интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ. Схемы импульсных бп


cxema.org - Мощный импульсный блок питания до 4кВт

Этот проект является одним из самых долгих, который делал. Заказал блок питания один человек для усилителя мощности. Ранее никогда не довелось делать такие мощные импульсники стабилизированного типа, хотя опыт в сборке ИИП довольно большой. Проблем во время сборки было много. Изначально хочу сказать, что схема часто встречается в сети, а если точнее, то на сайте интервалка, но.... схема изначально не идеальна, с ошибками и скорее всего ничего не заработает, если собрать точно по схеме с сайта.

В частности изменил схему подключения генератора, взял схему с даташита. Переделал узел питания управляющей цепи, вместо параллельно соединенных 2-х ваттных резисторов, задействовал отдельный ИИП 15 Вольт 2 Ампер, что дало возможность избавиться от многих хлопот. Заменил некоторые компоненты под свои удобства и все запустил по частям, настроив каждый узел отдельно. Несколько слов о конструкции блока питания. Это мощный импульсный сетевой блок питания по мостовой топологии, имеет стабилизацию выходного напряжения, защиту от кз и перегруза, все эти функции подлежат регулировке. Мощность в моем случае 2000 ватт, но схема без проблем позволит снять до 4000 ватт, если заменить ключи, мост и напичкать электролитов на 4000 мкФ. На счет электролитов - емкость подбирается исходя из расчета 1 ватт - 1мкФ. Диодный мост - 30 Ампер 1000 Вольт - готовая сборка, имеет свой отдельный обдув (кулер) Сетевой предохранитель 25-30 Ампер. Транзисторы - IRFP460, старайтесь подобрать транзисторы с напряжением 450-700 Вольт, с наименьшей емкостью затвора и с наименьшим сопротивлением открытого канала ключа. В моем случае эти ключи были единственным вариантом, хотя в мостовой схеме обеспечить заданную мощность они могут. Устанавливаются на общий теплоотвод, обязательно нужно изолировать их друг от друга, теплоотвод нуждается в интенсивном охлаждении. Реле режима плавного пуска - 30 Ампер с катушкой 12 Вольт. Изначально, когда блок подключается в сеть 220 Вольт пусковой ток на столь велик, что может спалить мост и еще много чего, поэтому режим плавного пуска для блоков питания такого ранга необходим. При подключении в сеть через ограничительный резистор (цепочка последовательно соединенных резисторов 3х22Ом 5 Ватт в моем случае) заряжаются электролиты. Когда напряжение на них достаточно велико, срабатывает блок питания управляющей цепи (15 Вольт 2 Ампер), который и замыкает реле и через последний подается основное (силовое) питание на схему. Трансформатор - в моем случае на 4-х кольцах 45х28х8 2000НМ, сердечник не критичен и все, что с ним связано придется рассчитать по специализированным программам, тоже самое с выходными дросселями групповой стабилизации.

Мой блок имеет 3 обмотки, все они обеспечивают двухполярное напряжение. Первая (основная, силовая) обмотка на +/-45 Вольт с током 20 Ампер - для запитки основных выходных каскадов (усилителя по току) УМЗЧ, вторая +/-55 вольт 1,5Ампер - для запитки дифф каскадов усилителя, третья +/-15 для запитки блока фильтров.

Генератор построен на TL494, настроен на частоту 80 кГц, дальше драйвера IR2110 для управления ключей. Трансформатор тока намотан на кольце 2000НМ 20х12х6 - вторичная обмотка намотана проводом МГТФ 0,3мм и состоит из 2х45витковв. В выходной части все стандартно, в качестве выпрямителя для основной силовой обмотки задействован мост из диодов KD2997 - с током 30 ампер. Мостом для обмотки 55 вольт стоят диоды UF5408, а для маломощной обмотки 15 Вольт - UF4007. Использовать только быстрые или ультрабыстрые диоды, хотя и можно обычные импульсные диоды с обратным напряжением не менее 150-200 Вольт (напряжение и ток диодов зависит от параметров обмотки). Конденсаторы после выпрямителя стоят на 100 Вольт (с запасом), емкость 1000мкФ, но разумеется на самой плате усилителей будут еще.

Устранение неполадок начальной схемы. Приводить свою схему не буду, поскольку она мало чем отличается от указанной. Скажу только, что в схеме 15 вывод ТЛ отцепляем от 16 и припаиваем к 13/14 выводам. Дальше убираем резисторы R16/19/20/22 2 ватт, и питаем узел управления отдельным блоком питания 16-18 Вольт 1-2 ампер. Резистор R29 заменяем на 6,8-10кОм. Исключаем из схемы кнопки SA3/SA4 (ни в коем случае не замкнуть их! будет бум!). R8/R9 заменяем - при первом же подключении они выгорят, поэтому заменяем на резистор 5 ватт 47-68Ом, можно использовать несколько последовательно соединенных резисторов с указанной мощностью. R42 - заменяем на стабилитрон с нужным напряжением стабилизации. Все переменные резисторы в схеме очень советую использовать многооборотного типа, для наиболее точной настройки. Минимальная грань стабилизации напряжения 18-25 Вольт, дальше уже пойдет срыв генерации.

Во многих источниках упомянули, что данный блок не включается без нагрузки - но это не так! Он очень даже хорошо запускается и на всех обмотках есть напряжение. Никогда не выставляйте максимальное выходное напряжения - блок может в нагруженном состоянии издавать свист - на своем опыте понял, что это полностью безопасно, но неприятно.

С уважением - АКА КАСЬЯН

  • < Назад
  • Вперёд >

vip-cxema.org

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

   В различных ситуациях требуются разные по напряжению и мощности ИП. Поэтому многие покупают или делают такой, чтоб хватило на все случаи. И проще всего взять за основу компьютерный. Данный лабораторный БП 0-22 В 20 А переделан с небольшой доработкой из АТХ на ШИМ 2003. Для переделки использовал JNC mod. LC-B250ATX. Идея не нова и в интернете множество подобных решений, некоторые были изучены, но окончательное получилось свое. Результатом очень доволен. Сейчас ожидаю посылку из Китая с совмещенными индикаторами напряжения и тока, и, соответственно, заменю. Тогда можно будет назвать мою разработку ЛБП - зарядное для автомобильных АКБ.

Схема регулируемого лабораторного БП из ATX

   Первым делом выпаял все провода выходных напряжений +12, -12, +5, -5 и 3,3 В. Выпаял все, кроме +12 В диоды, конденсаторы, нагрузочные резисторы.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ из ПК

   Заменил входные высоковольтные электролиты 220 х 200 на 470 х 200. Если есть, то лучше ставить бОльшую емкость. Иногда производитель экономит на входном фильтре по питанию - соответственно рекомендую допаять, если отсутствует.

ИМПУЛЬСНЫЙ КОМПЬЮТЕРНЫЙ БЛОК ПИТАНИЯ

   Выходной дроссель +12 В перемотал. Новый - 50 витков проводом диаметром 1 мм, удалив старые намотки. Конденсатор заменил на 4700 мкф х 35 В.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ из АТХ

   Так как в блоке имеется дежурное питание с напряжениями 5 и 17 вольт, то использовал их для питания 2003-й и по узлу проверки напряжений.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ на 2003

   На вывод 4 подал прямое напряжение +5 вольт с "дежурки" (т.е. соединил его с выводом 1). С помощью резисторного 1,5 и 3 кОм делителя напряжения от 5 вольт дежурного питания сделал 3,2 и подал его на вход 3 и на правый вывод резистора R56, который потом выходит на вывод 11 микросхемы.

Делаем ИМПУЛЬСНЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

   Установив микросхему 7812 на выход 17 вольт с дежурки (конденсатор С15) получил 12 вольт и подключил к резистору 1 Ком (без номера на схеме), который левым концом подключается к выводу 6 микросхемы. Также через резистор 33 Ом запитал вентилятор охлаждения, который просто перевернул, чтоб он дул внутрь. Резистор нужен для того, чтоб снизить обороты и шумность вентилятора.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ 0-22

   Всю цепочку резисторов и диодов отрицательных напряжений (R63, 64, 35, 411, 42, 43, C20, D11, 24, 27) выпаял из платы, вывод 5 микросхемы закоротил на землю.

ИМПУЛЬСНЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ и МАГНИТОЛА

   Добавил регулировку напряжения и индикатор выходного напряжения из китайского интернет магазина. Только необходимо запитать последний от дежурки +5 В, а не от измеряемого напряжения (он начинает работать от +3 В).

Испытания блока питания

   Испытания проводились одновременным подключением нескольких автомобильных ламп (55+60+60) Вт. Это примерно 15 Ампер при 14 В. Проработал минут 15 без проблем. В некоторых источниках рекомендуют изолировать общий провод выхода 12 В от корпуса, но тогда появляется свист. Используя в качестве источника питания автомобильной магнитолы не заметил никаких помех ни на радио, ни в других режимах, а 4*40 Вт тянет отлично. С уважением, Петровский Андрей.

   Форум по АТХ БП

   Обсудить статью ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

radioskot.ru

Импульсный блок питания из энергосберегающей лампы | RUQRZ.COM

В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов.В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.

Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

Отличие схемы КЛЛ от импульсного БП

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для предобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

Схема энергосберегающей лампы

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

Законченная схема импульсного блока питания

Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

БП с вторичной обмоткой прямо на каркас уже имеющегося дросселя

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

БП с дополнительным импульсным трансформатором

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Импульсный трансформатор для блока питания

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. Проверено на практике.

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Ёмкость входного фильтра и пульсации напряжения

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мальниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

Блок питания мощностью 20 Ватт

Блок питания мощностью 20 Ватт

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП

Мощность, подводимая к нагрузке – 20 Ватт.Частота автоколебаний без нагрузки – 26 кГц.Частота автоколебаний при максимальной нагрузке – 32 кГцТемпература трансформатора – 60ºСТемпература транзисторов – 42ºС

Блок питания мощностью 100 Ватт

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

Блок питания мощностью 100 Ватт

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

Действующий стоваттный импульсный блок питания

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.Мощность, выделяемая на нагрузке – 100 Ватт.Частота автоколебаний при максимальной нагрузке – 90 кГц.Частота автоколебаний без нагрузки – 28,5 кГц.Температура транзисторов – 75ºC.Площадь радиаторов каждого транзистора – 27см².Температура дросселя TV1 – 45ºC.TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Выпрямитель

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

1. Мостовая схема.2. Схема с нулевой точкой.

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

Пример.Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ват.

100 / 5 * 0,4 = 8(Ватт)

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

100 / 5 * 0,8 * 2 = 32(Ватт).

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности.

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

Как правильно подключить импульсный блок питания к сети?

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку исследуемого ИБП от осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

Будьте осторожны, берегитесь ожога!Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.

Каково назначение элементов схемы импульсного блока питания?

Схема импульсного блока питания

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

Интересное по этой теме:

www.ruqrz.com

Импульсный блок питания — Страница 2 — Меандр — занимательная электроника

Читать все новости ➔

Подбор силовых ключей для блока питания

Теперь о том, чем будет управлять ШИМ-контроллер К1156ЕУ2 или TL494 или любая другая ИМС. В качестве силовых ключей будем использовать MOSFET транзисторы, как наиболее эффективные. Что касается биполярных, то их существенными недостатками являются повышенное остаточное напряжение на коллекторе в режиме насыщения, большая мощность управления по базовой цепи и большое время рассасывания. Все это приводит к значительному снижению КПД ключей. А IGBT или биполярные транзисторы с изолированным затвором слишком дороги и не особо распространены. Значит выбор падает на MOSFET.

Давайте определим границы подбора МОП-транзисторов. По условию нам нужен импульсный блок питания мощностью 600 ватт от электросети 220 вольт. Это значит, что после выпрямительных диодов и фильтрующего конденсатора 220 вольт переменного тока преобразуются в 300…310 вольт постоянного. Это при номинальном напряжении 220 В. Но в электросети может быть и 175 и 250 вольт. Сила тока в цепи номинально будет равна I=P/U или I=600 Вт/300(310) В=1,94…2 ампера.

Будущий импульсный преобразователь будет двухтактного типа, т.к. однотактные хорошо зарекомендовали себя на мощностях до 100 ватт. Схему включения силового каскада двухтактного импульсного блока питания выбираем из трех существующих. Это, как было сказано, мостовая (full-bridge), полумостовая (half-bridge) или со средней точкой (push-pull). Последняя схема наиболее эффективна с напряжением на входе до 100 вольт и мощностью до 500 ватт. В принципе можно использовать и пуш-пульную схему включения, но не будем повторяться, т.к. она как раз и является темой диспута в статье “Схема преобразователя мощностью 1000 ВА”. Полумостовая и мостовая схемы эффективно используются при более высоком напряжении на входе (а у нас 310 В) и с мощностями до 1 кВт в первом и выше 1 кВт во втором случае. Нам подходит полумостовая схема включения силового каскада.

Частоту переключения силовых транзисторов возьмем порядка 60 кГц. Из-за возможного дрейфа частоты она может повыситься до 65 кГц. Можно, конечно, увеличить частоту до 100 кГц, а то и больше. Однако многие магнитные материалы, применяемые в качестве сердечников импульсных трансформаторов, не способны работать на таких частотах. К тому же при повышении частоты нам понадобятся высокочастотные выпрямительные мощные диоды. А они не дешевы и для многих труднодоступны. К тому же, после двухполупериодного выпрямителя частота повышается в два раза. Так что ограничимся частотой в 60 кГц, как наиболее оптимальной.

Теперь определим амплитуду номинального напряжения на первичной обмотке импульсного трансформатора с учетом падения напряжения на переходе транзисторов. U=310/2 – u, где u – падение напряжения на переходе MOSFET. Поскольку транзисторы мы ещё не выбрали, то возьмем в среднем u=0,7 В. Отсюда U=(310/2)-0,7=154,3 В. Минимальная амплитуда при падении напряжения в сети до 175 вольт составит не более 123 В, а максимальная при повышении до 250 В – не менее 176 В. Для выбора МДП транзисторов исходим из максимально допустимой силы тока (600/123=4,8 А) и напряжения (176 В). По расчетам нам нужен MOSFET с напряжением сток-исток от 200 вольт и максимально допустимой силой тока через переход не ниже 6 ампер. Данным условиям отвечают, например, IRF630, 2SK1117, 2SK1917, IRF740, IRFP460, IRF830 и пр. Здесь опять же исходим из доступности и стоимости. Для нашего примера возьмем IRFP460. Силовые ключи подобрали.

Диоды выпрямительного моста на входе импульсного блока питания подбираем с учетом обратного напряжения от 400 вольт и силу тока от 2 ампер (600/(175 В*2 шт.)=1,71 А) при мостовой схеме. Берем диодный мост типа KBU810. Схема сетевого выпрямителя будет выглядеть следующим образом:

14Резисторы R1 и R2 являются балластными и использованы для разряда высоковольтных конденсаторов в целях безопасности.

Расчет и намотка импульсного трансформатора

Теперь произведем расчет импульсного трансформатора.

OLYMPUS DIGITAL CAMERAРасчет трансформатора является наиболее сложной, важной и «тонкой» частью всего расчета импульсного блока питания. Для этого эффективнее всего воспользоваться компьютерными программами, самые популярные из которых можно скачать на нашем радиолюбительском сайте.

Итак, мы имеем в качестве исходных данных размах напряжений питания 247…355 В (при девиации напряжения сети 175…250 В), мощность не менее 600 ватт, эффективная индукция магнитопровода от 0,1 до 0,2 Тл, эффективная магнитная проницаемость магнитопровода при использовании в качестве сердечника ферритовое кольцо марки М2500НМС1 К65х40х9 составляет 1800…2000. Выше приведено действительное напряжение электросети для расчета импульсного трансформатора в программе Design tools pulse transformers 4.0.0.0 и ей подобных (см. статьи). Однако, как я советовал, программы лучше применять сразу все комплексно. Соответственно, в некоторых нужно указывать напряжение непосредственно на первичной обмотке импульсного трансформатора. Чуть выше мы приводили схему сетевого выпрямителя для питания импульсного блока. Как видите, там сетевое напряжение с помощью делителя преобразуется в двуполярное +/-154,3 В. Указано номинальное напряжение при сетевом в 220 В. Соответственно, при девиации напряжения сети 175…250 В на первичной обмотке оно будет колебаться в пределах не 247…355 вольт (такое после выпрямительных диодов и фильтрующих конденсаторов), а 247/2-0,7…355/2-0,7, т.е. 122,8…176,8 вольт. Будьте внимательны!

Думаем, что с помощью программ не составит особого труда определить основные характеристики необходимого импульсного трансформатора. Для взятого нами кольца К65х40х9 мы имеем следующее. КПД около 98%; число витков в первичной обмотке порядка 55 диаметром 1,2 мм; число витков каждой вторичной обмотки для напряжения +/-30 В составляет 10+10 с отводом от середины провода диаметром 1,5 мм. Все данные для намотки трансформатора нам известны. В результате самостоятельного изготовления должно получиться что-то подобное, а может и лучше (обмотки лучше размещать более равномерно по кольцу):

OLYMPUS DIGITAL CAMERAПереходим непосредственно к схемотехнической части разработки.

Проектирование схемы электрической принципиальной ИБП

Мы уже определили, что импульсный блок питания у нас будет двухтактный с полумостовым включением силового оконечного каскада, состоящего из двух мощных MOSFET IRFP460. В качестве ШИМ-контроллера выбрали микросхему К1156ЕУ2Р. Теперь перед нами стоит задача по объединению всех трех функциональных модулей, каждый из которых имеет свою электрическую цепь. Вместо того, чтобы изобретать велосипед, можно доработать имеющуюся типовую электрическую схему уже спроектированного ИБП на выбранном нами контроллере. В конечном счете, мы получили вот такой вариант схемы импульсного блока питания:

18

Как можно видеть, в нее входят все три модуля, рассмотренные нами выше.

Дополнительно с помощью реле и ограничивающего резистора R1 (типа С5-16MB или С5-5В) на входе реализован плавный пуск, позволяющий избежать резких бросков тока. Реле можно применить на напряжение как 12, так и 24 вольта с подбором резистора R19. Варистор RU1 защищает входную цепь от импульсов чрезмерной амплитуды. Конденсаторы С1—С4 и двухобмоточный дроссель L1 образуют сетевой помехоподавляющий фильтр, предотвращающий проникновение высокочастотных пульсаций, создаваемых преобразователем, в питающую сеть. L1 наматывается до заполнения окна проводом диаметра 0,5 мм на магнитопроводе Ш7х7 из альсифера ТЧ60, ТЧК55 или феррита типа 2000НМ. Обмотки дросселя содержат равное число витков. Можно применить магнитопровод типа К24х14х7. Тогда мотают 50 витков в 2 провода.

Подстроечный резистор R16 и конденсатор С12 определяют частоту преобразования. Для уменьшения ЭДС самоиндукции трансформатора Т2 параллельно каналам транзисторов включены демпферные диоды VD7 и VD8. Диоды Шоттки VD2 и VD3 защищают коммутирующие транзисторы и выходы микросхемы DA2 от импульсов обратного напряжения.

Токовый трансформатор Т1 намотан на ферритовом кольце К10×6x3 марки 4000НМ или на К12×8x3 марки 2000НМ. Первичная обмотка содержит 1 виток провода диаметром 0,5 мм или монтажного провода в поливинилхлоридной изоляции. Вторичная обмотка - 100 витков с отводом от середины провода ПЭЛШО диаметром 0,06…0,12 мм. Обмотки следует изолировать, например, лакотканью. Ток протекает через первичную обмотку трансформатора Т1. Напряжение вторичной обмотки через резистор R12 поступает на вход компаратора тока 9 вывод микросхемы DA2. В момент, когда напряжение на этом входе превысит порог срабатывания компаратора (1 вольт), генерация импульсов возбуждения будет прекращена. Ток срабатывания защиты зависит от числа витков вторичной обмотки трансформатора Т1, емкости конденсатора С8 и сопротивления резисторов R8, R9 (подстроечный), R12.

С момента включения в сеть до возбуждения инвертора микросхема К1156ЕУ2Р получает питание от параметрического стабилизатора напряжения на резисторе R2 (сопротивление которого, возможно, нужно будет понизить) и стабилитроне VD4 через диод VD5. В этом режиме микросхема потребляет ток не более 2 мА. После возбуждения инвертора ШИМ-контроллер питает вспомогательный выпрямитель VD13—VD16, напряжение с которого стабилизировано микросхемой КР142ЕН8В (или любой другой на напряжение стабилизации 15 вольт). Диоды VD5 и VD18 исключают взаимное влияние двух источников питания микросхемы К1156ЕУ2Р.

Оптрон U1 обеспечивает гальваническую развязку цепи обратной связи. Цепь ОС нужна для стабилизации выходного напряжения импульсного блока питания. Если оно превысит номинальное, то резко возрастет ток через стабилитрон VD17 и излучающий диод оптрона. В результате этого открывается фототранзистор оптрона. Напряжение на входе компаратора обратной связи по напряжению увеличивается (1 ножка микросхемы). Уменьшается длительность импульсов на выходе генератора. Это приводит к снижению выходного напряжения до номинального уровня.

Принцип действия схемы импульсного блока питания должен быть понятен. Теперь перейдем к советам по проектированию компоновки печатной платы и монтажу радиодеталей.

Советы по монтажу и изготовлению печатной платы для ИБП

Для обеспечения работы мощного импульсного источника питания необходимо уделить особое внимание расположению элементов на печатной плате и их монтажным соединениям. Длинные проводники могут стать причиной паразитной индуктивности и возникновению ненужной ЭДС, что, в конечном счете, приведет к генерации. Отсюда вытекает резкое повышение потребляемой мощности и сбой в работе генератора, который обязательно скажется на работе выходных силовых ключей в виде их пробоя сквозными токами. Поэтому длины всех проводников должны быть минимальными, выводы конденсаторов – короткими (особенно блокировочных, сглаживающих ВЧ пульсации). Со стороны монтажа на печатной плате под радиодеталями задающего генератора и ШИМ-контроллером должно быть оставлено много места для экрана. Конденсатор C21 должен иметь низкую собственную индуктивность. Его необходимо расположить не далее 6 мм от вывода 15 микросхемы DA2 для подавления высокочастотных помех. Сильноточные цепи необходимо выполнять минимальной длины. Ширина дорожек сильноточных цепей выбирается размером 5 мм и более. Для слаботочных цепей достаточно ширины дорожки в 0,8…1,5 мм. При этом следует исходить из зависимости 0,5 ампер тока на ширину дорожки 0,5 мм. С учетом вытравливания меди – минимальная ширина 0,8 мм. В том месте, где невозможно проложить дорожку большой ширины, при лужении на нее напаивают слой припоя или по всей длине напаивают луженый провод, тем самым увеличивая толщину.

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

В заключение стоит пару слов уделить такому нехорошему явлению, как скин-эффект. В результате него переменный ток высокой частоты при протекании по проводнику распределяется не равномерно по сечению, а преимущественно в поверхностном слое. Это может иметь печальные последствия для нашего импульсного трансформатора при больших мощностях. Поэтому рекомендуется мотать силовые обмотки трансформатора не одиночным проводом большого сечения, т.к. пользы от него никакой не будет, а «косичкой», сплетенной из нескольких проводов меньшего диаметра. Получается своего рода литцендрат. Тем самым мы улучшим добротность обмоток, повысим КПД и качество импульсного трансформатора. Обратите внимание, как намотана первичная обмотка:

OLYMPUS DIGITAL CAMERA

На фото 8 косичек по 15 проводов в каждой. Смотрится солидно, не правда ли?

Эпилог

В данной, как оказалось, далеко некороткой, статье рассмотрены наиважнейшие моменты конструирования импульсных боков питания, с которыми обязательно столкнется каждый решившийся на создание ИИП радиолюбитель. Мы постарались максимально четко расписать весь алгоритм действий. Более подробно рассмотрели моменты, на которых стоит акцентировать внимание. Все дополнительные советы и рекомендации выкладывайте в комментариях.

mikrocxema.ru

Возможно, Вам это будет интересно:

meandr.org

ИМПУЛЬСНЫЙ БП СВОИМИ РУКАМИ

   На основе готового импульсного трансформатора от компьютерного блока питания можно соорудить мощный самодельный БП на 200 ватт. Схема достаточно проста и в наладке не нуждается. Основа самотактируемый полумостовой драйвер выполненный на микросхеме IR2151.

   Сигнал генератора усиливается каскадом на мощных полевых транзисторах, транзисторы нужно укрепить на теплоотвод. Термистор любой, его можно найти в тех же компьютерных блоках питания. Резистор 47 килоом подобрать с мощностью в несколько ватт. Диод FR107 можно заменить на аналогичный импульсный диод, например на FR207 и т.п. Электролитические конденсаторы использованы для сглаживании пульсаций и подавления сетевых помех, их емкость должна быть от 22 до 470 мкф с напряжением не ниже 200 вольт. Предохранитель можно поставить на 3 ампера. Импульсный трансформатор позволяет получить двухполярное напряжение 12 или 2 вольт, следовательно на выходе при желании можно получить 5 вольт, 10 вольт, 12вольт или 24 вольта. 

Импульсный трансформатор позволяет получить двухполярное напряжение

   Таким блоком питания можно питать достаточно мощные усилители низкой частоты или же приспособить блок под обыкновенный 12 вольтовый усилитель из серии TDA. Кроме этого блок питания можно дополнить регулятором напряжения и использовать в качестве импульсного лабораторного блока питания. 

ИМПУЛЬСНЫЙ БП СВОИМИ РУКАМИ

   В качестве выпрямителей можно использовать быстрые или ультрабыстрые диоды на 4-10 ампер, отлично подходят диодные сборки из компьютерных блоков питания, там обычно ставят диоды шоттки с током до 20 ампер, диоды тоже желательно укрепить на теплоотвод, но только в том случае, если блок питания предназначен для работы на нагрузку от 100 ватт. Данный блок питания можно использовать как зарядное устройство для автомобильного аккумулятора, поскольку выходной ток более 10 ампер!

Поделитесь полезными схемами
СХЕМА САМОДЕЛЬНОГО ЛАЗЕРА

   Берем две пальчиковые батарейки и через резистор в 5 ом подключаем к диоду. Минус напрямую подключаем к среднему выводу диода, плюс сначала левому , потом правому выводу (можно и наоборот) и смотрим, пока лазер слегка не засветится красным светом. 

КАК ЗАРЯДИТЬ НОУТБУК ОТ ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА

    Напржение с вторичной обмотки выпрямляем мощным диодом Шоттки, можно использовать любые импульсные диоды на 3-5 ампер. После моста стоит сглаживающий фильтр - конденсатор и дроссель и конечно же стабилизатор на 15 вольт.

ПРОСТАЯ СИГНАЛИЗАЦИЯ ДЛЯ КВАРТИРЫ

    Сигнализация для квартиры своими руками - автономное питание и герконовый контактный датчик проникновения. Устройство, описанное в статье, предназначено для звуковой сигнализации о проникновении в квартиру через входную дверь.

samodelnie.ru


Каталог товаров
    .