л), КУ103В, напряжением для них более 300 В. Диоды любые, обратное напряжение которых не меньше, чем 300 В.

Выше упомянутые схемы успешно подойдут для регулировки ламп накаливания в светильниках. Регулировать светодиодные и энергосберегающие лампы не удастся, так как они имеют электронные схемы управления. Это приведет к миганию или работе лампы на полную мощность, что в конечном итоге выведет ее из строя.

Если вы хотите применить регуляторы для работы в сети 24,36 В, придется уменьшить номиналы резисторов и заменить тиристор на соответствующий. Если мощность паяльника 40 Вт, напряжение сети 36 В, он будет потреблять 1,1 А.

Тиристорная схема регулятора не излучающая помехи

Эта схема отличается от предыдущей полным отсутствием изучаемых радиопомех, так как процессы протекают в тот момент, когда напряжение сети равно 0. Приступая к созданию регулятора, я исходил из следующих соображений: комплектующие должны иметь низкую цену, высокую надежность, малые габариты, сама схема должна быть проста, легко повторяемая, КПД должен быть близким к 100%, помехи должны отсутствовать. Схема должна иметь возможность модернизации.

Принцип работы схемы следующий. VD1-VD4 выпрямляют напряжение сети. Получающееся постоянное напряжение изменяется по амплитуде равной половине синусоиды частотой 100 Гц (1 диаграмма). Ток, проходя через R1 на VD6 — стабилитрон, 9В (2 диаграмма), имеет другую форму. Через VD5 импульсы заряжают С1, создавая 9 В напряжения для микросхем DD1, DD2. Для защиты применяется R2. Он служит для ограничения напряжения, поступаемого на VD5, VD6 до 22 В и формирует тактовый импульс для работы схемы. R1 передает сигнал на 5, 6 вывод элемента 2 либо не логическую цифровую микросхему DD1.1, которая в свою очередь инвертирует сигнал и преобразует его в короткий прямоугольный импульс (3 диаграмма). Импульс исходит с 4-го вывода DD1 и приходит на вывод D №8 триггера DD2.1, который работает в RS режиме. Принцип работы DD2.1 такой же и, как и DD1.1 (4 диаграмма). Рассмотрев диаграммы №2 и 4, можно сделать выводы, что отличия практически нет. Получается, что с R1 можно подать сигнал на вывод №5 DD2.1. Но это не так, R1 имеет множество помех. Придется устанавливать фильтр, что не целесообразно. Без двойного формирования схемы стабильной работы не будет.

Схема управления регулятора собрана на базе триггера DD2.2, работает она по следующему принципу. C вывода №13 триггера DD2.1 поступают импульсы на 3 вывод DD2.2, перезапись уровня которых происходит на выводе №1 DD2.2, которые на данном этапе находятся на D входе микросхемы (5 вывод). Противоположный уровень сигнала находится на 2 выводе. Предлагаю рассмотреть принцип работы DD2.2. Предположим, что на 2 выводе, логическая единица. С2 заряжается до необходимого напряжения через R4, R5. Когда появится первый импульс с положительным перепадом на 2 выводе образуется 0, через VD7 произойдет разрядка С2. Последующий перепад на 3 выводе установит на 2 выводе логическую единицу, С2 начнет накапливать емкость через R4, R5. Время зарядки зависит от R5. Чем оно больше, тем дольше будет происходить зарядка С2. Пока конденсатор С2 не накопит 1\2 емкости, на 5 выводе будет 0. Перепад импульсов на 3 входе не будет влиять на изменение логического уровня на 2 выводе. При достижении полного заряда конденсатора, произойдет повторение процесса. Количество импульсов, заданных резистором R5, будет поступать на DD2.2. Перепад импульсов будет происходить только в те моменты, когда напряжение сети будет переходить через 0. Вот почему отсутствуют помехи на данном регуляторе. С 1 вывода DD2.2 на DD1.2 подаются импульсы. DD1.2 исключает влияние VS1 (тиристор) на DD2.2. R6 установлен для ограничения тока управления VS1. На паяльник подается напряжение за счет открытия тиристора. Это происходит из-за того, что на тиристор поступает положительный потенциал с управляющего электрода VS1. Этот регулятор позволяет производить регулировку мощности в диапазоне 50-99%. Хоть резистор R5 – переменный, за счет включенного DD2.2 регулировка паяльника осуществляется ступенчатым образом. Когда R5 = 0, происходит подача 50% мощности (5 диаграмма), если повернуть на определенный угол, будет 66% (6 диаграмма), затем 75% (7 диаграмма). Чем ближе к рассчитанной мощности паяльника, тем плавне работа регулятора. Допустим, имеется паяльник на 40 Вт, его мощность можно регулировать в районе 20-40 Вт.

Конструкция и детали регулятора температуры

Детали регулятора располагаются на стеклотекстолитовой печатной плате. Плата помещена в пластиковый корпус от бывшего адаптера, имеющего электрическую вилку. Ручка из пластика надета на ось резистора R5. На корпусе регулятора имеются отметки с цифрами, позволяющие понимать, какой температурный режим выбран.

Внешний вид собранной печатной платы регулятора температуры

Шнур паяльника припаян к плате. Подключение паяльника к регулятору можно сделать разъемным, чтобы иметь возможность подключить другие объекты. Схема потребляет ток не превышающий 2мА. Это даже меньше, чем потребление светодиода в подсветке выключателя. Специальные меры по обеспечению режим работы устройства не требуются.

Внешний вид самодельного тиристорного треглятора температуры паяльника

При напряжении 300 В и токе 0,5 А применяются микросхемы DD1, DD2 и серии 176 либо 561; диоды любые VD1-VD4. VD5, VD7 — импульсные, любые; VD6 — маломощный стабилитрон с напряжением 9 В. Конденсаторы любые, резисторе тоже. Мощность R1 должна быть 0,5 Вт. Дополнительной настройки регулятора не потребуется. Если детали исправны и при подключении не возникало ошибок, он заработает сразу.

Схема была разработана давно, когда лазерных принтеров и компьютеров не было. По этой причине печатная плата изготавливалась по дедовскому методу, использовалась диаграммная бумага, шаг сетки которой 2,5 мм. Далее чертеж приклеивался «Моментом» на бумагу по плотнее, а сама бумага на фольгированный стеклотекстолит. Зачем сверлились отверстия, дорожки проводников и контактных площадок вычерчивались вручную.

Внешний вид чертежа печатной платы

У меня сохранился чертеж регулятора. На фото показан. Изначально применялся диодный мост номиналом КЦ407 (VD1-VD4). Их разрывало пару раз, пришлось заменить 4 диодами типа КД209.

Как снизить уровень помех от тиристорных регуляторов мощности

Чтоб уменьшить помехи, излучаемые тиристорным регулятором, применяют ферритовые фильтры. Они представляют собой ферритовое кольцо, имеющее обмотку. Эти фильтры встречаются в импульсных блоках питания телевизоров, компьютеров и других изделий. Любой тиристорный регулятор можно оснастить фильтром, который будет эффективно подавлять помехи. Для этого необходимо пропустить через ферритовое кольцо сетевой провод.

Ферритовый внешний фильтр для тиристорных регуляторов мощности

Ферритовый фильтр следует устанавливать вблизи источников, издающих помехи, непосредственно в месте установки тиристора. Фильтр может быть расположен как снаружи корпуса, так и внутри. Чем больше количество витков, тем качественней фильтр будет подавлять помехи, но и достаточно продеть провод, идущий к розетке, через кольцо.

Кольцо можно изъять из интерфейсных проводов компьютерной периферии, принтеров, мониторов, сканеров. Если посмотреть на провод, который соединяет монитор или принтер с системным блоком, можно заметить цилиндрическое утолщение на нем. Именно в этом месте расположен ферритовый фильтр, служащий для защиты от высокочастотных помех.

Ферритовый фильтр интерфейсов

Берем нож, разрезаем изоляцию и извлекаем ферритовое кольцо. Наверняка у ваших друзей или у вас завалялся старый интерфейсный кабель од кинескопного монитора или струйного принтера.

По материалам сайта: ydoma.info

www.proterem.ru

Тиристорный регулятор мощности. Две схемы

С помощью данной схемы можно снизить температуру утюга, электрообогревателя, паяльника либо яркость горения электролампы. Схема регулятора достаточно простая и собрана на двух тиристорах и двух динисторах. Устройство позволяет изменять напряжение питания нагрузки (ее мощность должна быть менее 200 ватт) в достаточно широком пределе 15… 215 В.

Первый вариант регулятора мощности

Функционирует тиристорный регулятор мощности следующим образом. В момент, когда на верхнем по схеме разъеме Х1 находится положительный полупериод сетевого напряжения, происходит заряд емкостей С2, С1 (через сопротивление R5).

Через определенное время емкость С2 заряжается до уровня открытия динистора V4. Динистор мгновенно открывается и напряжение, проходящее через него, отпирает тиристор V2. Тиристор подает часть напряжение на подключенную нагрузку и в то же время еще заряжает конденсатор С1.

первый вариант тиристорного регулятора мощности

В случае нахождения на этом же разъеме Х1 отрицательного полупериода сетевого напряжения откроется второй динистор V3, который приведет к открытию тиристора V1. Следовательно, эти два тиристора будут включаться попеременно. Смещение фазы сетевого напряжения на управляющих электродах тиристоров выполняется потенциометром, причем максимальное смещение будет при максимальном сопротивлении данного потенциометра.

Динисторы осуществляют роль электроключей, включающиеся при достижении необходимого напряжении на емкостях С1 и С2. Использование динисторов обеспечивает надежное открытие тиристоров при равном сдвиге фазы независимо от их параметров.

Сопротивления R2 и R4 лимитируют ток, протекающий через управляющий электрод тиристоров, а сопротивления R1 и R3 обеспечивают термостабильность работы регулятора мощности.

Динисторы КН102А возможно заменить на КН102В или КН102Б, но при этом необходимо незначительно снизить емкость конденсаторов С1 иС2 до 0,2мкФ. Лучшей результат работы показали конденсаторы марки БМТ с напряжением не ниже 300 В. Используя тиристоры КУ202К-КУ202Н на теплоотводе, можно повысить мощность управляемой нагрузки до 1000 Ватт.

Второй вариант регулятора мощности

Эта схема позволяет изменять мощность на подключенной нагрузке от 5…99 % от ее фактической мощности.

регулятор мощности напряжения на тиристоре

Данная схема может использоваться, когда нет или сломался родной терморегулятор мощности электрической плитки. КПД данного регулятора мощности составляет порядка 98 %.

fornk.ru

Электронные регуляторы мощности нагрузки

электроника для дома

 

Применение современной схемотехники с использованием простых оригинальных решений на традиционной элементной базе и на новых малогабаритных микросхемах позволяет изготовить компактные и удобные в эксплуатации регуляторы большой мощности. В данной статье описано несколько простых конструкций регуляторов мощности нагрузки до 5 кВт, которые легко изготовить из доступных деталей.

 

Электронные регуляторы мощности нагрузки в настоящее время широко используются в промышленности и быту для плавного регулирования скорости вращения электродвигателей, температуры нагревательных приборов, интенсивности освещения помещений электрическими лампами, установки необходимого сварочного тока, регулировки зарядного тока аккумуляторных батарей и т.п. Раньше для этого использовались громоздкие трансформаторы и автотрансформаторы со ступенчатым или плавным переключением витков их обмоток, работающих на нагрузку. Электронные регуляторы более компактны, удобны в эксплуатации и имеют малый вес при значительно большей мощности. В основном, исполнительными элементами электронных регуляторов мощности переменного тока являются: тиристор, симистор и оптотиристор, управление последним осуществляется через встроенную в него оптопару, устраняющую гальваническую связь между схемой управления и питающей электросетью.

Регулирование мощности этими элементами основано на изменении фазы включения симистора в каждой полуволне синусоидального напряжения схемой управления. В результате этого на нагрузке форма напряжения представляет собой «обрезки» полуволн синусоиды с крутыми фронтами (рис.1). При этом форма напряжения на самом регуляторе мощности имеет вид, показанный на рис.2. Такая форма сигнала имеет широкий спектр гармоник, которые, распространяясь по электропроводке, могут создавать помехи электронным устройствам: телевизорам, компьютерам, звуковоспроизводящей аппаратуре и т.п. В связи с этим на сетевых входах таких регуляторов мощности устанавливаются RC- или RLC-фильтры.

Рис.1

На практике все выпускаемые сейчас электронные бытовые устройства и компьютеры имеют свои встроенные сетевые фильтры, благодаря которым помехи регуляторов мощности могут не влиять на работу указанных электронных устройств. Автором проверялись различные регуляторы мощности без собственных сетевых фильтров в комнатах, где установлены телевизор, ком-

Рис.2

пьютер, приемник FM и DVD-проигрыватель с УМЗЧ Воздействия помех на эту аппаратуру не наблюдалось, но это не значит, что фильтры вообще не нужны. Эти регуляторы мощности могут создавать помехи электронной аппаратуре соседей по подъезду. Практические исследования распространения помех по электропроводке в соседних комнатах с помощью осциллографа показали, что при регулировании мощности нагрузки до 2 кВт достаточно RC-фильтра, что подтверждается схемами промышленных изделий. Для регуляторов большей мощности необходимо после RC-фильтра подключить LC-фильтр,

сетевые фильтры

Рис.3

Рис.4

Принципиальная схема сетевого фильтра промышленного регулятора мощности до 4 кВт типа РТ-4 УХЛ4.2 220В-1 Р30 показана на рис.3, монтаж регулятора - на рис.4. Каждая катушка содержит 90 витков провода ПЭВ-2 диаметром 1,5 мм, намотанного в два слоя на каркасе, внутри которого размещен ферритовый сердечник с проницаемостью Ф600 диаметром 8 мм. Индуктивность катушки равна 0,25 мГн. Регуляторы мощности без фильтров могут использоваться в гаражах, индивидуальных подсобных помещениях, дачах и т.п., то есть вдали от соседей. Если регулятор мощности является отдельным изделием и предназначен для подключения нагрузок разной мощности, пользователям важно знать, что при одном и том же положении ручки регулятора на разных нагрузках будет разное напряжение. По этой причине перед подключением нагрузки регулятор мощности необходимо устанавливать в нулевое положение. При необходимости контролировать напряжение на нагрузке можно отдельным или встроенным вольтметром.

В Интернете и электротехнических журналах приведено множество различных схем электронных регуляторов мощности нагрузки с практически одинаковыми функциями, но есть и другие схемные решения, например регуляторы, не создающие помех. Эти регуляторы выдают пачки синусоидальных токов, длительностью которых регулируется мощность в нагрузке. Схемы таких регуляторов относительно сложны и могут применяться в каких-то особых случаях. Применение подобных регуляторов в промышленности не встречалось. Подавляющее большинство регуляторов мощности построены по принципу фазового регулирования тока в нагрузке. Основное различие - схемы управления тиристорами и симисторами. Силовая часть представляет собой практически три варианта: тиристор в диагонали диодного моста, два встречно-параллельных тиристора и симистор. Схемы управления представляют собой различные варианты на транзисторах, микросхемах, динисторах, газоразрядных приборах, однопереходных транзисторах и т.п., часть которых приведена в [ 1—6]. Такие схемы содержат много деталей, относительно сложны в изготовлении и наладке.

Регуляторы на тиристорах

Самым простым и широко используемым регулятором мощности был регулятор на тиристоре, включенном в диагональ диодного моста и с простой схемой управления (рис.5). Принцип работы этого регулятора очень простой пока конденсатор С2 заряжается через R2 и R4, тиристор заперт, при достижении на С2 напряжения отпирания тиристор открывается и пропускает ток в нагрузку, а С2 быстро разряжается через низкое

регулятор мощности на тиристоре

Рис.5 регулятор мощности на тиристоре

сопротивление открытого тиристора. При переходе синусоидального напряжения сети через ноль тиристор запирается и ждет нового повышения напряжения на С2 Чем больше времени заряжается С2, тем меньше времени тиристор находится в открытом состоянии и меньше ток в нагрузке. Чем меньше величина R4, тем быстрее заряжается С2 и больше ток пропускается в нагрузку. Достоинством этой схемы является то, что независимо от параметров исправного тиристора положительные и отрицательные импульсы тока в нагрузке всегда симметричны, а также наличие только одного тиристора, которые при их появлении были дефицитом. Недостатком является наличие четырех мощных диодов, что вместе с тиристором и охладителями существенно увеличивает габариты регулятора. Более компактными и в два раза более мощными являются регуляторы мощности на включенных встречно-параллельно тиристорах. На двух тиристорах КУ202Н с простой схемой управления получается регулятор мощности нагрузки до 4 кВт, которая длительно используется автором в калорифере повышенной мощности [7].

Принципиальная схема такого регулятора с сетевым фильтром показана на рис.6. Недостатком таких схем является асимметрия положительных и отрицательных импульсов тока в нагрузке при разбросе параметров тиристоров.

Рис.6

Асимметрия проявляется в начальной стадии открывания тиристоров. Для нагревательных приборов и электроинструмента с коллекторными двигателями эта асимметрия практической роли не играет, а осветительные приборы при уменьшении их яркости начинают мигать, так как импульсы какой-то полярности при этом вообще исчезают. Для устранения этого недостатка необходимо подбирать тиристоры с идентичными параметрами по току открывания и току удержания тиристоров от технологического источника постоянного тока на соответствующей нагрузке или путем подбора второго тиристора по отсутствию мигания лампы при минимальном накале спирали.

Одной из разновидностей тиристоров являются оптотиристоры, для управления которыми при встречнопараллельном включении может быть применен принцип управления схемы рис.5 с разделением положительных и отрицательных управляющих импульсов с помощью диодов или динисторов.

Практическая принципиальная схема такого регулятора мощности нагрузки до 5 кВт показана на рис.7. Этот регулятор используется автором для регулировки сварочного тока и режимов работы других мощных электроустройств. Регулятор мощности снабжен стрелочным индикатором напряжения на нагрузке, что повышает удобство при его эксплуатации. На рис.8 виден стрелочный индикатор (поз.1), на котором приклеены детали его выпрямителя и фильтра. Регулятор не имеет сетевого фильтра, так как применяется либо на даче, либо в гараже. При необходимости в нем можно применить фильтр, схема которого показана на рис.3.

регулятор мощности на оптотиристорах

Рис.7, схема регулятора мощности на оптотиристорах

Рис.8

Регуляторы на симисторах

Особый интерес представляют современные схемы регуляторов мощности на симисторах. Традиционные схемы управления симисторами содержат относительно много деталей, что наглядно видно на монтажной плате промышленного регулятора, показанной на рис.4. Например,    микросхема КР1167КП1Б выдает на управляющий электрод симистора управляющие импульсы, показанные на осциллограмме (рис.9). Принципиальная схема регулятора мощности с применением данной микросхемы, распространенная среди запорожских электриков, показана на рис. 10. Этот регулятор мощности без теплоотвода для VS1 может работать на нагрузку до 200 Вт

Рис.9

(рис. 11), а с радиатором площадью не менее 100 см2 - до 2 кВт. Оказалось, что эту схему без потери качества можно еще упростить. Упрощенная схема регулятора с этой микросхемой показана на рис. 12. При использовании исправных деталей эти схемы не требуют наладки.

Регулятор мощности на симисторах

Рис.10, схема регулятора мощности на симисторах

При изготовлении регуляторов для прикроватных светильников оказалось, что некоторые симисторы и микросхемы имеют дефекты, влияющие на симметричность импульсов и, соответственно, на равномерность регулировки свечения ламп, и даже приводящие к их

Рис.11

миганию. Перепайка деталей на печатной плате является неприятной процедурой и приводит к ее порче. В связи с этим была изготовлена проверочная плата по схеме рис. 10 (без R1 и С1) с панелькой для однорядной микросхемы, которая решила указанные проблемы. К контактам 1 -2 печатной платы подпаивают регу-

Регулятор мощности на симисторе

Рис. 12

лировочный резистор R5. В качестве нагрузки подключают лампу накаливания. Перед установкой деталей для проверки плату в обязательном порядке отключают от электросети.

На базе схемы рис.11 изготовлен портативный технологический регулятор для различных работ. Монтаж деталей показан на фото в начале статьи (нижняя крышка снята). Схема собрана в алюминиевом корпусе, который также служит охладителем симистора, изолированным от корпуса слюдяной прокладкой и изоляционной спецшайбой. После крепления симистора необходимо в обязательном порядке проверить сопротивление изоляции между его анодом и корпусом, которое должно быть не менее 1 МОм Данный регулятор при испытании в течение двух часов нормально работал без нагрева корпуса на нагрузку мощностью 500 Вт.

В заключение следует отметить, что регуляторы мощности нагрузки, собранные по схемам рис.6 и рис. 10, испытанные длительной эксплуатацией, наиболее оптимальны в части надежности, компактности, простоты деталей, монтажа и наладки. С небольшими разбросами параметров тиристоров и асимметричностью параметров симисторов эти регуляторы могут работать на все типы нагрузок соответствующей мощности, кроме осветительных приборов. Отклонение номиналов резисторов и конденсаторов от указанных в схемах на 10...20% на работу регуляторов не влияют. Приведенные схемы управления могут работать и с более мощными тиристорами и симисторами в регуляторах мощности нагрузок до 5 кВт. Регулятор мощности по схеме рис. 12 рекомендуют применять для осветительных приборов мощностью до 100 Вт без теплоотвода. Работа этого регулятора на другие типы нагрузок не испытывалась, но предположительно он не должен быть хуже регулятора, собранного по схеме рис. 10.

А.Н. Журенков

Литература

1. Золотарев С. Регулятор мощности // Радио. -1989. - №11.

2. Карапетьянц В. Усовершенствование регулятора мощности // Радио. - 1986. -№11.

3. Леонтьев А., Лукаш С. Регулятор напряжения с фазоимпульсным управлением // Радио -1992. - №9.

4. Бирюков С. Двухканальный симисторный регулятор // Радио. - 2000. - №2.

5. Зорин С. Регулятор мощности // Радио. -2000. - №8.

6. Журенков А. Фен с электронным регулятором мощности // Электрик. - 2009. - №1-2.

7. Журенков А. Калорифер повышенной мощности // Электрик. - 2009. - №9.

 

radiopolyus.ru

Простой регулятор мощности для паяльника – схема

Собери простой регулятор мощности для паяльника за час

Эта статья о том, как собрать самый простой регулятор мощности для паяльника или другой подобной нагрузки. https://oldoctober.com/

Схему такого регулятор можно разместить в сетевой вилке или в корпусе от сгоревшего или ненужного малогабаритного блока питания. На сборку устройства уйдёт от силы час-два.

Самые интересные ролики на Youtube

Близкие темы.

Стабильный регулятор мощности своими руками

Как сделать цифровой осциллограф из компьютера своими руками?

Как за час сделать импульсный блок питания из сгоревшей лампочки?

Вступление.

Я много лет тому назад изготовил подобный регулятор, когда приходилось подрабатывать ремонтом р/а на дому у заказчика. Регулятор оказался настолько удобным, что со временем я изготовил ещё один экземпляр, так как первый образец постоянно обосновался в качестве регулятора оборотов вытяжного вентилятора. https://oldoctober.com/

Кстати, вентилятор этот из серии Know How, так как снабжён воздушным запорным клапаном моей собственной конструкции. Описание конструкции >>> Материал может пригодиться жителям, проживающим на последних этажах многоэтажек и обладающих хорошим обонянием.

Мощность подключаемой нагрузки зависит от применяемого тиристора и условий его охлаждения. Если используется крупный тиристор или симистор типа КУ208Г, то можно смело подключать нагрузку в 200… 300 Ватт. При использовании мелкого тиристора, типа B169D мощность будет ограничена 100 Ваттами.

Как это работает?

Вот так работает тиристор в цепи переменного тока. Когда сила тока, текущего через управляющий электрод, достигает определённого порогового значения, тиристор отпирается и запирается лишь тогда, когда исчезает напряжение на его аноде.

Примерно так же работает и симистор (симметричный тиристор), только, при смене полярности на аноде, меняется и полярность управляющего напряжения.

На картинке видно, что куда поступает и откуда выходит.

Ремарка.

В бюджетных схемах управления симисторами КУ208Г, когда есть только один источник питания, лучше управлять «минусом» относительно катода.

Схема проверки симисторов.

Чтобы проверить работоспособность симистора, можно собрать вот такую простую схемку. При замыкании контактов кнопки, лампа должна погаснуть. Если она не погасла, то либо симистор пробит, либо его пороговое напряжение пробоя ниже пикового значения напряжения сети. Если лампа не горит при отжатой кнопке, то симистор оборван. Номинал сопротивления R1 выбирается так, чтобы не превысить максимально-допустимое значение тока управляющего электрода.

Схема проверки и тиристоров.

При проверке тиристров в схему нужно добавить диод, чтобы предотвратить подачу обратного напряжения.

Схемные решения.

Простой регулятор мощности можно собрать на симисторе или тиристоре. Я расскажу и о тех и о других схемных решениях.

Регулятор мощности на симисторе КУ208Г.

VS1 – КУ208Г

HL1 – МН3… МН13 и т.д.

R1 – 220k

R2 – 1k

R3 – 300E

C1 – 0,1mk

На этой схеме изображён, на мой взгляд, самый простой и удачный вариант регулятора, управляющим элементом которого служит симистор КУ208Г. Этот регулятор управляет мощностью от ноля до максимума.

Назначение элементов.

HL1 – линеаризует управление и является индикатором.

С1 – генерирует пилообразный импульс и защищает схему управления от помех.

R1 – регулятор мощности.

R2 – ограничивает ток через анод - катод VS1 и R1.

R3 – ограничивает ток через HL1 и управляющий электрод VS1.

Регулятор мощности на мощном тиристоре КУ202Н.

VS1 – КУ202Н

VD1 - 1N5408

R1 – 220k

R3 – 1k

R4 – 30k

C1 – 0,1mkF

Похожую схему можно собрать на тиристоре КУ202Н. Её отличие от схемы на симисторе в том, что диапазон регулировки мощности регулятора составляет 50… 100%.

На эпюре видно, что ограничение происходит только по одной полуволне, тогда как другая беспрепятственно проходит через диод VD1 в нагрузку.

Регулятор мощности на маломощном тиристоре.

VS1 – BT169D

VD1 – 1N4007

R1 – 220k

R3 – 1k

R4 – 30k

R5* – 470E

C1 – 0,1mkF

Данная схема, собранная на самом дешёвом маломощном тиристоре B169D, отличается от схемы приведённой выше, только наличием резистора R5, который вместе с резистором R4 являются делителем напряжения и снижают амплитуду сигнала управления. Необходимость этого вызвана высокой чувствительностью маломощных тиристоров. Регулятор регулирует мощность в диапазоне 50… 100%.

Регулятор мощности на тиристоре с диапазоном регулировки 0… 100%.

VS1 – BT169D

VD1... VD4 – 1N4007

R1 – 220k

R3 – 1k

R4 – 30k

R5* - 470E

C1 – 0,1mkF

Чтобы регулятор на тиристоре мог управлять мощностью от ноля до 100%, нужно добавить в схему диодный мост.

Теперь схема работает аналогично симисторному регулятору.

Конструкция и детали.

Регулятор собран в корпусе блока питания некогда популярного калькулятора «Электроника Б3-36».

Симистор и потенциометр размещены на стальном уголке, изготовленном из стали толщиной 0,5мм. Уголок прикручен к корпусу двумя винтами М2,5 с использованием изолирующих шайб.

Резисторы R2, R3 и неоновая лампа HL1 одеты в изолирующую трубку (кембрик) и закреплены методом навесного монтажа на других электроэлементах конструкции.

Для повышения надёжности крепления штырей вилки, пришлось напаять на них по несколько витков толстой медной проволоки.

Так выглядят регуляторы мощности, которые я использую много лет.

А это 4-х секундный ролик, который позволяет убедиться в том, что всё это работает. Нагрузкой служит лампа накаливания мощностью 100 Ватт.

Дополнительный материал.

Цоколёвка (распиновка) крупных отечественных симисторов и тиристоров. Благодаря могучему металлическому корпусу эти приборы могут без дополнительного радиатора рассеивать мощность 1… 2 Ватта без существенного изменения параметров.

Цоколёвка мелких популярных тиристоров, которые могут управлять напряжением сети при среднем токе 0,5 Ампера.

Тип прибора Катод Управ. Анод
BT169D(E, G) 1 2 3
CR02AM-8 3 1 2
MCR100-6(8) 1 2 3
28 Апрель, 2011 (23:10) в Источники питания, Сделай сам

oldoctober.com

Простой регулятор мощности на тиристоре. Схема

Простой регулятор мощности на тиристоре, электрическая схема которого приведена на рисунке 5.2.1, дозволяет изменять мощность осветительных и нагревательных устройств в диапазоне от 0 до 100%. При приведенных на электросхеме значениях радиоэлементах мощность нагрузки может составлять 150-200 ватт.

Переменный резистор R2 должен быть рассчитан на мощность более 2 Вт. Если диодный мостик VD1 поменять диодами КД202К, то мощность нагрузки возможно поднять до 500 ватт. Электросхему возможно сделать проще, если применить в роли регулирующего элемента симистор. Модификация такого регулятора изображена на рисунке 5.2.2.

регулятор мощности на тиристоре

Мощность нагрузки должна быть не более 500 ватт. Правда этим электрическим схемам присущи один недостаток, как малая точность регулировки. Помимо того, переменный резистор R2 функционирует в тяжелом тепловом режиме. Электрическая схема, изображенная на рисунке 5.2.3, освобождена от данных изъянов.

Усовершенствованый тиристорный регулятор мощности для активной нагрузки

Она обеспечивает фазовое управление симистором VS1. Управлением симистора обеспечивает генератор пилообразного напряж. на транзисторах VT1, VT2, подключенных по схеме, равноценной однопереходному транзистору.Частота функционирования генератора синхронизирована с частотой следования напряжения электросети — 50 Гц.

Длительность пилообразных импульсов, а следовательно и момент открытого состояния симистора VS1 возможно менять, меняя момент заряда емкости С1 с помощью переменного резистора R1. Максимальная мощность нагрузки должна быть менее 500 ватт.

fornk.ru

Регулятор мощности на симисторе: схема, изготовление своими руками

Для многих людей оптимизация мощности, потребляемой из электросети, весьма актуальна. Для бытовых нужд электричество используется в основном для получения света и тепла. Свет используется повсеместно. Поэтому регулировка яркости лампочек нужна всем. Несколько меньше потребителей электрического обогрева.

Если в жилье есть газоснабжение, готовить пищу на газовой плите удобнее, а отопление газовым котлом обычно дешевле электрического варианта. Но при отсутствии газа оптимизация потребления электроэнергии становится очень важной задачей. Для ее решения надо потреблять ровно столько электрической энергии, сколько необходимо. А для этого потребуется оптимальное управление бытовыми электроприборами и освещением. Многие электроплиты, электрообогреватели, вентиляторы и т.д. снабжены встроенными регуляторами.

Но технические возможности системы управления электрооборудованием стоят немалых денег. И по этой причине чаще всего покупаются недорогие электроприборы с простейшими регуляторами. Далее мы расскажем читателям об устройствах, использование которых даст не только экономию электроэнергии, но и сделает многие электроприборы более удобными. Эти устройства — регуляторы мощности. Их назначение — регулировка среднего значения напряжения на нагрузке.

Проще всего купить диммер

Они уменьшают его величину, а соответственно, и потребляемую мощность. По законам Джоуля-Ленца и Ома для электрической цепи. Эффективное регулирование мощности нагрузки обеспечивают специальные технические решения. А любая схема регулятора мощности содержит полупроводниковый коммутатор. Кто желает поскорее обрести возможность гибкого управления своими электроприборами, может легко купить простой регулятор мощности. Им является диммер. Разнообразные модели этого устройства продаются в торговых сетях.

Разнообразие диммеров Разнообразие диммеров

Очень удобен такой регулятор на даче. Он будет замечательным дополнением к маленькому кипятильнику или одно-, двухконфорочной электроплитке. Теперь в ходе приготовления еды не будет подгорания и слишком сильного кипения. Покупая регулятор мощности, обязательно удостоверьтесь в его соответствии решаемым задачам. Он должен быть мощнее управляемого электрооборудования. Большинство моделей диммеров рассчитано на обслуживание квартирного освещения. По этой причине они в основном регулируют мощность до 300 Вт.

Не нашел в магазине — сделай сам

Чтобы приобрести более мощную модель, придется поискать ее в торговых сетях. Альтернативное решение — просмотр схем регуляторов мощности, изготовление своими руками выбранной модели. Чтобы помочь нашим читателям выбрать оптимальную схему, более подробно опишем главные особенности этих устройств. Регулятор на полупроводниковом ключе может быть выполнен на

  • биполярном транзисторе;
  • полевом транзисторе;
  • тиристоре;
  • симметричном тиристоре (симисторе, триаке).        

Регулятор мощности, схема которого содержит любой из перечисленных полупроводниковых ключей, всегда пребывает в одном из двух состояний. Он либо максимально ограничивает ток (отключает нагрузку), либо почти не оказывает сопротивления (подключает нагрузку). При срабатывании сопротивление переходов полупроводниковых приборов быстро изменяется по величине. Каждому его значению соответствует определенная электрическая мощность. Она выделяется как тепло и носит название динамических потерь. Чем быстрее срабатывает прибор (отключает или подключает нагрузку), тем меньше динамические потери.

Наиболее быстродействующими ключами являются транзисторы. Но они и включаются и выключаются при любой ненулевой величине напряжения. Если эти процессы происходят вблизи его амплитудного значения, динамические потери будут максимально большими. Обычный тиристорный ключ отличается тем, что выключается без управляющего сигнала при переходе тока нагрузки через ноль. Хотя его включение происходит при той же амплитуде переменного напряжения, что и у транзисторов.

Выбери триак

По этой причине схема тиристора, а особенно симисторного регулятора мощности получается более простой, экономичной и надежной. Особенно если он быстро включается. У регулятора мощности на симисторе кроме него нет больше полупроводниковых приборов, по которым течет ток нагрузки. А у регуляторов с остальными ключами такими приборами обязательно будут выпрямительные диоды, в том числе встроенные. Поэтому рекомендуем остановиться на симисторах — схемы с ними есть во многих справочниках, популярных журналах а, следовательно, и в интернете. Их легко найти и выбрать что-либо приемлемое.

Первый регулятор мощности на симисторе КУ208Г используется уже много лет, начиная с 80-х годов прошлого века.

Параметры симистора КУ208Г Параметры симистора КУ208ГСхема простейшего регулятора мощности Схема простейшего регулятора мощности

Современные симисторы в регуляторах

Устаревший дизайн КУ208Г не всегда удобен для размещения в корпусе регулятора. Новая модель BT136 600E, у которой параметры включения и регулировки примерно такие же, позволит собрать более компактный симисторный регулятор мощности. С этой моделью из-за ее компактности получается значительно больше вариантов конструкции, из которых можно выбирать.

Симисторный регулятор мощности Симисторный регулятор мощности

Если самостоятельно изготавливается регулятор мощности, схема которого взята из какого-либо источника, обязательно сравните максимальные токи используемого ключа и нагрузки. В этих целях разделите паспортную мощность нагрузки на 220. Для надежной работы регулятора мощности на симисторе и не только полученное значение тока должно составлять 0,7 от номинального значения ключа, используемого в схеме. Поэтому для многих бытовых электроприборов КУ208Г окажется слабоват. Но его можно заменить более мощным, например ВТА 12.

Характеристики симистора BTA 12 Характеристики симистора BTA 12

Этот ключ со своими 12 амперами сможет надежно регулировать нагрузку до 1848 Вт с непродолжительным увеличением ее до 2000 Вт. Собранный регулятор мощности на симисторе этой модели, например, можно применить для управления электрическим чайником. Один из таких вариантов показан далее.

Регулятор на ключе-триаке BTA 12 Регулятор на ключе-триаке BTA 12

При выборе схемы регулятора мощности

  • коллекторного мотора постоянного тока,
  • универсальных (тоже коллекторных) двигателей,
  • пригодного для управления электродвигателя в каком-либо электрооборудовании,

рекомендуем обратить внимание на безопасность управления. Она обеспечивается гальванической развязкой в схеме регулятора. Ключ надежно развязывается от управляющего элемента, к которому прикасается пользователь. Для этого применяются схемотехнические решения с трансформаторами, а также оптронные электронные приборы. Примеры подобных схем показаны далее. В этих схемах управляющий элемент является частью контроллера.

Схемы работы симистора Схемы работы симистора

Эффективный, надежный и безопасный регулятор мощности добавит многим вашим электроприборам новые потребительские свойства. За вами остается правильный выбор устройства при покупке или изготовление их без ошибок своими руками по выбранной схеме.

Похожие статьи:

domelectrik.ru


Каталог товаров
    .