Главным электрическим параметром светодиодов (LED) является их рабочий ток. Когда в таблице характеристик светодиода мы встречаем рабочее напряжение, то нужно понимать, что речь идет о падении напряжения на светодиоде при протекании рабочего тока. То есть рабочий ток определяет рабочее напряжение LED. Поэтому только стабилизатор тока для светодиодов может обеспечить их надежную работу. Стабилизаторы должны обеспечивать постоянный рабочий ток светодиодов когда в сети питания есть проблемы с отклонением напряжения от нормы (вам будет интересно узнать, как подключить светодиод от сети 220 вольт). Стабильный рабочий ток в первую очередь необходим для защиты LED от перегрева. Ведь при превышении максимально допустимого тока, светодиоды выходят из строя. Также стабильность рабочего тока обеспечивает постоянство светового потока прибора, например, при разряде аккумуляторных батарей или колебаниях напряжения в питающей сети. Стабилизаторы тока для светодиодов имеют разные виды исполнения, а обилие вариантов схем исполнения радует глаз. На рисунке приведены три самые популярные схемы стабилизаторов на полупроводниках. В схемах а) и б) ток стабилизации определяется номиналом резистора R. Применяя вместо постоянного резистора подстрочный можно регулировать выходной ток стабилизаторов. Производители электронных компонентов производят множество микросхем стабилизаторов для светодиодов. Поэтому в настоящее время в промышленных изделиях и в радиолюбительских конструкциях чаще применяются стабилизаторы в интегральном исполнении. Почитать про все возможные способы подключения светодиодов можно здесь. Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке. Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания. Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и Rset. Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов. Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно. Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%. Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке. Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора Rsens и подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей. Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование. В качестве стабилизатора тока для светодиодов можно использовать не только специализированные микросхемы. Большой популярностью у радиолюбителей пользуется схема LM317. LM317 представляет собой классический линейный стабилизатор напряжения имеющий множество аналогов. В нашей стране эта микросхема известна как КР142ЕН12А. Типовая схема включения LM317 в качестве стабилизатора напряжения показана на рисунке. Для превращения этой схемы в стабилизатор тока достаточно исключить из схемы резистор R1. Включение LM317 в качестве линейного стабилизатора тока выглядит следующим образом. Выполнить расчет этого стабилизатора довольно просто. Достаточно вычислить номинал резистора R1, подставив значение тока в следующую формулу: R1=1.25*I0. Мощность, рассеиваемая на резисторе равна: W=I2R1. Предыдущую схему легко превратить в регулируемый стабилизатор. Для этого нужно постоянный резистор R1 заменить на потенциометр. Схема будет выглядеть так: Во всех приведенных схемах стабилизаторов используется минимальное количество деталей. Поэтому самостоятельно собрать подобные конструкции сможет даже начинающий радиолюбитель освоивший навыки работы с паяльником. Особенно просты конструкции на LM317. Для их изготовления даже не нужно разрабатывать печатную плату. Достаточно припаять подходящий резистор между опорным выводом микросхемы и ее выходом. Также к входу и выходу микросхемы нужно припаять два гибких проводника и конструкция будет готова. В случае, если с помощью стабилизатора тока на LM317 предполагается питать мощный светодиод, микросхему нужно оснастить радиатором который обеспечит отвод тепла. В качестве радиатора можно использовать небольшую алюминиевую пластинку площадью 15-20 квадратных сантиметров. Изготавливая конструкции бустеров, в качестве дросселей можно использовать катушки фильтров различных блоков питания. Например, для этих целей хорошо подойдут ферритовые кольца от блоков питания компьютеров, на которые следует намотать несколько десятков витков эмалированного провода диаметром 0.3 мм. Сейчас автолюбители часто занимаются модернизацией светотехники своих машин, применяя для этих целей светодиоды или светодиодные ленты (читайте, как подключить светодиодную ленту в авто). Известно, что напряжение бортовой сети автомобиля может сильно меняться в зависимости от режима работы двигателя и генератора. Поэтому в случае с авто особенно важно применять не стабилизатор 12 вольт, а рассчитанный на конкретный тип светодиодов. Для автомобиля можно посоветовать конструкции на основе LM317. Также можно использовать одну из модификаций линейного стабилизатора на двух транзисторах, в которой в качестве силового элемента использован мощный N-канальный полевой транзистор. Ниже приведены варианты подобных схем, в том числе и схема светодиодного драйвера. Подводя итог можно сказать, что для надежной работы светодиодных конструкций их необходимо питать с помощью стабилизаторов тока. Многие схемы стабилизаторов просты и доступны для изготовления своими руками. Мы надеемся, что приведенные в материале сведения будут полезны всем, кто интересуется данной темой. ledno.ru На рисунке один изображена схема стабилизатора тока на 10А. Схема регулируемого стабилизатора тока приведена на рисунке 2. Величина тока стабилизации в схеме, изображенной на рис.1, полностью зависит от номинала резистора R3, найти переменный резистор с таким маленьким номиналом практически невозможно. Стабилизатор тока на 10А. Стабилизатор тока на 5А. Да и мощность, выделяемая на этом резисторе относительно большая, например, при токе пять ампер и величине сопротивления 0,24 Ом, на данном резисторе выделится мощность Р = I 2 • R = 5 • 5 • 0,24 = 6Вт. Поэтому самый простой выход, это применить магазин сопротивлений, подключаемых тумблерами, как показано на рисунке 2. Все резисторы в магазине имеют одинаковый номинал. Резистор R6 включен в схему постоянно и ток стабилизации при этом будет равен 1А, мощность, выделяемая на этом резисторе, будет равна 1,2Вт. При подключении параллельно ему еще одного резистора, ток стабилизации увеличится до двух ампер, если в параллель будет включено три резистора, то ток будет равен – 3А, … четыре резистора – 4А и так далее. Дискретность изменения тока стабилизации в данном случае равна одному амперу. Меняя номиналы резисторов и количество тумблеров, можно получить необходимую вам величину регулировки тока стабилизации. Недостатком данной схемы является большое количество тумблеров и резисторов. Достоинство – все просто, можно обойтись без печатной платы. При больших рабочих токах, протекающих через транзистор, необходим радиатор соответствующей величины. Прикинуть площадь радиатора можно здесь. Просмотров:79 814 www.kondratev-v.ru Всем доброго времени суток. В предыдущей статье я описывал простейший генератор пилообразного напряжения и приводил его расчет. Данная статья продолжает первую часть, сегодня вы узнаете, как улучшить параметры генераторов и какие для этого применяются схемы. Как известно из предыдущей статьи основными параметрами для оценки качества генератора пилообразного напряжения являются коэффициент нелинейности и коэффициент использования напряжения питания. Первый коэффициент характеризует нестабильность тока, который заряжает конденсатор, поэтому для обеспечения коэффициента нелинейности ξ интегрирующие цепи наиболее линейный заряд конденсатора происходит в начальный период времени (примерно первые 10 % от времени заряда). Поэтому для лучшей линейности в простейших генераторах пилообразного напряжения с зарядным (или разрядным) резистором приходится использовать напряжение питания в несколько десятков раз выше, чем амплитуда выходного импульса. Стабилизатор тока (источник тока, генератор тока) называется устройство, которое автоматически поддерживает заданный ток в нагрузке под действием дестабилизирующих факторов. В качестве основного элемента в генераторе тока в большинстве случаев используется биполярный транзистор. В простейшем случае схема представляет собой однокаскадный усилитель, который показан ниже Работает схема следующим образом. Делитель напряжения R1R2 создаёт на базе транзистора VT1 напряжение UB, которое может быть представлено, как сумма напряжений UBE (напряжение на переходе база-эмиттер) и UE – напряжение на эмиттере VT1, тогда При этом напряжение на базе выбирается в пределах UB ≈ (0,3…0,5)* EПИТ А ток эмиттера будет равен Так как ток коллектора транзистора практически такой же, как и ток эмиттера, то, если ток эмиттера поддерживать постоянным, то ток коллектора также будет постоянным, несмотря на изменение напряжения на коллекторе. Данная схема является основой для различных источников постоянного тока. При расчёте данной схемы необходимо, чтобы ток делителя R1R2 был в 5…10 раз больше, чем базовый ток транзистора, то есть Данная схема достаточно эффективна во многих случаях, но иногда возникают проблемы в связи с нестабильностью источника питания и по этой причине возможно изменение напряжения на базе транзистора UB, как следствие и тока эмиттера IE. Необходимо рассчитать источник тока, обеспечивающий IС = 10 мА, напряжение источника питания ЕПИТ = 10 В. где UBE = 0,6 – 0,8 B, Примем UB = 3 В, тогда Примем IR1R2 = 1 мА Примем R1 = 6,8 кОм, R2 = 3,3 кОм Как указывалось выше простой стабилизатор тока вследствие нестабильности напряжения питания, может иметь невысокую стабильность тока коллектора, кроме того через делитель напряжения R1R2 протекает достаточно большой ток, что приводит к потере мощности. Поэтому для уменьшения влияния этих факторов применяется диодная стабилизация (или диодное смещение) напряжения на базе. Схема, иллюстрирующая диодное смещение приведена ниже Работает данная схема, как и предыдущая, но с учётом того, что напряжение на базе транзистора VT1 создается стабилитроном. Расчёт данной схемы выполняется также как и предыдущей, только с учётом параметров стабилитрона, то есть напряжения стабилизации UНОМ и ток стабилизации ICT. При выборе стабилитрона источника тока необходимо руководствоваться следующими ограничениями В данной схеме по возможности необходимо использовать стабилитроны с небольшим значением напряжения стабилизации, потому что при напряжении стабилизации стабилитрона(UСТ.НОМ) близком к Ust уменьшается значение сопротивления резистора R1, что в свою очередь приводит к увеличению потребляемой мощности этим резистором. Необходимо рассчитать источник тока, обеспечивающий IС = 10 мА на нагрузке Rн = 150 Ом, напряжение источника питания ЕПИТ = 10 В. Выберем стабилитрон типа КС139Г со следующими параметрами Uст.ном. = 3,9 В, Iст.ном. = 5 мА. Примем R1 = 1,2 кОм Выберем R2 = 330 Ом Как указывалось выше, уменьшение напряжения стабилизации стабилитрона приводит к уменьшению потребляемого тока. Как известно минимальное напряжение на базе транзистора для его работы в качестве усилителя составляет UBE = 0,7 В – падение напряжения на p-n переходе база-эмиттер. Чтобы обеспечить такое напряжение достаточно между базой и эмиттером транзистора включить обычный диод, но лучше всего использовать транзистор с закороченным коллекторным переходом, причём необходимо стараться подобрать пару транзисторов с очень близкими параметрами (h31e, ICBO и т.д.). Такая схема, показанная ниже, называется токовым зеркалом или отражателем тока Рассмотрим работу схемы, основными элементами которой являются резистор R1 и транзисторы VT1 и VT2. Коллектор и база транзистора VT1 соединены, и поэтому данный транзистор выполняет роль диода. Коллекторный ток VT1 ограничен резистором R1, а как известно напряжение UBE и ток эмиттера IE транзистора связывает логарифмическая зависимость где UT – напряжение на p-n переходе зависящее от температуры,IEO – обратный ток насыщения эмиттера. Таким образом, если транзисторы VT1 и VT2 имеют одинаковые параметры, то падение напряжение UBE транзистора VT1 вызовет такое же падение напряжения UBE транзистора VT2, а следовательно и коллекторный ток транзистора VT2 будет примерно равным коллекторному току транзистора VT1. Таким образом, коллекторный ток VT2 с большой степенью точности задаётся («программируется») коллекторным током VT1. От схем стабилизаторов тока пора перейти к применению стабилизаторов в генераторах пилообразного напряжения. Тут всё достаточно просто, необходимо вместо зарядного (разрядного) резистора вставить в схему стабилизатор тока. Для примера возьмём стабилизатор тока с диодным смещением и добавим его в схему простого генератора пилообразного напряжения. Получившаяся схема изображена ниже Данная схема состоит из стабилизатора тока на транзисторе VT1, стабилитроне VD1 и резисторах R1, R2, а также разрядного транзистора VT2 и конденсатора C1.Схемы генераторов пилообразного напряжения позволяют получить коэффициент нелинейности ξ ≤ 10 %, а коэффициент использования напряжения ε ≈ 0,9. Как же работает такая схема? Как известно VT1. То есть дифференциальное сопротивление коллектора будет очень высоким в случае стабилизатора тока rK ≈ 0,5…1 МОм. После подачи питания Епит в схему, конденсатор C1 начинает заряжаться постоянным током IС ≈ IE = const, которой обеспечивается стабильным напряжением UST за счёт стабилитрона VD1 Таким образом, конденсатор зарядится до напряжения которое будет являться выходным напряжением данной схемы генератора. После того как на вход схемы (базовый вывод VT2) приходит положительный импульс (UBX > UBbIX) транзистор VT2 насыщается и конденсатор C1 разряжается Амплитуду выходного напряжения можно определить по следующей формуле Коэффициент нелинейности будет равен Таким образом, исходя из вышесказанного, можно сделать вывод, что данный генератор при работе на высокоомную нагрузку обеспечивает небольшой коэффициент нелинейности и большой коэффициент использования напряжения, который растёт с уменьшением напряжения стабилизации стабилитрона, а также обеспечивает большой диапазон длительности рабочего хода и небольшое время обратного хода. Одним из недостатков данного типа генератора является то, что необходимо иметь запускающий импульс со значительным уровнем напряжения (UBX > UBbIX), а также транзисторы с разными типами проводимости. В отличии от генератора линейно растущего напряжения, генератор линейно падающего напряжения можно собрать на транзисторах одного типа проводимости, что иногда имеет некоторое преимущество. Расчёт номиналов элементов данной схемы ведётся идентично генератору линейно растущего напряжения. Рассчитать параметры элементов схемы генератора пилообразного напряжения со стабилизатором тока, который обеспечивает следующие характеристики выходного сигнала: длительность рабочего хода ТР = 500 мкс, амплитуда выходного напряжения Um = 5 В, напряжение питания схемы EK = 10 В коэффициент нелинейности ξ = 1 %. где rK – дифференциальное сопротивление коллекторного перехода, rK = ΔUCB/ΔIC. Для простейших расчётов можно полагать, что rK = 0,5 … 1 Мом Выберем С1 = 51 нФ. Выберем стабилитрон типа КС147 со следующими параметрами Uст.ном. = 4,7 В, Iст.ном. = 5 мА. Примем R1 = 1 кОм Выберем R2 = 8,2 кОм Теория это хорошо, но теория без практики - это просто сотрясание воздуха. Перейдя по ссылке всё это можно сделать своими руками Скажи спасибо автору нажми на кнопку социальной сети www.electronicsblog.ru В этой статье пойдет речь о небольшой и простенькой приставке – стабилизаторе тока, для импульсного блока питания, предназначенного в прошлом для питания ЖКИ монитора. С ее помощью можно будет подзаряжать автомобильные аккумуляторы. Эта идея и просьба принадлежит одному из посетителей сайта. Выходные данные блока питания можно увидеть на фотографии. Двадцать вольт на выходе при токе 3,25 А, это вполне достаточно не только для подзарядки, но и неспешной полной зарядки аккумуляторов. А если убрать родной корпус, то улучшится тепловой режим платы ИИП, это даст возможность увеличить ток заряда. Схема стабилизатора тока представлена на рисунке 1. Стабилизатор тока реализован на микросхеме LM317, отечественный аналог указан на схеме – КР142ЕН12А. Для увеличения тока заряда применен дополнительный транзистор структуры p-n-p, в данном случае, я испытывал схему с транзистором КТ818Г. Аналогичный стабилизатор тока был описан в предыдущей статье «Зарядное устройство для гелиевых аккумуляторов на кр142ЕН12А». В данной статье меня попросили наиболее подробно описать алгоритм работы устройства. И так, схема работает следующим образом. На вход приставки подано напряжение, к выходу подключен заряжаемый аккумулятор. Через устройство начинает течь ток заряда. На резисторе R1, при прохождении тока происходит падение напряжения, равное Iзаряда • R1. Как только это падение напряжения, приложенное к переходу база – эмиттер транзистора VT1, превысит порог в 0,7 вольта, мощный транзистор начнет открываться и весь основной ток заряда, будет течь через переход коллектор – эмиттер этого транзистора. Далее сумма токов, протекающих через регулирующую микросхему и транзистор, будет протекать через резистор R2, от величины которого зависит максимально возможный зарядный ток, когда движок переменного резистора находится в верхнем по схеме положении. На резисторе R2 также создается падение напряжения, которое приложено между выводами 2 и 1 данной микросхемы, т.е. между выходом и управляющим выводами. В данной микросхеме имеется ИОН с величиной в 1,25 вольта естественно с небольшим разбросом этого параметра и все регулировки в ней происходят относительно этой величины. Таким образом, при увеличении падения напряжения на резисторе R2 выше напряжения ИОН – 1,25 В, микросхема отрабатывает таким образом, что ее выходной транзистор начинает закрываться, удерживая выходной ток схемы на определенном уровне. Ток стабилизации в этом случае будет равен Iст = 1,25/R2; Для нашей схемы – 1,25/0,39 ≈ 3,205А. У собранного мной макета схемы, максимальный ток был чуть меньше – 3,16 А. Например, для тока заряда 5А потребуется резистор с величиной сопротивления равной – 1,25 В/5 = 0,25 Ом. Далее ток течет через диод VD1, так как падение напряжения на прямо смещенном переходе диода мало зависит от проходящего через него тока, то диод в нашем случае играет роль стабилизатора напряжения, часть которого через переменный резистор плюсуется к падению напряжения на резисторе R2. Таким образом, имея возможность изменять напряжение на управляющем выводе микросхемы относительно ее выхода, мы можем управлять величиной тока стабилизации. В моей схеме ток регулировался от 1,16 А до 3,16 А. Минимальный ток можно еще уменьшить, включив последовательно с диодом VD1, еще такой же диод. В этом случае минимальный ток будет равен примерно 0,1… 0,2 А. Микросхема, транзистор и диод установлены на одном теплоотводе, через слюдяные прокладки. Так как элементов схемы совсем немного, то монтаж можно сделать навесным способом. Транзистор можно применить любой с током коллектора не менее 8 А и более. Можно применить КТ825 или импортные транзисторы типа TIP107. Диод тоже любой с прямым током 10А и более.Вроде все. Успехов и удачи. К.В.Ю. Чуть не забыл, чтобы не усложнять схему, вместо амперметра можно просто для переменного резистора сделать шкалу установки тока заряда. Скачать “reguliruemyj-stabilizator-toka-na-lm317” reguliruemyj-stabilizator-toka-na-lm317.rar – Загружено 483 раза – 65 KB Просмотров:2 892 www.kondratev-v.ru Иногда у автолюбителей появляется необходимость ограничить ток заряда АКБ, проверить тот или иной источник питания или пропустить напряжение через диоды. Чтобы осуществить одну из этих задач, есть смысл применить стабилизатор тока для светодиодов своими руками. Подробнее о том, какие существуют схемы для разработки данного девайса, вы узнаете ниже. Содержание [ Раскрыть] [ Скрыть] Источники тока не имеют ничего общего с источниками напряжения. Предназначение первых заключается в стабилизации выходного параметра, а также возможном изменении выходного напряжения. Это происходит так, чтобы уровень ток все время был одинаковым. Источники тока используются для запитки светодиодных ламп, заряда АКБ в авто и т.д. Если у вас возникла необходимость сделать простейший импульсный стабилизатор тока ходовых огней 12в для автомобиля своими руками, то предлагаем вашему вниманию несколько схем. Чтобы сделать простейший автомобильный импульсный стабилизатор тока в домашних условиях, вам потребуется микросхема 12v. Для этих целей отлично подойдет lm317. Такой стабилизатор напряжения 12 в lm317 считается регулируемым и способен функционировать с токами бортовой сети до полутора ампер. При этом показатель входного напряжения может составить до 40 вольт, lm317 в состоянии рассеивать мощность до 10 ватт. Но это возможно только в том случае, если будет соблюдаться тепловой режим. В целом потребление тока lm317 сравнительно небольшое — в районе 8 мили ампер, и данный показатель почти никогда не изменяется. Даже в том случае, если через крен lm317 проходит другой ток или меняется показатель входного напряжение. Как вы можете понять, стабилизатор 12 в lm317 для бортовой сети авто дает возможность удерживать постоянное напряжение на компоненте R3. Кстати, этот показатель можно регулировать благодаря использованию элемента R2, но пределы будут незначительными. В устройстве lm317 компонент R3 является устройством задающего тока. Так как показатель сопротивления lm317 всегда остается на одном и том же уровне, ток, который проходит через него, также будет стабильным (автор видео — Denis T). Что касается входа крен lm317, ток на них составит на 8 мили ампер выше. Используя вышеописанную схему, можно разработать самый простой стабилизатор напряжения для ДХО автомобиля. Такой девайс может применяться как устройство электронной нагрузки, источника тока для подзарядки АКБ и других целей. Нужно отметить, что интегральные девайсы током 3а или меньше довольно быстро реагируют на различные изменения импульса. Что касается недостатков, то такие девайсы характеризуются слишком высоким сопротивлением, в результате чего придется применять мощные компоненты. Довольно распространенными сегодня являются стабилизаторы для бортовой сети автомобиля 12v на двух транзисторах. Одним из основных недостатков такого устройства является плохая стабильность тока, если происходят изменения в питающем напряжении вольт. Тем не менее, данная схема для бортовой сети автомобиля 12v подходит для многих задач. Ниже вы сможете ознакомиться с самой схемой. В этом случае устройством, которое раздает ток, является резистор R2. Когда данный показатель растет, соответственно растет и напряжение на данном элементе. В том случае, если показатель составляет от 0.5 до 0.6 вольт, открывается компонент VT1. При открытии данное устройство будет закрывать элемент VT2, в результате чего ток, который проходит через VT2, начнет снижаться. При разработке схемы можно использовать полевой транзистор Мосфет вместе VT2. Что касается компонента VD1, то он применяется на напряжение от 8 до 15 вольт и нужен в том случае, если его уровень слишком высокий и работоспособность транзистора может быть нарушена. Если транзистор мощный, то показатель напряжения в сети авто может составить около 20 вольт. Необходимо помнить о том, что транзистор Мосфет открывается в том случае, когда показатель напряжения на затворе составит 2 вольта. Если вы используете универсальный выпрямитель для заряда АКБ или других задач, то вам вполне хватит работы транзистора и резистора R1. Вариант сборки устройства со специальным усилителем ошибки для авто актуален в том случае, если у вас возникла необходимость разработать устройство, работающее в широких пределах. В данном случае выполнять функцию токозадающего элемента будет R7. Операционный увелитель DA2.2 позволяет усилить уровень напряжения в вольтах токозадающего элемента. Устройство DA 2.1 предназначено для сравнивания уровня опорного параметра. Помните о том, что данная схема девайса на 3а нуждается в дополнительном питании, которое должно подаваться на разъем ХР2. Уровня напряжения в вольтах должно хватить для того, чтобы обеспечить функциональность элементов всей системы. Устройство для авто должно быть дополнено генератором, в нашем случае эту функцию выполняет элемент REF198, характеризующийся уровнем выходного напряжения в 4 вольта. Сама схема стоит достаточно дорого, так что при необходимости вместо нее можно установить кренку. Чтобы правильно произвести настройку, следует установить ползунок резистора R1 в верхнее положение, а с помощью элемента R3 выставляется нужное значение тока 3а. Чтобы предотвратить возбуждение, используются компоненты R2, C2 и R4. В некоторых случаях устройство для авто должно функционировать не только в большом диапазоне нагрузок, при этом обладая высоким коэффициентом полезного действия. Тогда использование компенсационных устройств будет не целесообразным, вместо них применяются импульсные элементы. Предлагаем ознакомиться с одной из наиболее распространенных схем МАХ771, ее особенности следующие: Что представляет собой процедура стабилизации? Компоненты R1 и R2 — это делители выходных показателей схемы. Когда уровень делимого напряжения становится больше, чем опорное, устройство автоматически снижает выходной параметр. При обратном процессе устройство будет увеличивать данный показатель. Вы сможете получить рабочий стабилизированный источник тока в том случае, если цепи будут поменяны таким образом, что система в целом станет реагировать на выходной параметр. Если нагрузка на устройство не особо большая, то есть менее 1.5 вольт, микросхема будет функционировать в качестве рабочего стабилизатора. Но когда этот параметр начнет резко возрастать, девайс переключится в режим стабилизации. Монтаж резистора R8 необходим только тогда, когда уровень нагрузки слишком высокий и составляет более 16 вольт. Что касается элементы R3, то он является токораздающим. Одним из основных недостатков такого варианта является слишком высокое падение нагрузки на вышеуказанном резисторе. Если вы хотите избавиться от этого минуса, то для того, чтобы увеличить сигнал, необходимо дополнительно установить операционный усилитель. В этой статье мы рассмотрели несколько вариантов стабилизирующих девайсов для авто. Разумеется, такие схемы всегда можно при необходимости модернизировать, способствуя повышению показателя быстродействия и т.д. Имейте в виду, что если нужно, вы всегда можете использовать специально разработанные микросхемы в качестве регулятора. Также при возможности можно самостоятельно производить достаточно мощные регулирующие компоненты, но таких варианты более актуальны для того, чтобы решать определенные задачи. Как вы видите, разработка схемы — дело достаточно сложное и кропотливое, к нему нельзя просто так подойти, не имея соответствующего опыта. Отсутствие определенных навыков не позволит получить необходимый результат. Чтобы своими руками сделать такую схему для авто, необходимо внимательно выполнять все действия, описанные выше. Как в домашних условиях сделать стабилизатор для питания ламп в авто или других целей — узнайте из видео (автор видео — Дед Синь). avtozam.com Современный человек постоянно находится в окружении огромного количества электротехнического оборудования, как бытового, так и промышленного. Трудно представить нашу жизнь без электрических приборов, они незаметно проникли в дома. Даже в наших карманах всегда найдется несколько таких устройств. Вся эта техника для своей стабильной работы требует бесперебойной подачи электроэнергии. Ведь скачки сетевого напряжения и тока чаще всего становятся причиной выхода приборов из строя. Для обеспечения качественного питания технических устройств лучше всего использовать стабилизатор тока. Он сможет компенсировать перепады сети и продлить срок эксплуатации. Стабилизатор тока – это устройство, которое автоматически поддерживает ток потребителя с заданной точностью. Он компенсирует скачки частоты тока в сети, изменение мощности нагрузки и температуры окружающей среды. Например, увеличение мощности, потребляемой устройством, приведет к изменению потребляемого тока, что вызовет падение напряжения на сопротивлении источника, а также сопротивлении проводки. Чем больше будет значение внутреннего сопротивления, тем сильнее будет меняться напряжение при увеличении тока нагрузки. Компенсационный стабилизатор тока представляет собой устройство с автоматическим регулированием, которое содержит цепь отрицательной обратной связи. Стабилизация достигается в результате изменения параметров регулирующего элемента, в случае воздействия на него импульса обратной связи. Этот параметр называется функцией выходного тока. По виду регулирования компенсационные стабилизаторы тока бывают: непрерывными, импульсными и смешанными. Основные параметры: 1. Коэффициент стабилизации по значению входного напряжения: К ст.т = (∆U вх /∆IH)*(IH /U вх), где Iн ,∆Iн – значение тока и приращения значения тока в нагрузке. Коэффициент К ст.т вычисляется при неизменном сопротивлении нагрузки. 2. Значение коэффициента стабилизации в случае изменения сопротивления: KRH = (∆R н/ R н) * (IH/∆IH) = rі / RH, где RH,∆R н - сопротивление и приращение сопротивления нагрузки; гi – значение внутреннего сопротивления стабилизатора. Коэффициент KRH вычисляется при неизменном входном напряжении. 3. Значение температурного коэффициента стабилизатора: γ=∆I н /∆t окр. К энергетическим параметрам стабилизаторов относится коэффициент полезного действия: η=P вых/P вх. Рассмотрим некоторые схемы стабилизаторов. Весьма широкое распространение получил стабилизатор тока на полевом транзисторе, при закороченном затворе и истоке, соответственно Uзи=0. Транзистор в такой схеме подключается последовательно сопротивлению нагрузки. Точки пересечения прямых нагрузки с выходной характеристикой транзистора определят значение тока при наименьшем и наибольшем значении входного напряжения. При использовании такой схемы ток нагрузки незначительно изменяется при существенном изменении входного напряжения. Импульсный стабилизатор тока своей отличительной чертой имеет работу транзистора – регулятора в состоянии переключения. Это позволяет повышать КПД прибора. Импульсный стабилизатор тока представляет собой разновидность однотактного преобразователя, охваченного контуром отрицательной обратной связи. Такие устройства в зависимости от реализации силовой части можно разделить на два типа: с последовательным соединением дросселя и транзистора; с последовательным соединением дросселя и параллельным соединением регулирующего транзистора. fb.ru категория материалы в категории И. КОРОТКОВ, пос. Буча Киевской обл., УкраинаРадио, 2002 год, № 10 В литературе не часто можно встретить схемы стабилизаторов тока на 100...200 А, однако в некоторых процессах (гальваника, сварка и др.) они необходимы. На первый взгляд, для стабилизации таких токов необходимы и соответствующие мощные транзисторы. В статье описывается стабилизатор тока на 150 А (с плавной регулировкой от нуля до максимума), выполненный на обычных, широко распространенных транзисторах серии КТ827. Примененное схемотехническое решение позволяет легко увеличить или уменьшить максимальный стабилизируемый ток. Как видно, нагрузка включена несколько необычно — в разрыв провода, соединяющего отрицательный вывод диодного моста VD5—VD8 с общим проводом устройства. Все мощные транзисторы VT1 — VT16 включены по схеме с общим коллектором, но каждый из них нагружен на свой уравнивающий резистор (R4—R19), также соединенный с общим проводом. Таким образом, через подключенную к розетке XS1 нагрузку стабилизатора протекает суммарный ток всех 16 транзисторов. Ток через каждый из транзисторов VT1 — VT16 выбран около 9,4 А, что значительно меньше предельно допустимого значения для КТ827А — КТ827В. При падении напряжения на транзисторе 10...11 В рассеиваемая мощность достигает 100 Вт. Разброс параметров транзисторов и сопротивлений резисторов R4 — R19 не имеет значения, так как каждый транзистор управляется своим операционным усилителем. Выходы ОУ DA1.1 — DA8.2 через транзисторы VT17 — VT32 соединены с базами транзисторов VT1 — VT16, а напряжения обратных связей поданы на инвертирующие входы с эмиттеров соответствующих транзисторов. ОУ поддерживают на инвертирующих входах (и соответственно на эмиттерах транзисторов VT1 — VT16) такие же напряжения, какие имеются у них на неинвертирующих входах. На неинвертирующие входы всех ОУ подано стабильное управляющее напряжение с резистивного делителя R2R3, подключенного к выходу интегрального стабилизатора DA11. При изменении управляющего напряжения изменяется ток через каждый из резисторов R4 — R19 и, соответственно, через общую нагрузку, подключенную к розетке XS1. Питаются ОУ от стабилизатора, выполненного на микросхемах DA9, DA10 и транзисторе VT33. Вместо составных транзисторов КТ827А в стабилизаторе тока можно применить транзисторы этой серии с индексами Б, В, Г или комбинации из двух транзисторов соответствующей мощности (например, КТ815+КТ819 с любыми буквенными индексами). Сдвоенные ОУ КР140УД20 заменимы на К157УД2 или на одинарные ОУ КР140УД6, К140УД7, К140УД14 и им подобные, стабилизатор 78L05 — на КР142ЕН5А, КР142ЕН5Б или 78L09, транзисторы КТ315Е — на КТ3102, КТ603 и др., диоды Д200 — на Д160. Вместо трансформатора ТПП232 (Т1) допустимо применение ТПП234, ТПП253 или любого другого с двумя вторичными обмотками на напряжение 16...20 В. Резистор R1 может быть любого типа, R2 желательно применить стабильный (например, С2-29). Для регулирования тока нагрузки автор использовал переменный резистор СП5-35А (с высокой разрешающей способностью), но можно, конечно, применить и любой другой, обеспечивающий требуемую точность установки тока. Конденсатор СЗ набран из десяти конденсаторов К50-32А, С4, С6 — К50-35, остальные — любого типа. Использовать в качестве СЗ один конденсатор большой емкости нельзя, так как он будет сильно перегреваться из-за того, что его выводы не рассчитаны на такие большие токи (недостаточно сечение). Сдвоенные ОУ DA1 — DA8, транзисторы VT17 — VT32, интегральный стабилизатор напряжения DA11, резисторы R2, R3 и конденсаторы С4 — С7 монтируют на печатной плате, изготовленной по чертежу, показанному на рис. 2. Транзисторы VT1 — VT16 закрепляют на теплоотводах, способных рассеять не менее 100 Вт каждый. Автор использовал ребристые теплоотводы размерами 200x100x26 мм (рис. 3). Все 16 теплоотводов собраны в батарею, для их охлаждения применены четыре вентилятора ВВФ-112М. Это позволило включать стабилизатор тока на долговременную постоянную нагрузку. Если нагрузка будет кратковременной или импульсной, можно обойтись и теплоотводами меньших размеров. Для увеличения кликните по изображению (откроется в новом окне) Резисторы R4 — R19 изготавливают из высокоомного (манганинового или константанового) провода диаметром 1...2 мм и закрепляют на теплоотводах соответствующих им транзисторов. Для охлаждения диодов VD5 — VD8 используют стандартные теплоотводы, рассчитанные на установку диодов Д200 (обдув их вентилятором не требуется). Микросхему DA9 и транзистор VT33 размещают на небольших пластинчатых теплоотводах. При монтаже стабилизатора тока нужно учитывать, что через некоторые цепи будет течь ток 150 А, поэтому их необходимо выполнить проводом соответствующего сечения. Вторичная обмотка трансформатора Т2 должна обеспечивать напряжение около 14 В при токе нагрузки 150 А (хорошо подходит сварочный трансформатор). Падение напряжения на сопротивлении нагрузки стабилизатора должно быть не более 10 В (остальное напряжение падает на транзисторах VT1 — VT16 и резисторах R4 — R19). При большем падении напряжения на нагрузке придется повысить напряжение вторичной обмотки трансформатора Т2, однако в этом случае необходимо проследить, чтобы мощность рассеяния каждого из транзисторов не превысила максимально допустимую. Налаживание собранного из исправных деталей устройства сводится к установке максимального стабилизируемого тока подбором резистора R2. Это удобно сделать, временно заменив последний включенным реостатом подстроечным резистором сопротивлением 1,5...2 кОм. Установив его движок в положение максимального сопротивления, а движок резистора R3 в верхнее (по схеме) положение и включив последовательно с нагрузкой амперметр на ток 150...200 А (или просто подсоединив его к гнездам розетки XS1), включают стабилизатор в сеть и, уменьшая сопротивление подстроечного резистора, добиваются отклонения стрелки амперметра до соответствующей отметки шкалы. Затем измеряют сопротивление введенной части подстроечного резистора и заменяют его постоянным ближайшего номинала. При максимальном токе 150 А напряжение на эмиттерах транзисторов VT1 — VT16 должно быть около 1,88 В. Поэтому налаживание можно проводить и по напряжению на эмиттере какого-либо из этих транзисторов, хотя точность установки тока при этом будет небольшой из-за разброса сопротивлений резисторов R4 — R19. Если необходимо увеличить или уменьшить отдаваемый в нагрузку максимальный ток, можно соответственнo увеличить или уменьшить число транзисторов и ОУ. Таким образом, на основе описанного стабилизатора можно создать значительно более мощный источник тока. Подключая нагрузку к стабилизатору тока, следует помнить, что на "земляном" проводе будет плюсовой выход стабилизатора. radio-uchebnik.ruГенератор пилообразного напряжения.Часть 2.Стабилизаторы тока. Схемы стабилизаторы тока
Стабилизатор тока для светодиодов: виды, схемы, как сделать
Назначение и принцип работы
Обзор известных моделей
Стабилизатор на LM317
Регулируемый стабилизатор
Как сделать стабилизатор для светодиода своими руками
Какой стабилизатор использовать в авто
Вывод
Регулируемый стабилизатор тока | Все своими руками
Опубликовал admin | Дата 16 сентября, 2013 Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".
Генератор пилообразного напряжения.Часть 2.Стабилизаторы тока
Простой стабилизатор тока
Расчёт простого стабилизатора тока
Стабилизатор тока с диодным смещением
Расчёт стабилизатора тока с диодным смещением
Токовое зеркало (отражатель тока)
Генератор пилообразного напряжения со стабилизатором тока
Расчёт генератора пилообразного напряжения с токовым стабилизирующим элементом
Самодельный стабилизатор тока для зарядного устройства
Опубликовал admin | Дата 13 июля, 2017 Работа схемы
Скачать статью
Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".
Как самому изготовить стабилизатор тока для светодиодов: схемы
Схемы стабилизаторов и регуляторов тока
На КРЕНке
Обустройство цепи на кренкеНа двух транзисторах
На операционном усилителе (на ОУ)
Механизм на операционном усилителеНа микросхеме импульсного стабилизатора
Схема механизма с применением импульсного устройстваЗаключение
Видео «Устройство для питания светодиодов»
Стабилизатор тока: назначение, описание, схемы
Стабилизатор тока до 150 Ампер
Стабилизатор тока до 150 Ампер
Схемы источников питания
Принципиальная схема мощного стабилизатора тока
Поделиться с друзьями: