Современного человека в быту и на производстве окружает большое количество электротехнических приборов и оборудования. Для устойчивой, стабильной работы всей этой техники требуется бесперебойная подача электроэнергии. Однако из-за скачков сетевого напряжения, приборы довольно часто выходят из строя. Во избежание подобных ситуаций, применяются специальные устройства, в том числе и стабилизатор тока на полевом транзисторе. Его использование гарантирует нормальную работу электротехники, предотвращает аварии и поломки. Качественное питание всех электротехнических устройств можно гарантированно обеспечить лишь, используя стабилизатор тока. С его помощью компенсируются скачки и перепады в сети, увеличивается срок эксплуатации приборов и оборудования. Основной функцией стабилизатора является автоматическая поддержка тока потребителя с точно заданными параметрами. Кроме скачков тока, удается компенсировать изменяющуюся мощность нагрузки и температуру окружающей среды. Например, с увеличением мощности, потребляемой оборудованием, произойдет соответствующее изменение потребляемого тока. В результате, произойдет падение напряжения на сопротивлении проводки и источника тока. То есть, с увеличением внутреннего сопротивления, будут более заметны изменения напряжения при увеличении токовой нагрузки. В состав компенсационного стабилизатора тока с автоматической регулировкой входит цепь отрицательной обратной связи. Изменение соответствующих параметров регулирующего элемента позволяет достичь необходимой стабилизации. На элемент оказывает воздействие импульс обратной связи. Данное явление известно, как функция выходного тока. В зависимости от регулировок, стабилизаторы разделяются на непрерывные, импульсные и смешанные. Среди множества стабилизаторов очень популярны стабилизаторы тока на полевых транзисторах. Подключение транзистора в данной схеме осуществляется последовательно сопротивлению нагрузки. Это приводит к незначительным изменениям тока нагрузки, в то время, как входное напряжение подвержено существенным изменениям. Управление полевыми транзисторами осуществляется посредством электрического поля, отсюда и появилось их название. В свою очередь электрическое поле создается под действием напряжения. Таким образом, все полевые транзисторы относятся к полупроводниковым приборам, управляемым напряжением. Канал этих устройств открывается только с помощью напряжения. При этом, ток не протекает через входные электроды. Исключение составляет лишь незначительный ток утечки. Отсюда следует, что какие-либо затраты мощности на управление отсутствуют. Однако на практике не всегда используется статический режим, в процессе переключения транзисторов задействована некоторая частота. В конструкцию полевого транзистора входит внутренняя переходная емкость, через которую протекает некоторое количество тока во время переключения. Поэтому для управления затрачивается незначительное количество мощности. В состав полевого транзистора входит три электрода. Каждый из них имеет собственное название: исток, сток и затвор. На английском языке эти наименования соответственно будут выглядеть, как source, drain и gate. Канал можно сравнить с трубой, по которой движется водяной поток, соответствующий заряженным частицам. Вход потока происходит через исток. Выход заряженного потока происходит через сток. Для закрытия или открытия потока существует затвор, выполняющий функцию крана. Течение заряженных частиц возможно лишь при условии напряжения, прилагаемого между стоком и истоком. При отсутствии напряжения тока в канале также не будет. Таким образом, чем больше значение подаваемого напряжения, тем сильнее открывается кран. Это приводит к увеличению тока в канале на участке сток-исток и уменьшению сопротивления канала. В источниках питания применяется ключевой режим работы полевых транзисторов, позволяющий полностью закрывать или открывать канал. Стабилизаторы тока предназначены для поддержания параметров тока на определенном уровне. Благодаря этим свойствам, данные приборы успешно используются во многих электронных схемах. Чтобы понять принцип действия, следует рассмотреть некоторые теоретические вопросы. Известно, что в идеальном источнике тока присутствует ЭДС, стремящаяся к бесконечности и бесконечно большое внутреннее сопротивление. За счет этого удается получить ток с требуемыми параметрами, независимо от сопротивления нагрузки. Идеальный источник способен создавать ток, остающийся на одном уровне, несмотря на изменяющееся сопротивление нагрузки в диапазоне от короткого замыкания до бесконечности. Для поддержания значения тока на неизменном уровне, величина ЭДС должна изменяться, начиная от величины больше нуля и до бесконечности. Основным свойством источника, позволяющим получать стабильное значение тока, является изменение сопротивления нагрузки и ЭДС таким образом, чтобы значение тока оставалось на одном и том же уровне. Но, на практике поддержка источником требуемого уровня тока происходит в ограниченном диапазоне напряжения, возникающего на нагрузке. Реальные источники тока используются вместе с источниками напряжения. К таким источникам относится обычная сеть на 220 вольт, а также аккумуляторы, блоки питания, генераторы, солнечные батареи, поставляющие потребителям электрическую энергию. С каждым из них может быть последовательно включен стабилизатор тока на полевом транзисторе, выход которого выполняет функцию источника тока. Простейшая конструкция стабилизатора состоит из двухвыводного компонента, с помощью которого происходит ограничение протекающего через него тока, до необходимых параметров, устанавливаемых изготовителем. Своим внешним видом он напоминает диод малой мощности, поэтому данные приборы известны как диодные стабилизаторы тока. electric-220.ru Ни для кого не секрет, что светодиодные лампы периодически перегорают, несмотря на продолжительные гарантийные сроки, установленные производителями. Очень многие просто не знают настоящих причин, по которым они выходят из строя. Тем не менее, никаких особых сложностей здесь нет, просто у таких ламп имеются определенные параметры, требующие обязательной стабилизации. Это сила тока в самой лампе и падение напряжения в питающей сети. Для решения этой проблемы используется стабилизатор тока для светодиодов. Однако не все стабилизаторы могут эффективно решать поставленную задачу. Поэтому в некоторых случаях рекомендуется изготавливать стабилизатор своими руками. Прежде чем приступать к этому процессу следует тщательно разобраться в назначении, устройстве и принципе работы стабилизатора, чтобы не допустить ошибок при сборке схемы. Основной функцией стабилизатора является выравнивание тока, независимо от перепадов напряжения в электрической сети. Всего существует два типа стабилизирующих устройств – линейные и импульсные. В первом случае осуществляется регулировка всех выходных параметров путем распределения мощности между нагрузкой и собственным сопротивлением. Второй вариант значительно эффективнее, поскольку в этом случае на светодиоды поступает лишь необходимое количество мощности. Действие таких стабилизаторов основано на принципе широтно-импульсной модуляции. У импульсных стабилизаторов более высокий коэффициент полезного действия, составляющий не менее 90%. Однако у них довольно сложная схема и соответственно высокая стоимость по сравнению с приборами линейного типа. Следует отметить, что использование стабилизаторов LM317 допустимо только для линейных схем. Они не могут включаться в цепи с большими значениями токов. Именно поэтому данные устройства наилучшим образом подходят для совместного использования со светодиодами. Необходимость использования стабилизаторов объясняется особенностями параметров светодиодов. Они отличаются нелинейной вольтамперной характеристикой, когда изменение напряжения на светодиоде приводит к непропорциональному изменению тока. С увеличением напряжения, возрастание тока в самом начале происходит очень медленно, поэтому свечения не наблюдается. Далее, когда напряжение достигает порогового значения, начинается излучение света с одновременным быстрым возрастанием тока. Если напряжение продолжает увеличиваться, в этом случае происходит еще большее возрастание тока, что приводит к сгоранию светодиода. Характеристики светодиодов отражают значение порогового напряжения в виде прямого напряжения при номинальном токе. Показатель номинального тока для большинства светодиодов малой мощности составляет 20 мА. Мощные светодиоды требуют более высокого номинального тока, достигающего 350 мА и выше. Они выделяют большое количество тепла и устанавливаются на специальные теплоотводы. Для того чтобы обеспечить нормальную работу светодиодов, питание к ним должно подключаться через стабилизатор тока. Это связано с разбросом порогового напряжения. То есть, различные типы светодиодов отличаются разным прямым напряжением. Даже у однотипных ламп может быть не одинаковое прямое напряжение, причем не только его минимальное, но и максимальное значение. Таким образом, если подключить параллельно два светодиода к одному и тому же источнику, то они будут пропускать через себя совершенно разный ток. Различие токов приводит к преждевременному выходу их из строя или мгновенному перегоранию. Чтобы избежать подобных ситуаций, светодиоды рекомендуется включать совместно со стабилизирующими устройствами, предназначенные для выравнивания тока и доведения его до определенной, заданной величины. С помощью стабилизатора выполняется установка тока, проходящего через светодиод, с заданным значением, не зависящим от напряжения, приложенного к схеме. Если напряжение превысит пороговый уровень, ток все равно останется прежним и не будет изменяться. В дальнейшем, когда общее напряжение увеличится, его рост произойдет лишь на стабилизаторе тока, а на светодиоде оно останется неизменным. Таким образом, при неизменных параметрах светодиода, стабилизатор тока может называться стабилизатором его мощности. Распределение активной мощности, выделяемой устройством в виде тепла, происходит между стабилизатором и светодиодом пропорционально напряжению на каждом из них. Данный тип стабилизатора получил название линейного. Нагрев линейного стабилизатора тока возрастает вместе с ростом приложенного к нему напряжения. Это является его основным недостатком. Тем не менее, это устройство обладает рядом преимуществ. Во время работы отсутствуют электромагнитные помехи. Конструкция очень простая, что делает изделие достаточно дешевым в большинстве схем. Существуют такие области применения, в которых линейный стабилизатор тока для светодиодов на 12 В становится более эффективным, по сравнению с импульсным преобразователем, особенно когда напряжение на входе лишь незначительно выше напряжения на светодиоде. Если питание осуществляется от сети, в схеме может использоваться трансформатор, к выходу которого подключается линейный стабилизатор. Таким образом, вначале напряжение снижается до такого же уровня, как и в светодиоде, после чего линейный стабилизатор устанавливает необходимое значение тока. Другой вариант предполагает приближение напряжения светодиода к питающему напряжению. С этой целью выполняется последовательное соединение светодиодов в общую цепочку. В результате, общее напряжение в цепи составит сумму напряжений каждого светодиода. Некоторые стабилизаторы тока могут быть выполнены на полевом транзисторе, с использованием р-п-перехода. Ток стока устанавливается с помощью напряжения затвор-исток. Ток, проходящий через транзистор, такой же, как и начальный ток стока, указанный в технической документации. Значение минимального рабочего напряжения такого устройства зависит от транзистора и составляет порядка 3 В. К более экономичным устройствам относятся стабилизаторы тока, основой которых является импульсный преобразователь. Данный элемент известен еще, как ключевой преобразователь или конвертер. Внутри преобразователя мощность прокачивается определенными порциями в виде импульсов, что и определило его название. В нормально работающем устройстве потребление мощности происходит непрерывно. Она непрерывно передается между входной и выходной цепями и также непрерывно поступает в нагрузку. В электрических схемах стабилизатор тока и напряжения на основе импульсных преобразователей имеет практически одинаковый принцип действия. Единственным отличием является контроль над током через нагрузку, вместо напряжения на нагрузке. Если ток в нагрузке снижается, стабилизатор осуществляет подкачку мощности. В случае увеличения – выполняется снижение мощности. Это позволяет создавать стабилизаторы тока для мощных светодиодов. В наиболее распространенных схемах дополнительно имеется реактивный элемент, называемый дросселем. От входной цепи на него определенными порциями поступает энергия, которая в дальнейшем передается на нагрузку. Такая передача происходит через коммутатор или ключ, находящийся в двух основных состояниях – выключенном и включенном. В первом случае ток не проходит, а мощность не выделяется. Во втором случае ключ проводит ток, обладая при этом очень малым сопротивлением. Поэтому выделяемая мощность также близка нулю. Таким образом, передача энергии происходит практически без потерь мощности. Однако импульсный ток считается нестабильным и для его стабилизации используются специальные фильтры. Наряду с явными преимуществами, импульсный преобразователь обладает серьезными недостатками, устранение которых требует специфических конструктивных и технических решений. Эти устройства отличаются сложностью конструкции, они создают электромагнитные и электрические помехи. Они затрачивают определенное количество энергии для собственной работы и в результате нагреваются. Их стоимость существенно выше, чем у линейных стабилизаторов и трансформаторных устройств. Тем не менее, большинство недостатков успешно преодолеваются, поэтому импульсные стабилизаторы пользуются широкой популярностью у потребителей. electric-220.ru Довольно часто возникают ситуации, когда характеристики электрического тока в сети не позволяют нормально эксплуатировать различные приборы и оборудование. Для решения этой проблемы используется импульсный стабилизатор тока, конструктивно напоминающий стабилизирующее устройство напряжения, работающего на основе импульсного преобразователя. Основной функцией импульсного стабилизатора является контроль над состоянием тока через нагрузку. В случае снижения тока в нагрузке подкачивается дополнительная мощность, а при повышении тока – мощность понижается. Схемы импульсных преобразователей, получившие наиболее широкое распространение, оборудуются реактивным элементом – дросселем, к которому энергия подкачивается определенными порциями с помощью специального ключа, еще называемого коммутатором. Подкачка осуществляется от входной цепи и далее поступает на нагрузку. В результате, такой режим работы дает существенную экономию электроэнергии, особенно, если стабилизатор работает на полевом транзисторе. Однако, несмотря на явные преимущества, у импульсных преобразователей имеется ряд недостатков, для преодоления которых используются различные технические и конструктивные решения. В первую очередь это связано с электромагнитными и другими помехами, возникающими в процессе работы импульсного конвертера, а также сложной конструкцией устройства. Во время эксплуатации невозможно достичь максимального эффекта, поскольку происходит нагрев и энергия затрачивается впустую. Немаловажное значение имеет высокая стоимость импульсных устройств. Тем не менее, для многих схем экономия электроэнергии выступает на передний план, поэтому негативное влияние недостатков в большинстве случаев удается максимально снизить. Основой каждого стабилизатора тока данного типа является импульсный преобразователь. Кроме того, в схеме предусмотрен ключ, находящийся только в двух позициях – выключенной и включенной. В состоянии «выключено» ток не проводится, поэтому выделение мощности отсутствует. В положении «включено» ключ начинает проводить ток, обладая при этом, незначительным сопротивлением, стремящимся к нулю. Соответственно выделение мощности происходит со значением также близком к нулю. Порционная передача энергии с помощью ключа от входа к выходу осуществляется без каких-либо потерь мощности. Однако по сравнению с линейным источником питания, ток и напряжение на выходе такого ключа будут импульсными, то есть нестабильными. Для стабилизации этих параметров используются фильтры, хорошо зарекомендовавшие себя для светодиодов. Лучше всего зарекомендовали себя фильтры, обладающие свойствами индуктивности, что позволяет избежать потерь мощности. Основное полезное свойство индуктивности заключается в постепенном возрастании тока, проходящего через нее. Происходит преобразование электрической энергии в магнитную и ее накапливание в сердечнике. После того как ключ оказывается выключенным, ток в индуктивности остается прежним, а напряжение изменяет полярность. В результате, зарядка выходного конденсатора продолжается, а сама индуктивность превращается в источник тока. Данная индуктивность, выполняющая передачу мощности, и является дросселем. В правильно работающем устройстве ток в дросселе присутствует постоянно, то есть его работа происходит в так называемом неразрывном режиме. Если происходит снижение нагрузочного тока, наступает рост напряжения в преобразователе. Снижается энергия, накопленная в дросселе, и устройство начинает работать в разрывном режиме при прерывистом токе. В результате, наблюдается резкий рост магнитных помех, создаваемых устройством. Чтобы избежать помех и намагничивания сердечника, используется особая конструкция дросселя, в которой присутствуют магнитные материалы. Одним из элементов импульсного стабилизатора тока является устройство для регулировки работы ключа в соответствии с подключенной нагрузкой. Регистрация напряжения на нагрузке производится стабилизатором, изменяющим работу ключа. С помощью стабилизатора тока выполняется измерение тока, проходящего через нагрузку. Обычно для этих целей используется небольшое измерительное сопротивление, включаемого последовательно с нагрузкой. Включение ключа преобразователя производится с различной скважностью, в зависимости от сигнала регулятора. Наибольшее распространение получил способ широтно-импульсной модуляции, а также работа в токовом режиме. В первом случае применяется управление длительностью импульсов с сохранением частоты следования. Вторая схема импульсного стабилизатора предполагает измерение пикового тока в дросселе, с одновременным интервалом между импульсами. На основе импульсного устройства создано несколько видов преобразователей: Многие импульсные блоки питания оборудованы системой стабилизации выходного напряжения. Подобные схемы, особенно повышенной мощности, помимо обратной связи с выходным напряжением, включают в свой состав систему контроля тока ключевого элемента. В этом качестве может использоваться резистор с незначительным сопротивлением. Наличие такого контроля обеспечивает работу дросселя в необходимом режиме. Подобные контрольные элементы используются в простейших стабилизаторах тока, сделанных своими руками, и эффективно стабилизируют выходной ток. electric-220.ru 25.10.2013 | Рубрика: Электроника Бывают случаи, когда необходимо пропускать стабильный ток через светодиоды, ограничить ток зарядки аккумуляторов или испытать источник питания, а реостата под рукой нет. В этом, и не только, случае помогут специальные схемотехнические решения ограничивающие, регулирующие и стабилизирующие ток. Далее подробно рассмотрены схемы стабилизаторов и регуляторов тока Источники тока, в отличие от источников напряжения, стабилизируют выходной ток, изменяя выходное напряжение так, чтобы ток через нагрузку всегда оставался одинаковым.Таким образом, источник тока отличается от источника напряжения, как вода отличается от суши. Типичное применение источников тока – питание светодиодов, зарядка аккумуляторов и т.п.Внимание! Не путайте стабилизатор тока со стабилизатором напряжения! Это может плохо кончиться =) Для этого стабилизатора тока достаточно применить КР142ЕН12 или LM317. Это регулируемые стабилизаторы напряжения способные работать с токами до 1,5А, входными напряжениями до 40В и рассеивают мощность до 10Вт (при соблюдении теплового режима).Схема и применение показаны на рисунках ниже Стабилизатор тока на КР142ЕН12 (LM317) Стабилизатор тока на КРЕН в качестве зярядного устройства Собственное потребление данных микросхем относительно невелико – около 8мА и это потребление практически не меняется при изменении тока протекающего через крен или изменения входного напряжения. Как видим, в вышеприведенных схемах, стабилизатор LM317 работает как стабилизатор напряжения, удерживая на резисторе R3 постоянное напряжение, которое можно регулировать в некоторых пределах построечным резистором R2. В данном случае R3 называется токозадающим резистором. Поскольку сопротивление R3 неизменно, то ток через него будет стабильным. Ток на входе крен будет примерно на 8мА больше. Таким образом, мы получили простой как веник стабилизатор тока, который может применяться как электронная нагрузка, источник тока для заряда аккумуляторов и т.п. Интегральные стабилизаторы достаточно шустро реагируют на изменение входного напряжения. Недостаток же такого регулятора тока – весьма большое сопротивление токозадающего резистора R3 и как следствие необходимость применять более мощные и более дорогие резисторы. Достаточно широкое распространение получили простенькие стабилизаторы тока на двух транзисторах. Основной минус данной схемы – не очень хорошая стабильность тока в нагрузке при изменении питающего напряжения. Впрочем, для многих применений сгодятся и такие характеристики. Далее показана схема стабилизатора тока на транзисторе. В данной схеме токозадающим резистором является R2. При увеличении тока через VT2, увеличится напряжение на токозадающем резисторе R2, которое при величине примерно 0,5…0,6В начинает открывать транзистор VT1. Транзистор VT1 открываясь начинает закрывать транзистор VT2 и ток через VT2 уменьшается. Стабилизатор тока на транзисторах Зарядка аккумуляторов Вместо биполярного транзистора VT2, можно применить MOSFET – полевой транзистор. Стабилитрон VD1 выбирается на напряжение 8…15В и необходим в случаях, когда напряжение источника питания достаточно велико и может пробить затвор полевого транзистора. Для мощных MOSFET это напряжение составляет порядка 20В. Далее показана схема стабилизатора тока с использованием MOSFET. Стабилизатор тока на полевом транзисторе Нужно учитывать, что MOSFET открываются при напряжении на затворе не менее 2В, соответственно увеличивается и напряжение, необходимое для нормальной работы схемы стабилизатора тока. При зарядке аккумуляторов и некоторых других задачах вполне достаточно будет включить транзистор VT1 с резистором R1 непосредственно к источнику питания так, как это показано на рисунке: Стабилизатор тока на полевом транзисторе В схемах стабилизатора тока на транзисторах необходимое значение токозадающего резистора для заданного значения тока примерно в два раза меньше, чем в схемах со стабилизатором на КР142ЕН12 или LM317. Это позволяет применить токозадающий резистор меньшей мощности. Если необходимо собрать регулируемый в широких пределах стабилизатор тока или стабилизатор тока с токозадающим резистором на порядок или даже два ниже, чем на схемах, показанных ранее, можно применить схему с усилителем ошибки на ОУ (операционном усилителе). Схема такого стабилизатора тока показана на рис: Стабилизатор тока на операционном усилителе В данной схеме токозадающим является резистор R7. ОУ DA2.2 усиливает напряжение токозадающего резистора R7 – это усиленное напряжение ошибки. ОУ DA2.1 сравнивает опорное напряжение и напряжение ошибки и регулирует состояние полевого транзистора VT1. Обратите внимание, что схема требует отдельного питания, подаваемого на разъем XP2. Напряжение питания должно быть достаточным для работы компонентов схемы и не превышать значения напряжения пробоя затвора MOSFET VT1. В качестве генератора опорного напряжения в схеме на рис. 7 применена микросхема DA1 REF198 с выходным напряжением 4,096В. Это достаточно дорогая микросхема, поэтому ее можно заменить обычной кренкой, а если напряжение питания схемы (+U) является стабильным, то и вовсе обойтись без стабилизатора напряжения в данной схеме. В этом случае переменный резистор R подсоединяется не к REF, а к +U. В случае электронного управления схемой вывод 3 DA2.1 можно подключить непосредственно к выходу ЦАП. Для настройки схемы необходимо выставить ползунок переменного резистора R1 в верхнее по схеме положение, подстроечным резистором R3 установить необходимое значение тока – это значение будет максимальным. Теперь резистором R1 можно регулировать ток через VT1 от 0 до установленного при настройке максимального тока. Элементы R2, C2, R4 необходимы для предотвращения возбуждения схемы. Из-за этих элементов временные характеристики не являются идеальными, что видно по осциллограмме Осциллограмма стабилизатора тока на ОУ На осциллограмме луч 1 (желтый) показывает напряжение нагружаемого ИП (источника питания), луч 2 (голубой) показывает напряжение на токозадающем резисторе R7. Как видно, в течение 80 мкс через схему протекает ток в несколько раз больше установленного. Иногда от стабилизатора тока требуется не только работать в широком диапазоне питающих напряжений и нагрузок, но и иметь высокий КПД. В этих случаях компенсационные стабилизаторы не годятся и на смену им приходят стабилизаторы импульсные (ключевые). Кроме того, импульсные стабилизаторы могут при небольшом входном напряжении получать высокое напряжение на нагрузке. Далее предлагается к рассмотрению широко распространенная микросхема MAX771. Основные характеристики MAX771: На рисунке показан один из вариантов включения микросхемы, именно его мы и возьмем за основу нашей схемы. MAX771 включен как повышающий стабилизатор напряжения Упрощенно процесс стабилизации выглядит следующим образом. Резисторы R1 и R2 являются делителями выходного напряжения микросхемы, как только делимое напряжение, поступающее на вывод FB микросхемы MAX771, больше опорного напряжения (1,5V) микросхема уменьшает выходное напряжение и наоборот — если напряжение на выводе FB меньше 1,5V, микросхема увеличивает входное напряжение. Очевидно, что если контрольные цепи изменить так, чтобы MAX771 реагировала (и соответственно регулировала) выходной ток, то мы полчим стабилизированный источник тока.Ниже показаны модифицированная схема с ограничением выходного напряжения и вариант нагрузки. При небольшой нагрузке, пока падение напряжения на токоизмерительном резисторе R3 меньше 1,5V, схема на Рис.10a работает как стабилизатор напряжения, стабилизируя напряжение на уровне стабилитрона VD2 + 1,5V. Как только ток нагрузки становится достаточно большим, на R3 падение напряжения увеличивается и схема переходит в режим стабилизации тока. Резистор R8 устанавливается в том случае, если напряжение стабилизации может быть большим — больше 16,5V. Резистор R3 является токозадающим и рассчитывается по формуле: R3 = 1,5/Iст.Недостатком схемы является достаточно большое падение напряжения на токоизмерительном резисторе R3. Данный недостаток устраняется применением операционного усилителя (ОУ) для усиления сигнала с резистора R3. Например, если резистор требуется уменьшить в 10 раз при заданном токе, то усилитель на ОУ должен усилить напряжение падающее на R3 тоже в 10 раз. Итак, было рассмотрено несколько схем выполняющих функцию стабилизации тока. Конечно же, эти схемы можно улучшать, увеличивая быстродействие, точность и т.д. Можно применять в качестве датчика тока специализированные микросхемы и делать сверхмощные регулирующие элементы, но эти схемы идеально подходят в тех случаях, когда требуется быстро создать инструмент для облегчения своей работы или решения определенного круга задач. Метки:: Стабилизатор тока pro-diod.ru См. также: Электронный балласт для светодиодной лампы. Схемотехника. Статья-ликбез по стабилизаторам тока светодиодов и не только. Рассматриваются схемы линейных и импульсных стабилизаторов тока. Стабилизатор тока для светодиода устанавливается во многие конструкции светильников. Светодиоды, как и все диоды имеют нелинейную вольт-амперную характеристику. Это означает, что при изменении напряжения на светодиоде, ток изменяется непропорционально. По мере увеличения напряжения, сначала ток растёт очень медленно, светодиод при этом не светится. Затем, при достижении порогового напряжения, светодиод начинает светиться и ток возрастает очень быстро. При дальнейшем увеличении напряжения, ток возрастает катастрофически и светодиод сгорает. Пороговое напряжение указывается в характеристиках светодиодов, как прямое напряжение при номинальном токе. Номинальный ток для большинства маломощных светодиодов - 20 мА. Для мощных светодиодов освещения, номинальный ток может быть больше - 350 мА или более. Кстати, мощные светодиоды выделяют тепло и должны быть установлены на теплоотвод. Для правильной работы светодиода, его надо питать через стабилизатор тока. Зачем? Дело в том, что пороговое напряжение светодиода имеет разброс. Разные типы светодиодов имеют разное прямое напряжение, даже однотипные светодиоды имеют разное прямое напряжение - это указано в характеристиках светодиода как минимальное и максимальное значения. Следовательно, два светодиода, подключенные к одному источнику напряжения по параллельной схеме будут пропускать разный ток. Этот ток может быть настолько разным, что светодиод может раньше выйти из строя или сгореть сразу. Кроме того, стабилизатор напряжения также имеет дрейф параметров (от уровня первичного питания, от нагрузки, от температуры, просто по времени). Следовательно, включать светодиоды без устройств выравнивания тока - нежелательно. Различные способы выравнивания тока рассмотрены отдельно. В этой статье рассматриваются устройства, устанавливающие вполне определённый, заданный ток - стабилизаторы тока. Стабилизатор тока устанавливает заданный ток через светодиод вне зависимости от приложенного к схеме напряжения. При увеличении напряжения на схеме выше порогового уровня, ток достигает установленного значения и далее не изменяется. При дальнейшем увеличении общего напряжения, напряжение на светодиоде перестаёт меняться, а напряжение на стабилизаторе тока растёт. Поскольку напряжение на светодиоде определяется его параметрами и в общем случае неизменно, то стабилизатор тока можно назвать также стабилизатором мощности светодиода. В простейшем случае, выделяемая устройством активная мощность (тепло) распределяется между светодиодом и стабилизатором пропорционально напряжению на них. Такой стабилизатор называется линейным. Также существуют более экономичные устройства - стабилизаторы тока на базе импульсного преобразователя (ключевого преобразователя или конвертера). Они называются импульсными, поскольку внутри себя прокачивают мощность порциями - импульсами по мере необходимости для потребителя. Правильный импульсный преобразователь потребляет мощность непрерывно, внутри себя передаёт её импульсами от входной цепи к выходной и выдаёт мощность в нагрузку уже опять непрерывно. Линейный стабилизатор тока греется тем больше, чем больше приложено к нему напряжение. Это его основной недостаток. Однако, он имеет ряд преимуществ, например: Поскольку импульсный преобразователь не бывает абсолютно эффективным, существуют приложения, когда линейный стабилизатор имеет сравнимую или даже большую эффективность - когда входное напряжение лишь немного превышает напряжение на светодиоде. Кстати, при питании от сети, часто используется трансформатор, на выходе которого устанавливается линейный стабилизатор тока. То есть, сначала напряжение снижается до уровня, сравнимого с напряжением на светодиоде, а затем, с помощью линейного стабилизатора устанавливается необходимый ток. В другом случае, можно приблизить напряжение светодиода к напряжению питания - соединить светодиоды в последовательную цепочку. Напряжение на цепочке будет равняться сумме напряжений на каждом светодиоде. Самая простая схема стабилизатора тока - на одном транзисторе (схема "а"). Поскольку транзистор - это усилитель тока, то его выходной ток (ток коллектора) больше тока управления (ток базы) в h31 раз (коэффициент усиления). Ток базы можно установить с помощью батарейки и резистора, или с помощью стабилитрона и резистора (схема "б"). Однако такую схему трудно настраивать, полученный стабилизатор будет зависеть от температуры, кроме того, транзисторы имеют большой разброс параметров и при замене транзистора, ток придётся подбирать снова. Гораздо лучше работает схема с обратной связью "в" и "г". Резистор R в схеме выполняет роль обратной связи - при увеличении тока, напряжение на резисторе возрастает, тем самым запирает транзистор и ток снижается. Схема "г", при использовании однотипных транзисторов, имеет бóльшую температурную стабильность и возможность максимально уменьшить номинал резистора, что снижает минимальное напряжение стабилизатора и выделение мощности на резисторе R. Стабилизатор тока можно выполнить на базе полевого транзистора с p-n переходом (схема "д"). Напряжение затвор-исток устанавливает ток стока. При нулевом напряжении затвор-исток, ток через транзистор равен начальному току стока, указанному в документации. Минимальное напряжение работы такого стабилизатора тока зависит от транзистора и достигает 3 вольт. Некоторые производители электронных компонентов выпускают специальные устройства - готовые стабилизаторы с фиксированным током, собранные по такой схеме - CRD (Current Regulating Devices) или CCR (Constant Current Regulator) . Некоторые называют его диодным стабилизатором, поскольку в обратном включении он работает как диод. Компания On Semiconductor выпускает линейный стабилизатор серии NSIxxx, например NSIC2020B, который имеет два вывода и для увеличения надежности, имеет отрицательный температурный коэффициент - при увеличении температуры, ток через светодиоды снижается. Стабилизатор тока на базе импульсного преобразователя по конструкции очень похож на стабилизатор напряжения на базе импульсного преобразователя, но контролирует не напряжение на нагрузке, а ток через нагрузку. При снижении тока в нагрузке, он подкачивает мощность, при увеличении - снижает. Наиболее распространённые схемы импульсных преобразователей имеют в своём составе реактивный элемент - дроссель, который с помощью коммутатора (ключа) подкачивается порциями энергии от входной цепи (от входной ёмкости) и в свою очередь передаёт её нагрузке. Кроме очевидного преимущества экономии энергии, импульсные преобразователи обладают рядом недостатков, с которыми приходится бороться различными схемотехническими и конструктивными решениями: Поскольку экономия энергии во многих приложениях является решающей, разработчики компонентов, схемотехники стараются снизить влияние этих недостатков, и, зачастую, преуспевают в этом. Поскольку стабилизатор тока основан на импульсном преобразователе, рассмотрим основные схемы импульсных преобразователей. Каждый импульсный преобразователь имеет ключ, элемент, который может находиться только в двух состояниях - включенном и выключенном. В выключенном состоянии, ключ не проводит ток и, соответственно, на нём не выделяется мощность. Во включенном состоянии, ключ проводит ток, но имеет очень малое сопротивление (в идеале - равное нулю), соответственно на нём выделяется мощность, близкая к нулю. Таким образом, ключ может передавать порции энергии от входной цепи к выходной практически без потерь мощности. Однако, вместо стабильного тока, какой можно получить от линейного источника питания, на выходе такого ключа будет импульсное напряжение и ток. Для того, чтобы получить снова стабильные напряжение и ток, можно поставить фильтр. С помощью обычного RC фильтра можно получить результат, однако, эффективность такого преобразователя не будет лучше линейного, поскольку вся избыточная мощность выделится на активном сопротивлении резистора. Но если использовать вместо RC - LC фильтр (схема "б"), то, благодаря "специфическим" свойствам индуктивности, потерь мощности можно избежать. Индуктивность обладает полезным реактивным свойством - ток через неё возрастает постепенно, подаваемая на него электрическая энергия преобразуется в магнитную и накапливается в сердечнике. После выключения ключа, ток в индуктивности не пропадает, напряжение на индуктивности меняет полярность и продолжает заряжать выходной конденсатор, индуктивность становится источником тока через обводной диод D. Такая индуктивность, предназначенная для передачи мощности, называется дросселем. Ток в дросселе правильно работающего устройства присутствует постоянно - так называемый неразрывный режим или режим непрерывного тока (в западной литературе такой режим называется Constant Current Mode - CCM). При снижении тока нагрузки, напряжение на таком преобразователе возрастает, энергия, накапливаемая в дросселе снижается и устройство может перейти в разрывный режим работы, когда ток в дросселе становится прерывистым. При таком режиме работы резко повышается уровень помех, создаваемых устройством. Некоторые преобразователи работают в пограничном режиме, когда ток через дроссель приближается к нулю (в западной литературе такой режим называется Border Current Mode - BCM). В любом случае, через дроссель течет значительный постоянный ток, что приводит к намагничиванию сердечника, в связи с чем, дроссель выполняется особой конструкции - с разрывом или с использованием специальных магнитных материалов. Стабилизатор на базе импульсного преобразователя имеет устройство, регулирующее работу ключа, в зависимости от нагрузки. Стабилизатор напряжения регистрирует напряжение на нагрузке и изменяет работу ключа (схема "а"). Стабилизатор тока измеряет ток через нагрузку, например с помощью маленького измерительного сопротивления Ri (схема "б"), включенного последовательно с нагрузкой. Ключ преобразователя, в зависимости от сигнала регулятора, включается с различной скважностью. Есть два распространённых способа управления ключом - широтно-импульсная модуляция (ШИМ) и токовый режим. В режиме ШИМ, сигнал ошибки управляет длительностью импульсов при сохранении частоты следования. В токовом режиме, измеряется пиковый ток в дросселе и изменяется интервал между импульсами. В современных ключевых преобразователях в качестве ключа обычно используется MOSFET транзистор. Рассмотренный выше вариант преобразователя называется понижающим, поскольку напряжение на нагрузке всегда ниже напряжения источника питания. Поскольку в дросселе постоянно течёт однонаправленный ток, требования к выходному конденсатору могут быть снижены, дроссель с выходным конденсатором играют роль эффективного LC фильтра. В некоторых схемах стабилизаторов тока, например для светодиодов, выходной конденсатор может отсутствовать вообще. В западной литературе понижающий преобразователь называется Buck converter. Схема импульсного стабилизатора, приведённая ниже, также работает на основе дросселя, однако дроссель всегда подключен к выходу источника питания. Когда ключ разомкнут, питание поступает через дроссель и диод на нагрузку. Когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС добавляется к ЭДС источника питания и напряжение на нагрузке возрастает. В отличие от предыдущей схемы, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе повышающе-понижающий преобразователь называется Boost converter. Еще одна схема импульсного преобразователя работает аналогично - когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС будет иметь обратный знак и на нагрузке появится отрицательное напряжение. Как и в предыдущей схеме, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе инвертирующий преобразователь называется Buck-Boost converter. Наиболее часто блоки питания изготавливаются по схеме, использующей в своем составе трансформатор. Трансформатор обеспечивает гальваническую развязку вторичной цепи от источника питания, кроме того, эффективность блока питания на основе таких схем может достигать 98% и более. Прямоходовой преобразователь (схема "а") передаёт энергию от источника в нагрузку в момент включенного состояния ключа. Фактически - это модифицированный понижающий преобразователь. Обратноходовой преобразователь (схема "б") передаёт энергию от источника в нагрузку во время выключенного состояния. В прямоходовом преобразователе трансформатор работает в обычном режиме и энергия накапливается в дросселе. Фактически - это генератор импульсов с LC фильтром на выходе. Обратноходовой преобразователь накапливает энергию в трансформаторе. То есть трансформатор совмещает свойства трансформатора и дросселя, что создаёт определённые сложности при выборе его конструкции. В западной литературе прямоходовой преобразователь называется Forward converter. Обратноходовой - Flyback converter. Большинство импульсных блоков питания выпускаются с стабилизацией выходного напряжения. Типичные схемы таких блоков питания, особенно мощных, кроме обратной связи по выходному напряжению, имеют схему контроля тока ключевого элемента, например резистор с малым сопротивлением. Такой контроль позволяет обеспечивать режим работы дросселя. Простейшие стабилизаторы тока используют этот элемент контроля для стабилизации выходного тока. Таким образом, стабилизатор тока оказывается даже проще стабилизатора напряжения. Рассмотрим схему импульсного стабилизатора тока для светодиода на базе микросхемы NCL30100 от известного производителя электронных компонентов On Semiconductor: Схема понижающего преобразователя работает в режиме неразрывного тока с внешним ключом. Схема выбрана из множества других, поскольку она показывает, насколько простой и эффективной может быть схема импульсного стабилизатора тока с внешним ключом. В приведённой схеме, управляющая микросхема IC1 управляет работой MOSFET ключа Q1. Поскольку преобразователь работает в режиме неразрывного тока, выходной конденсатор ставить необязательно. В многих схемах датчик тока устанавливается в цепи истока ключа, однако, это снижает скорость включения транзистора. В приведённой схеме датчик тока R4 установлен в цепи первичного питания, в результате схема получилась простой и эффективной. Ключ работает на частоте 700 кГц, что позволяет установить компактный дроссель. При выходной мощности 7 Ватт, входном напряжении 12 Вольт при работе на 700 мА (3 светодиода), эффективность устройства более 95%. Схема стабильно работает до 15 Ватт выходной мощности без применения дополнительных мер по отводу тепла. Ещё более простая схема получается с использованием микросхем ключевых стабилизаторов с встроенным ключом. Например, схема ключевого стабилизатора тока светодиода на базе микросхемы CAV4201/CAT4201: Для работы устройства мощностью до 7 Ватт необходимо всего 8 компонентов, включая саму микросхему. Импульсный стабилизатор работает в пограничном режиме тока и для его работы требуется небольшой выходной керамический конденсатор. Резистор R3 необходим при питании от 24 Вольт и выше для снижения скорости нарастания входного напряжения, хотя это несколько снижает эффективность устройства. Частота работы превышает 200 кГц и меняется в зависимости от нагрузки и входного напряжения. Это обусловлено методом регулирования - контролем пикового тока дросселя. Когда ток достигает максимального значения, ключ размыкается, когда ток снижается до нуля - включается. Эффективность устройства достигает 94%. Назад к каталогу статей >>> led-displays.ru Для того чтобы справляться с помехами в сети, необходимы стабилизаторы тока. Данные устройства могут сильно отличаться по своим характеристикам, а связано это с источниками питания. Бытовые приборы в доме являются не сильно требовательными в плане стабилизации тока, однако измерительное оборудование нуждается в стабильном напряжении. Благодаря беспомеховым моделям у ученых появилась возможность получать достоверную информацию в своих исследованиях. Основным элемент стабилизатора принято считать трансформатор. Если рассматривать простую модель, то там имеется выпрямительный мост. Соединяется он с конденсаторами, а также с резисторами. В цепи они могут устанавливаться различных типов и предельное сопротивление они выдерживают разное. Также в стабилизаторе имеется конденсатор. Когда ток попадает на трансформатор, его предельная частота изменяется. На входе данный параметр находится в районе 50 Гц. Благодаря преобразованию тока предельная частота на выходе составляет 30 Гц. Высоковольтные выпрямители при этом оценивают полярность напряжения. Стабилизация тока в данном случае осуществляется благодаря конденсаторам. Снижение помех происходит в резисторах. На выходе напряжение вновь становится постоянным, и в трансформатор поступает с частотой не выше 30 Гц. Релейный стабилизатор тока (схема показана ниже) включает в себя компенсационные конденсаторы. Мостовые выпрямители в этом случае используются в начале цепи. Также следует учитывать, что транзисторов в стабилизаторе имеется две пары. Одна из них устанавливается перед конденсатором. Необходимо это для поднятия предельной частоты. В данном случае выходное напряжение постоянного тока будет находиться на уровне 5 А. Чтобы номинальное сопротивление выдерживалось, используются резисторы. Для простых моделей свойственны двухканальные элементы. Процесс преобразования в таком случае происходит долго, однако коэффициент рассеивания будет незначительным. Как видно из названия, основным элементом LM317 (стабилизатор тока) является симистор. Он дает устройству колоссальную прибавку в предельном напряжении. На выходе данный показатель колеблется в районе 12 В. Внешнее сопротивление системой выдерживается в 3 Ом. Для высокого коэффициента сглаживания используются многоканальные конденсаторы. Для высоковольтных устройств применяются транзисторы только открытого типа. Смена их положения в такой ситуации контролируется за счет изменения номинального тока на выходе. Дифференциальное сопротивление LM317 (стабилизатор тока) выдерживает 5 Ом. Для измерительных приборов этот показатель обязан составлять 6 Ом. Неразрывный режим тока дросселя обеспечивается за счет мощного трансформатора. Устанавливается он в стандартной схеме за выпрямителем. Диодные мосты для низкочастотных приборов применяются редко. Если рассматривать приемники на 12 В, то для них свойственны резисторы балластного типа. Это необходимо для того, чтобы снизить колебания в цепи. Высокочастотный стабилизатор тока на транзисторе КК20 отличается быстрым процессом преобразования. Происходит это за счет смены полярности на выходе. Частотозадающие конденсаторы устанавливаются в цепи попарно. Фронт импульсов в такой ситуации не должен превышать 2 мкс. В противном случае стабилизатор тока на транзисторе КК20 ждут значительные динамические потери. Насыщение резисторов в цепи может осуществляться при помощи усилителей. В стандартной схеме их предусмотрено не менее трех единиц. Для уменьшения тепловых потерь используются емкостные конденсаторы. Скоростные характеристики ключевого транзистора зависят исключительно от величины делителя. Широтно-импульсный стабилизатор тока отличается большими значениями индуктивности дросселя. Происходит это за счет быстрой смены делителя. Также следует учитывать, что резисторы в данной схеме применяются двухканальные. Ток они способны пропускать в различных направлениях. Конденсаторы в системе используются емкостные. За счет этого предельное сопротивление на выходе выдерживается на уровне 4 Ом. В свою очередь, максимальную нагрузку стабилизаторы способны держать 3 А. Для измерительных приборов такие модели используются довольно редко. Источники питания в данном случае предельное напряжение должны иметь не более 5 В. Таким образом, коэффициент рассеивания будет находиться в пределах нормы. Скоростные характеристики ключевого транзистора в стабилизаторах данного типа не сильно высокие. Связано это с низкой способностью резисторов блокировать ток от выпрямителя. В результате помехи с высокой амплитудой приводят к значительным тепловым потерям. Спады импульсов в данном случае происходят исключительно за счет снижения нейтрализации свойств трансформатора. Процессом преобразования занимается только балластный резистор, который располагается за выпрямительным мостом. Полупроводниковые диоды в стабилизаторах используется редко. Необходимость в них отпадает из-за того, что фронт импульсов в цепи, как правило, не превышает 1 мкс. В результате динамические потери в транзисторах не являются фатальными. Резонансный стабилизатор тока (схема показана ниже) включают в себя малоемкостные конденсаторы и резисторы с различным сопротивлением. Трансформаторы в данном случае являются неотъемлемой частью усилителей. Для увеличения коэффициента полезного действия используется множество предохранителей. Динамические характеристики резисторов от этого возрастают. Низкочастотные транзисторы монтируются сразу за выпрямителями. Для хорошей проводимости тока конденсаторы способны работать при различной частоте. Стабилизатор тока данного типа является неотъемлемой частью источников питания с мощностью до 15 В. Внешнее сопротивление устройствами воспринимается до 4 Ом. Напряжение переменного тока на входе в среднем составляет 13 В. В данном случае коэффициент сглаживания контролируется за счет конденсаторов открытого типа. Уровень пульсации на выходе зависит исключительно от схемы построения резисторов. Пороговое напряжение стабилизатор тока должен быть способным выдерживать 5 А. В таком случае параметр дифференциального сопротивления обязан находиться на отметке в 5 Ом. Максимально допустимая мощность рассеивания в среднем составляет 2 Вт. Это говорит о том, что стабилизаторы переменного тока имеют существенные проблемы с фронтом импульсов. Понизить их колебания в данном случае способны только мостовые выпрямители. При этом в обязательном порядке учитывается величина делителя. Для снижения тепловых потерь в стабилизаторах применяются предохранители. Для регулировки светодиодов большой мощностью стабилизатор тока не должен обладать. В данном случае задача состоит в том, чтобы максимально снизить порог рассеивания. Сделать стабилизатор тока для светодиодов это может несколькими способами. В первую очередь, в моделях применяются преобразователи. В результате предельная частота на всех этапах не превышает 4 Гц. В данном случае это дает значительную прибавку к производительности стабилизатора. Второй способ заключается в использовании усилительных элементов. В такой ситуации все завязывается на нейтрализации переменного тока. Для уменьшения динамических потерь транзисторы в схеме используются высоковольтные. Справиться с излишним насыщением элементов способны конденсаторы открытого типа. Для наибольшего быстродействия трансформаторов применяются ключевые резисторы. В схеме они располагаются стандартно за выпрямительным мостом. Регулируемый стабилизатор тока является востребованным в промышленной сфере. С его помощью пользователь имеет возможность проводить настройку устройства. Дополнительно многие модели рассчитаны на дистанционное управление. С этой целью в стабилизаторах монтируются контроллеры. Предельное напряжение переменного тока такие устройства выдерживают на уровне 12 В. Параметр стабилизации в этом случае должен составлять не менее 14 Вт. Показатель порогового напряжения зависит исключительно от частотности прибора. Для изменения коэффициента сглаживания регулируемый стабилизатор тока использует емкостные конденсаторы. Максимальный ток системой поддерживается на уровне 4 А. В свою очередь, показатель дифференциального сопротивления допускается на уровне 6 Ом. Все это говорит о хорошей производительности стабилизаторов. Однако мощность рассеивания может довольно сильно отличаться. Также следует знать, что неразрывный режим тока дросселя обеспечивается за счет трансформатора. На первичную обмотку напряжение подается через катод. Блокировка тока на выходе зависит только от конденсаторов. Для стабилизации процесса предохранители, как правило, не используются. Быстродействие системы обеспечивается за счет спадов импульсов. Быстрый процесс преобразования тока в цепи приводит к понижению фронта. Транзисторы в схеме применяются исключительно ключевого типа. Стабилизатор постоянного тока работает по принципу двойного интегрирования. Преобразователи во всех моделях отвечают за этот процесс. Для увеличения динамических характеристик стабилизаторов используются двухканальные транзисторы. Чтобы минимизировать тепловые потери, емкость конденсаторов должна быть значительной. Точный расчет значения позволяет сделать показатель выпрямления. При выходном напряжении постоянного тока в 12 А предельное значение максимум должно составлять 5 В. В таком случае рабочая частота устройства будет поддерживаться на отметке в 30 Гц. Пороговое напряжение зависит от блокировки сигнала от трансформатора. Фронт импульсов в данном случае не должен превышать 2 мкс. Насыщение ключевых транзисторов происходит только после преобразования тока. Диоды в данной схеме могут использоваться исключительно полупроводникового типа. Балластные резисторы приведут стабилизатор тока к значительным тепловым потерям. В результате коэффициент рассеивания очень возрастет. Как следствие - амплитуда колебаний увеличится, процесс индуктивности не произойдет. www.syl.ru В электронной аппаратуре очень часто необходимо выполнять различные регулировки, в первую очередь связанные с источниками тока и блоками питания. Необходимые выходные характеристики и другие параметры позволяет получить регулируемый стабилизатор тока. В основном используется модель LM317 лучше всего подходящая для проектирования. Регулируемые стабилизаторы тока успешно применяются в схемах источников питания и различных зарядных устройств. Данные приборы предназначены для стабилизации тока на заданном уровне. Благодаря их низкой стоимости, существенно упрощается разработка схем большинства электронных приборов. Работу этих устройств наглядно демонстрирует простой регулируемый стабилизатор напряжения и тока. Для этого следует воспользоваться идеальным источником тока, обладающим бесконечно большой электродвижущей силой и значительным внутренним сопротивлением. Такие параметры позволяют получить в цепи ток с требуемыми характеристиками, независимо от сопротивления нагрузки. Таким образом, идеальный источник создает ток, имеющий постоянную величину при изменяющемся сопротивлении нагрузки в пределах от короткого замыкания до бесконечности. Чтобы поддержать величину тока на неизменном уровне, значение ЭДС должно изменяться от величины больше нуля до бесконечности. В результате, стабильное токовое значение получается, благодаря важному свойству источника тока: с изменением сопротивления нагрузки происходит изменение ЭДС источника тока так, чтобы токовое значение оставалось постоянным. В отличие от постоянного тока, реальные источники тока способны поддерживать ток на нужном уровне лишь в ограниченном диапазоне напряжения на нагрузке и ограниченном сопротивлении нагрузки. Реальный источник может работать даже с нулевым сопротивлением нагрузки, а также в режиме замыкания на выходе без каких-либо сложностей. То есть, при случайном замыкании выхода, прибор просто перейдет на другой режим работы, где сопротивление нагрузки выше нуля. Как правило, практикуется использование реального источника тока с реальным источником напряжения. В качестве таких источников выступают: электрическая сеть, напряжением 220 В, частотой 50 Гц, аккумуляторы, лабораторные блоки питания, солнечные батареи, бензиновые генераторы и другие поставщики электроэнергии. С любым из них осуществляется последовательное включение регулируемого стабилизатора тока. Выход этого прибора соответственно используется в качестве источника тока. Простейшие регулируемые стабилизаторы тока хорошо подходят для зарядного устройства. Они изготавливаются в виде двухвыводного компонента, ограничивающего ток, протекающий через него. Величина и точность параметров тока заранее устанавливается изготовителем. Корпус регулируемого стабилизатора в большинстве случаев очень похож на диод малой мощности. Поэтому данные устройства из-за внешнего сходства нередко называются диодными стабилизаторами тока. Использование диодных стабилизаторов делает электрические схемы значительно проще и снижает общую себестоимость приборов. Они не только отличаются простотой исполнения, но и существенно повышают устойчивость работы различных электронных устройств. Уровень стабилизации тока обеспечивается в пределах 0,22-30 мА. Диодные стабилизаторы очень хорошо зарекомендовали себя при работе со светодиодами, поскольку они обеспечивают надежность и требуемый режим работы. Эти устройства могут работать в диапазоне напряжений 1,8-100 В, защищая таким образом светодиоды от выхода из строя под действием импульсных и продолжительных изменений напряжения. Яркость свечения светодиода, его оттенки и цветовая гамма полностью зависят от тока, протекающего по нему. Одного диодного стабилизатора вполне достаточно для нормальной работы сразу нескольких светодиодов включенных в последовательную цепь. Данная схема легко преобразуется в другие формы в зависимости от питающего напряжения и марки применяемых светодиодов. Их ток может задаваться с помощью одного или нескольких стабилизаторов, параллельно включенных в цепь. Количество светодиодов в схеме определяется диапазоном изменения напряжения. Диодные источники тока применяются в создании осветительных или индикаторных приборов, питающихся от постоянного напряжения. Питание стабильным током обеспечивает постоянную яркость источника света даже в случае перепадов напряжения. Необходимый режим питания нагрузки регулируется путем параллельного включения определенного количества стабилизаторов. Такая конструкция может быть легко изготовлена своими руками. Работа стабилизирующих устройств хорошо видна на примере оптопары или оптрона. В состав этого электронного прибора входит светодиодный излучатель и фотоприемник. В процессе работы электрический сигнал преобразуется в световой, затем он передается по оптическому каналу и далее вновь преобразуется в электрический сигнал. Если питание светодиода осуществляется с помощью резистора пульсации напряжения, это может вызвать колебания яркости. Данная проблема успешно устраняется регулирующим диодным стабилизатором. Это позволяет избежать существенных искажений цифровых сигналов, передаваемых через оптопару и повысить надежность информационного канала. Стабилизаторы тока не следует путать со стабилизаторами напряжения. Стабилизация выходного тока характеризуется изменяющимся выходным напряжением, тогда как нагрузочный ток всегда остается одинаковым. Среди многих регулируемых стабилизаторов широкой популярностью пользуется стабилизатор на полевом транзисторе, подключаемого последовательно с сопротивлением нагрузки. При такой схеме ток нагрузки лишь незначительно изменяется, в отличие от входного напряжения. Сами полевые транзисторы работают под управлением электрического поля, поэтому они и стали так именоваться. Конструкция этих элементов включает внутреннюю переходную емкость, через которую во время переключения протекает небольшое количество тока. Таким образом, затраты на управление требуют лишь незначительной мощности. electric-220.ruСтабилизатор тока на полевом транзисторе. Схемы стабилизаторов тока
Стабилизатор тока на полевом транзисторе
Содержание: Работа стабилизаторов тока
Устройство и работа полевого транзистора
Полевые транзисторы в стабилизаторах тока
Стабилизатор тока для светодиодов
Содержание: Назначение стабилизатора
Стабилизирующие устройства линейного типа
Импульсные стабилизаторы тока
Драйвер питания светодиодов
Импульсный стабилизатор тока
Содержание: Устройство импульсного стабилизатора
Схемы импульсных преобразователей
Импульсный конвертер как стабилизатор тока
Стабилизаторы тока | PRO-диод
Стабилизаторы тока
Простой стабилизатор тока на КРЕНке
Простой стабилизатор тока на двух транзисторах
Стабилизатор тока на операционном усилителе (на ОУ)
Стабилизатор тока на микросхеме импульсного стабилизатора напряжения
Заключение
Стабилизатор тока светодиода, схемы
Типы стабилизаторов тока
Линейный стабилизатор тока
Схемы линейных стабилизаторов тока
Импульсный стабилизатор тока
Схемы импульсных преобразователей
Понижающий преобразователь
Повышающий преобразователь
Инвертирующий преобразователь
Прямоходовой и обратноходовой преобразователи
Применение импульсного конвертера в качестве стабилизатора тока
Стабилизатор тока. Простейший стабилизатор постоянного тока :: SYL.ru
Как устроен стабилизатор?
Принцип работы
Принципиальная схема релейного устройства
Устройство симисторного стабилизатора LM317
Высокочастотные модели
Широтно-импульсные стабилизаторы
Схема резонансных устройств
Стабилизатор переменного тока
Модель для светодиодов
Стабилизатор с регулятором
Стабилизаторы постоянного тока
Регулируемый стабилизатор тока
Содержание: Устройство и технические характеристики
Диодные стабилизаторы тока
Поделиться с друзьями: