Прежде всего поговорим о том, из чего состоит данный элемент цепи и как он работает. На схемах обозначение дросселя следующее: Внешний вид изделия может быть таким, как на фото: Это катушка из провода намотанного на сердечник с магнитопроводом, или без корпуса в случае высоких частот. Похож на трансформатор только с одной обмоткой. Краткий экскурс в физику, ток в катушке не может мгновенно измениться. Проведем мысленный эксперимент — у нас есть источник переменного тока, осциллограф, дроссель. Во время начала полу волны мы наблюдаем нарастание тока с запозданием, это вызвано индуцированием магнитного потока в сердечнике. Происходит постепенное нарастание тока в обмотках, когда с источника переменного тока сигнал уходит на спад, мы наблюдаем спад тока в дросселе, опять же с некоторым опозданием, поскольку магнитное поле в магнитопроводе продолжает толкать ток в катушке и не может быстро изменить свое направление. Получается в какой-то момент ток из внешнего источника противодействует току, наведенному магнитопроводом дросселя. В цепях переменного тока назначение дросселя — выступать ограничителем или индуктивным сопротивлением. Для постоянного тока данный элемент схемы не является сопротивлением или регулирующим элементом. Этот эффект используют для устройств, в электрических цепях, где нужно ограничить ток до нужной величины, при этом избежать излишней громоздкости и выделения тепла. Интересное пояснение по данному вопросу вы также можете просмотреть на видео: Наглядное сравнение, объясняющее принцип работы Теоретическая часть вопроса Дроссель предназначен для того, чтобы сделать нашу жизнь светлее. Конкретно в люминесцентных лампах он ограничивает ток через колбу, до нужной величины, избегая его чрезмерное увеличение через лампу. Люминесцентный светильник в основном состоит из дросселя, стартера, люминесцентной лампы. В двух словах описание работы люминесцентного светильника происходит так: Из сети ток через дроссель проходит на одну из нитей накала люминесцентной лампы, далее попадает на стартерное устройство, далее на вторую нить накала и уходит в сеть. В стартерном устройстве пластина из биметалла нагревается тлеющим разрядом газа, выпрямляется под действием тепла и замыкает цепь. В этот момент начинают работать нити накала, на концах лампочки, разогревая пары ртути в колбе люминесцентной лампы. Через короткий промежуток времени, пластина в стартере остывает и возвращается в исходное положение. Во время разрыва цепи происходит резкий всплеск напряжения в дросселе, происходит пробой газа в колбе люминесцентной лампы, и возникает тлеющий разряд, лампочка начинает светить, работающая лампа шунтирует стартер, выключая его из цепи более низким сопротивлением. В электронных схемах современных экономических люминесцентных ламп тоже есть рассматриваемый в статье элемент, но из-за более высоких частот он имеет миниатюрные размеры. А принцип работы и назначение остались те же. Также дроссель обязательный элемент в схемах ламп ДРЛ, натриевых ламп ДНАТ, металлогалогеновых лампочек CDM. В импульсных блоках питания в схемах преобразователях назначение дросселя — блокировать резкие всплески от трансформатора, пропуская сглаженное напряжение. Грубо говоря в этом случае он играет роль фильтра. В электрических сетях они также устанавливаются, но называются реакторами. Назначение дугогасительного реактора — предотвращать появление самостоятельной дуги во время однофазного короткого замыкания на землю, также как и прочих реакторов, которые так или иначе регулируют или же ограничивают величину тока через них, специально или в случае нештатной ситуации. С помощью дросселя можно улучшить дешевый или самодельный сварочный аппарат, установив его во вторичную цепь. Сварочный трансформатор собранный с дросселем будет варить не хуже фирменных аппаратов, дуга станет ровной и не будет рваться, шов будет равномерно залит. Поджог дуги станет происходить намного легче и просадка сетевого напряжения будет меньше влиять на появление и горение дуги. Даже неспециалист сможет быстро достичь хороших результатов в сварке, делая всевозможные поделки у себя дома. Где применяется изделие? Вот мы и рассмотрели устройство дросселя, принцип работы и назначение. Надеемся, что теперь вы полностью разобрались, для чего нужен данный элемент схемы! Будет интересно прочитать: samelectrik.ru Дросселем, в общем случае, называют катушку индуктивности, чаще всего с сердечником, которая служит для устранения или уменьшения переменного (импульсного) тока, разделения или ограничения сигналов различной частоты. Исходя из этого, дроссели условно можно разделить на следующие типы: — сглаживающие дроссели, предназначены для ослабления переменной составляющей постоянного тока или напряжения различной частоты, то есть сглаживания пульсаций, на выходе и входе силовых преобразователей или выпрямителей; — дроссели переменного тока, предназначены для ограничения электрического тока, при резких изменениях нагрузки, например, при пуске электродвигателей или источников питания; — дроссели насыщения, или управляемые дроссели, предназначенные для регулирования индуктивного сопротивления за счёт изменения тока подмагничивания. Дроссели, как и любая другая катушка индуктивности, может быть без сердечника, с замкнутым сердечником, с сердечником, имеющим малый зазор и с сердечником, имеющим большой зазор или разомкнутым сердечником. Поэтому в независимости от назначения дросселя его принцип действия основан на электромагнитных свойствах катушки индуктивности и сердечника, на котором она выполнена. Дроссель, как и любой другой элемент электрической цепи, содержит ряд параметров, которые определяются его физическими и конструктивными характеристиками. В зависимости от назначения дросселя одни его характеристики стараются улучшить, а значение других уменьшить. Но, несмотря на характер работы дросселя, его основным параметром является индуктивность, поэтому рассмотрим дроссель, содержащий только один параметр – индуктивность, такой дроссель называется идеальным и он характеризуется следующими допущениями: — обмотка дросселя не имеет активного сопротивления; — отсутствует межвитковая ёмкость проводников дросселя; — магнитное поле в сердечнике однородно, то есть значение индукции и напряженности в различных его точках имеет одинаковое значение. С учётом таких допущений, представим сердечник, на который намотана катушка. Идеальный дроссель. Подадим на катушку переменное напряжение U, в результате по катушке потечёт переменный ток I, создающий в сердечнике переменный магнитный поток Φ. Тогда в соответствии с законом самоиндукции в витках обмотки возникнет ЭДС самоиндукции Е. Так как у нас отсутствует активное сопротивление обмотки идеального дросселя, то ЭДС самоиндукции уравновесит напряжение, вызвавшее электрический ток В тоже время индуктивность, как коэффициент самоиндукции можно определить по следующему выражению где ω – количество витков катушки, S – площадь поперечного сечения сердечника, B – магнитная индукция, I – величина электрического тока. Тогда выражение для ЭДС самоиндукции будет иметь вид Данное выражение показывает, что ЭДС самоиндукции зависит от конструкции и размеров дросселя, а также от скорости изменения магнитного поля (dB/dt). Так как в идеальном дросселе отсутствуют активные нагрузки, а только индуктивная составляющая, то активная мощность будет равняться нулю. В индуктивном элементе расходуется только реактивная мощность на создание магнитного поля. В реальном дросселе, в отличие от идеального, кроме индуктивности имеется ещё рад параметров, вносящих активную составляющею мощности. Рассмотрим реальный дроссель Магнитные силовые линии реальной катушки. Поступающий в дроссель переменный ток возбуждает вокруг катушки переменное магнитное поле, определяемое магнитным потоком Φ. В идеальном дросселе он полностью замыкается через сердечник Φ0, но в реальности к нему добавляется магнитный поток рассеяния, охватывающий как витки по отдельности, так и группы витков провода. Он зависит от расположения витков, сечения провода, плотности укладки витков провода и так далее. Поток рассеивания достаточно трудно выразить количественно, поэтому для его характеристики вводят понятие потокосцепление рассеяния ΨS, который можно выразить через индуктивность рассеяния LS обмоток дросселя В соответствии с законом электромагнитной индукции, поток рассеяния возбуждает ЭДС рассеяния Поток рассеяния в дросселе негативно влияет на работу устройств, так как вызывает паразитные шумы, наводки и потери мощности в целом. Кроме потерь реактивной мощности потоками рассеяния, в реальном дросселе происходят потери активной мощности в сопротивлении витков обмотки и потерях в сердечнике, обусловленных его ферромагнитными свойствами. Для анализа работы реального дросселя создадим схему замещения, которая учитывает его основные и паразитные параметры. Эквивалентная схема дросселя с учётом паразитных параметров. Таким образом, на характеристики дросселя кроме собственной индуктивности дросселя L, являющейся основным параметром, так сказать полезным, присутствует паразитная индуктивность LS, обусловленная потоком рассеяния, активное сопротивление R обмоточного провода, межвитковая ёмкость С обмотки дросселя, а также проводимости gμ. Проводимость gμ характеризует мощность, которая затрачивается на перемагничивание сердечника, из-за наличие петли гистерезиса. Уравнение соответствующее эквивалентной схеме будет иметь вид Как видно на схеме ток в дросселе состоит из двух составляющих: Iμ – ток отвечающий за создание основного магнитного потока Φ0 и Iа – ток, учитывающий потери мощности при перемагничивании и нагрев сердечника где РС – мощность потерь в сердечнике. Основной параметр дросселя – индуктивность L определяется по выражениям для индуктивностей различных типов, например, индуктивность без сердечника, индуктивности на замкнутых сердечниках, индуктивности на сердечниках с зазором и индуктивности на разомкнутых сердечниках. Остальные параметры определить несколько сложнее. Рассмотрим определение данных параметров. В дросселе, между витками, слоями и металлическими предметами вокруг дросселя существует некоторая разность потенциалов, создающих электрическое поле. Для оценки влияния данного поля вводят понятие межвитковой ёмкости или собственной ёмкости дросселя, величина которой зависит от размеров и конструктивных особенностей дросселя. Межвитковая ёмкость C обмотки, являясь паразитным параметром, совместно с индуктивностью рассеивания и собственной индуктивностью дросселя образуют различные виды фильтров и колебательных контуров. Хотя данный параметр имеет небольшое значение, тем не менее, в определённых условиях его приходится учитывать, однако точный расчёт затруднён в связи с большим влиянием различных конструктивных параметров, в первую очередь, взаимного расположения витков провода между собой. Так наибольшей межвитковой ёмкостью обладают катушки намотанные «внавал», а наименьшей – катушки с намоткой типа «Универсаль» или секционные катушки. Межвитковую емкость Собщ дросселя можно представить в виде суммы емкостей между внутренним слоем обмотки и магнитопроводом С1 и межслоевой емкости внутри обмотки С2 Ёмкость между внутренним слоем обмотки и магнитопроводом можно определить из эмпирической формулы где εа – абсолютная диэлектрическая проницаемость среды вокруг проводника, εа = ε0εr, εr – относительная диэлектрическая проницаемость, ε0 – электрическая постоянная, ε0 = 8,85 * 10-12 Ф/м, r – радиус поперечного сечения провода, а – расстояние между магнитопроводом и осью провода, n – число витков в слое, р1 – периметр витка внутреннего слоя обмотки. Относительная диэлектрическая проницаемость берётся для материала каркаса дросселя, если бескаркасное исполнение, то соответственно проницаемость воздуха либо изоляции проводника, в зависимости от необходимой точности. Емкость между слоя обмотки так же вычисляется по эмпирической формуле где рср – периметр среднего витка обмотки, b – расстояние между осями витков в соседних слоях, m – число слоёв. В данном случае диэлектрическая проницаемость берётся для материала межслоевой изоляции. Во всех случаях необходимо добиваться уменьшения межвитковой ёмкости обмотки. Для этого применяют различные виды намоток и материалов для каркасов и межслоевой изоляции с малым значением диэлектрической проницаемости. Индуктивность рассеяния LS, также как и межвитковая ёмкость, является паразитным параметром и негативно влияет на индуктивные элементы, в частности на дроссель. Индуктивность рассеяния вместе с межвитковой емкостью образуют фильтр нижних частот, вызывающий уменьшение амплитуды переменного напряжения и тока на высоких частотах. Данное обстоятельство приводит к тому, что увеличиваются активные потери мощности и происходит нагрев дросселя. Индуктивность рассеяния зависит от типа конструкции дросселя и его размеров и может быть определена по следующему выражению где μ0 – относительная магнитная проницаемость, μ0 = 4π*10-8, рср – периметр среднего витка обмотки, w – количество витков провода в дросселе, l – длина намотки, h – толщина намотки. В большинстве случаев необходимо добиваться уменьшения индуктивности рассеяния, для чего стараются как можно плотнее уложить провод в намотке, уменьшения количества слоёв обмотки дросселя и увеличения длины намотки. В идеале стремятся использовать однослойные обмотки, если это возможно. Стоит отметить, что приведённые выражения для определения паразитных параметров межвитковой ёмкости С и индуктивности рассеяния LS являются ориентировочными и могут в различных случаях давать погрешность порядка 20 %. Поэтому при необходимости знать точное значение их определяют экспериментальным путём различными способами. На сегодня всё, а в следующей статье я расскажу о потерях мощности и нагреве дросселей при работе. Теория это хорошо, но теория без практики - это просто сотрясание воздуха. Перейдя по ссылке всё это можно сделать своими руками Скажи спасибо автору нажми на кнопку социальной сети www.electronicsblog.ru Электронный дроссель – это специализированное, употребляемое в среде профессионалов, жаргонное обозначение простейших твердотельных стабилизаторов. Сложно, сказать, кто придумал это странное название, но оно периодически употребляется радиолюбителями. Идея использования стабилизаторов вместо фильтров основана не на пустом месте. Суть заключается в желании научиться фильтровать помехи, пока полезный сигнал проходит беспрепятственно. Известно, что дроссель хорошо пропускает низкие частоты. На этом основано его применение в виде фильтра в звукозаписи и воспроизведении мелодий. Слышимые ухом частоты обнаруживают верхний предел в области 15 кГц, хотя отдельные люди слышат до 20 кГц. Если сообщить колебания костям черепа, пределы слышимости распространяются до 220 кГц. Утверждается, что человек через пломбы в зубах способен принимать вещание в сверхнизком диапазоне. Но оставим для спецслужб их игры с разумом и вернёмся к аудиозаписи. Дроссели здесь используются, чтобы срезать частоты выше 20 кГц. Их ставят перед динамиками для удаления известного радиолюбителям «белого шума». Простые люди звук называют шипением, он навязчив, легко различим даже на фоне громкой музыки. Меломаны стали думать, как избавиться от напасти. Среди них попадались радиолюбители, и кто-то предложил использовать амплитудно-частотную (передаточную) функцию каскада для срезания «белого шума». Эффект основывается на том, что полезного сигнала выше 20 кГц нет, а там лежит значительная часть спектра шипения. Попробовали сделать и немедленно отметили частичное улучшение. Технологию пустили в ход, единственным недостатком оказались большие габариты дросселя. А среди меломанов ходит легенда – и авторы лично слышали – что в электронных блоках не предполагается твердотельной электроники (транзисторы, тиристоры и пр.). Даже диоды использовать нежелательно. Поэтому люди не согласились бы использовать параметрические стабилизаторы в аппаратуре. Но большой размер дросселя вызывает необходимость заменить его электроникой. Твердотельный стабилизатор Дроссель аналогичен катушке индуктивности, но демонстрирует специфическое назначение и ряд обмоток. Без углубления в тему скажем, что предложил свернуть проволоку спиралью Лаплас, потом действие проделали Швейггер, Ампер, Фарадей и прочие учёные. Так на свет, предположительно, в 1820 году появилась катушка индуктивности. Ключевым свойством, обнаруженным далеко не сразу, стало наличие реактивного сопротивления. Его называли – индуктивностью. Особенность: ток на таком элементе не способен повыситься сразу, значит, срезается и сглаживается его фронт, становится пологим. Это соответствует на уровне спектра фильтрации нижних частот, что применяется меломанами для уменьшения мощности шипения. Колонка, как правило, включает ряд динамиков. К примеру, три. И шипит самый маленький, предназначенный для воспроизведения высоких частот, к примеру, тонкого пения скрипки. Если аккуратно прикрыть динамик ладонью, «белый шум» пропадает. Это сродни механической фильтрации при помощи руки. Хотим поблагодарить Евгения Карпова. Любой желающий вправе прочесть выложенную им статью «Электронный дроссель», где обсуждаются основные ошибки по конструированию аппаратуры, даются советы по улучшению качества. Включение с общей базой называется сравнительной схемой. Транзистор оценивает разницу напряжений на базе и коллекторе. Сигнал снимается с эмиттера. Конденсатор С3 заряжается через резистор R5 служа параметрическим стабилизатором (вместо стабилитрона). Необычное решение требуется, чтобы отслеживать относительно медленно меняющийся звуковой сигнал. На конденсаторе неизменно находится его усреднённое значение, так происходит стабилизация. Транзистор следит, чтобы выходной сигнал равнялся (либо оставался пропорционален) напряжению на стабилизаторе. Так вкратце действует простая схема электронного дросселя. Смысл использования частично раскрывается Евгением Карповым, но рядовым гражданам он неочевиден. Дроссель большой и тяжёлый, занимает много места, делает вдобавок две неполезных вещи: Электронный дроссель позволяет убрать указанные недостатки, но Евгений Карпов отмечает, что размер радиатора для транзистора бывает значительным, что уничтожает преимущество. А необходимость точной настройки не каждому под силу. Тем не менее, электронный дроссель вправе использоваться как представитель простейших видов параметрических стабилизаторов. Считается, что задачей стабилизатора становится стабилизация напряжения, добиваясь постоянства. В действительности речь обычно идёт о действующем значении. Стабилизатор устроен так, чтобы пропускать медленные составляющие. Допустимо добавление обратной связи, эталонов напряжения, чтобы устранить этот «недостаток». Радиолюбители намеренно в конструкции электронного дросселя упускают подобные навороты, полученное устройство спокойно плавает вдоль нужных частот. На выходе стоит фильтр из конденсатора C4, резисторы задают рабочую точку транзистору. В глобальном смысле стабилизаторы напряжения делят на два класса: Первые обычно опираются на некий эталон. К примеру, простейшим параметрическим стабилизатором становится единственный стабилитрон. Но при этом нельзя добиться высокого выходного напряжения, и ток станет делиться, уходя впустую. Высокие потери, необходимость охлаждения… Это попытались преодолеть в компенсированных стабилизаторах, где в цепь заложена обратная связь. Смысл: сравнить с эталоном не входное напряжение, а выходное и по результатам «теста» провести корректировку коэффициента усилительного каскада. Электронный дроссель намеренно сделан без обратной связи, чтобы параметры плавали и не мешали полезному сигналу проходить на выход. Электронный дроссель не является параметрическим стабилизатором непосредственно, но представляет намеренно ухудшенный его вариант. Ухудшенный с точки зрения стабильности. Выходной характеристикой идеального считается прямая, не подразумевающая музыки. Вывод: Электронный дроссель – это параметрический стабилизатор напряжения с намеренно ухудшенными долговременными характеристиками, обеспечивающими постепенный уход напряжения в нужную сторону сообразно форме входного сигнала. Выше приводилось упрощённое толкование вопроса – да простят нас истинные радиолюбители. В действительности электронный дроссель использует каскад сравнения из компенсационного стабилизатора. Причём наипростейший из имеющихся, из единственного транзистора. Изложим кратко теорию. Итак, простейшим параметрическим стабилизатором становится разновидность твердотельного диода – стабилитрон. При превышении напряжением некого порога происходит резкое падение сопротивления p-n-перехода. Стабилитрон, вразрез с обычным диодом, всегда включается навстречу току. На катод нтребуется подать плюс. Значение порога легко изменяется включением между стабилитроном и схемной нейтралью диодов в прямом направлении. На каждом кремниевом p-n-переходе падает 0,5 В. Это порой бывает предпринято для температурной компенсации. Усложнением схемы является транзисторная, где стабилитрон служит эталоном, а триод занимается стабилизацией. На выходе включается эмиттерный повторитель для улучшения согласования с нагрузкой, а включение по схеме с общей базой стабилизирует ток. Но пора посмотреть на схемы компенсационных стабилизаторов, откуда электронный дроссель кое-что взял. На рисунке показаны регулирующие элементы из составных транзисторов. Это каскад, на который подаётся петля обратной связи для сравнения с эталоном. Одно из сравниваемых напряжений поступает на эмиттер – от стабилитрона, второе – на базу – из цепи обратной связи. С коллектора снимается сигнал. Транзистор считается симметричным, за исключением мелких деталей, описанных в соответствующей теме (см. биполярный транзистор), допустимо для сравнения использовать базу и коллектор, как в схеме электронного дросселя, приведённой выше. Исключение — цепь обратной связи из конструкции выкушена. Зато включён вместо эталона конденсатор, заведомо не выдающий постоянное напряжение, радуя радиолюбителя. Постоянная времени берётся такой, чтобы успевал изменяться сигнал согласно полезной частоте (до 20 кГц), а повышенные частоты сглаживались. И хотя меломаны против твердотельной электроники, конструкция вправе существовать. Для температурной компенсации и увеличения чувствительности возможно создавать сравнительные элементы из нескольких транзисторов и добиваться частичного усиления. В частности, это достигается применением дифференциальной пары (см. операционные усилители). Созданы прочие полезные схемы, читатели найдут примеры самостоятельно в поучительной книге под редакцией Г.С. Найвельта. Осталось добавить, что электронный дроссель собирается и на полевом транзисторе (MOSFET). Тогда стабилизирующие свойства ухудшаются, а каскад добавляет в цепь тот шум, с которым борется. Карпов добавляет, что жёсткость электронного фильтра намного больше за счёт накопленной в конденсаторе энергии, допустимой к использованию в любой момент, и меньшего активного сопротивления. Электронный дроссель отлично фильтрует напряжение 50 Гц и применяется в маломощных источниках питания. Однако шум устройство подавляет хуже, нежели традиционный полосовой LC-фильтр. Следовательно, питаемая аппаратура не должна быть критична к уровню шумов. vashtehnik.ru Действительно ли дроссель для люминесцентных ламп является незаменимым элементом, обеспечивающим запуск прибора и его последующее беспроблемное функционирование? Согласитесь, что лишние приспособления, без которых вполне может работать система освещения, покупать и устанавливать ни к чему. Вы сомневаетесь, нужен ли дроссель в схеме подключения или без него можно обойтись? Мы поможем вам разобраться с возникшим вопросом — в статье подробно рассмотрены особенности, назначение дросселя и выполняемые им функции. Также приведены тематические фотоматериалы и схема подключения, которая поможет самостоятельно собрать люминесцентный светильник и выполнить его запуск, правильно подключив все компоненты в электроцепь. В помощь домашнему мастеру мы подобрали ряд видеороликов, содержащих рекомендации по подключению люминесцентных лампочек, по выбору нужного дросселя в зависимости от типа лампы. Содержание статьи: Разрядные лампы, представителем которых является люминесцентная, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать. Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат. Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение. Поэтому в схеме включения задействуют балласт – сопротивление. Оно включается последовательно с лампой и предназначено для ограничения тока, протекающего через ее электроды. Его роль могут выполнять различные электротехнические компоненты: Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть. Галерея изображений Фото из Дроссель в импульсных схемах питания Ограничитель в высокочастотных электрических схемах Сердечник в виде кольца Секционная намотка провода Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции: Важное значение для функционирования люминесцентных источников света имеет индуктивность дросселя. Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки. При выборе электромеханического ПРА, который еще называют дросселем или ограничителем тока, имеют значение не только техпараметры, но и репутация производителя – неизвестные китайские фирмы могут предложить ограничитель, реальные характеристики которого значительно ниже заявленных Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности. Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель». Различные типы обмоток с разнообразными сердечниками, отличающиеся размерами, формой и внешним видом. Индуктивность конкретного изделия напрямую зависит толщины провода, плотности расположения витков в намотке и их количества, формы сердечника и прочих параметров Дроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки. Более того, имея навыки сбора различных электротехнических приспособлений, соответствующие комплектующие и электроинструменты, можно попытаться самостоятельно соорудить катушку с нужной индуктивностью. На схемах изображение дросселя может отличаться. В цепях подключения люминесцентных лампочек чаще всего можно встретить вариант L6 – обмотка с магнитопроводом ферритовым сердечником Дроссель состоит из следующих элементов: Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока. Участвуя в схеме розжига разрядной лампочки вместе со стартером, индуктивное сопротивление в виде дросселя ограничивает силу тока в момент подачи напряжения на лампу, а генерация ЭДС самоиндукции в размере 1000 В обеспечивает ее зажигание и стабилизирует горение дуги Стартерная схема несовершенна, хотя и показывает отличный результат. Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшстарт из-за ненадежного стартера привели к изобретению более совершенной версии пускорегулятора – электронной. ЭПРА в процессе функционирования способствуют снижению мощности потерь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора. Правда стоимость электронного балласта существенно выше ЭМПРА, да и приобретать нужно у производителей с отличной репутацией – таких как Philips, Osram, Tridonic, прочие. Люминесцентную лампочку просто так не включишь – ей требуется зажигатель и ограничитель тока. В миниатюрных моделях производитель все эти элементы предусмотрительно встроил в корпус и потребителю остается лишь вкрутить изделие в подходящий патрон светильника/люстры и щелкнуть выключателем. А для более габаритных изделий потребуется пускорегулирующая аппаратура, которая бывает как электромеханического, так и электронного типа. Чтобы ее правильно подсоединить, обеспечив беспроблемную работу прибора, предстоит знать порядок подключения отдельных элементов в электроцепь. Схема подключения люминесцентной лампочки (EL) с использованием дросселирующего аппарата, где LL – это дроссель, SV – стартер, C1, C2 – конденсаторы Правда, имея схему, но не имея практического опыта по выполнению подобного рода работ, сложно будет справиться с задачей. Более того, если подключение требуется выполнить вне дома – в коридоре учебного учреждения или прочего общественного заведения – то самовольное вмешательство в работу электросети может обернуться проблемами. Для этого в штате учреждений должен быть электрик, работающий на постоянной основе или же обслуживающий заведение по мере возникновения потребностей в его услугах. На схеме реализовано подключение двух лампочек люминесцентного типа последовательно. Существенная проблема – если сломается/перегорит одна из них, то вторая тоже работать не будет Рассмотрим пошаговое подключение двух трубчатых ЛЛ к электросети с использованием стартерной схемы. Для чего понадобится 2 стартера, дросселирующий компонент, тип которого должен обязательно соответствовать типу лампочек. А также следует обратить внимание на суммарную мощность пускателей, которая не должна превышать этот параметр у дросселя. Галерея изображений Фото из Установка держателей для лампочек Установка ламп в держатели Подсоединение короткого проводка к держателю стартера Проверка работоспособности собранной схемы Соединение длинным проводом держателя стартера с ЛЛ Второй конец жилы от стартера крепят ко второму держателю лампы Соединение первой лампы со второй в одну цепь Подключение питающего кабеля При подключении питающего кабеля к светильнику важно помнить, что за ограничение тока отвечает дроссель. Поэтому фазную жилу предстоит подсоединять через него, а на лампочку подключить нулевой провод. Галерея изображений Фото из Вторую жилу от питающего кабеля следует вставить в разъем электромеханического ПРА, который еще называют дросселем. Правильное отверстие выбирают исходя из обозначений, нанесенных на его корпусе Теперь предстоит заняться дальнейшим формированием цепи, соединив вторую ЛЛ со вторым стартером, а точнее, с его держателем. Для этого нужно взять еще одну короткую жилу и вставить один конец в разъем держателя лампочки, а второй – в отверстие крепления стартера Аналогичную процедуру предстоит проделать с другой стороны трубчатого люминесцента, тоже используя короткий проводок. Особое внимание следует уделить надежности создаваемого контакта – чтобы ничего не болталось Осталось завершить формирование цепи, используя еще одну длинную жилу, конец которой предстоит подключить в свободный разъем держателя второй лампочки, а второй – в отверстие дросселирующего компонента Теперь нужно закрепить все элементы схемы, требуемые для работы собранной системы. Для этого нужно взять 2 стартера, приобретенные заранее. Важно чтобы их тип и мощность соответствовали параметрам ЛЛ Каждый стартер, который еще называют пускатель, следует поставить в заранее подготовленные держатели, к которым уже успели подсоединить провода. Этот элемент представляет собой небольшую колбу с двумя электродами – жестким и гибким биметаллическим Второй стартер аналогично крепится в полости держателя, расположенного с противоположной стороны рядом с дросселем. От одного балластного компонента на 36 Вт можно запитать 2 лампочки Осталось самое интересное – проверить в действии собранную схему, включив питающий кабель в электрическую сеть. Если все выполнено правильно, то две ЛЛ запустятся и начнут светить. В противном случае они никак не отреагируют Фазную жилу питающего кабеля подсоединяют в дроссель Соединение второй лампы со вторым стартером Подсоединение в цепь второй стороны лампы Соединение второй лампы с дросселем По одному стартеру для каждой лампочки Установка пускателей в держатели Дроссель один на две лампочки Проверка работоспособности собранной схемы Подобная схема подключения актуальна для больших осветительных приборов. Что же касается компактных моделей, то они оснащены встроенным механизмом запуска и регулировки – миниатюрным ЭПРА, вмонтированном внутри корпуса изделия. В компактной люминесцентной лампочке между цоколем и трубками со смесью газов располагается пускорегулирующий аппарат маленьких размеров. Он отлично справляется с запуском прибора и по сроку службы может значительно выигрывать у других элементов ЛЛ Использование лампочек, у которых вышел срок службы и периодически возникают различные поломки, может обернуться пожаром. Избежать этой ситуации поможет регулярное инспектирование состояния осветительных приборов – визуальный осмотр, проверка основных узлов. К концу службы лампы можно заметить существенный перегрев ПРА – конечно, водой проверять температуру нельзя, для этого следует воспользоваться измерительными приборами. Нагрев способен достигать 135 градусов и выше, что чревато печальными последствиями При неправильной эксплуатации может произойти взрыв колбы светильника. Мельчайшие частицы в состоянии разлететься в радиусе трех метров. Причем они сохраняют свои зажигательные способности, даже упав с высоты потолка на пол. Опасность представляет перегрев обмотки дросселя – аппарат состоит из различных типов материалов, каждый из которых имеет свои характеристики. Например, изоляционные прокладки производители пропитывают сложными составами, отдельные элементы которых имеют неодинаковую горючесть и способность к образованию дыма. Даже семь витков дросселя, в которых случилось замыкание, способны стать пожароопасными. Хотя большую вероятность возгорания представляет замыкание не менее 78 витков – этот факт был установлен опытным путем Помимо перегрева дросселирующего элемента, существуют и другие ситуации с люминесцентными светильниками, представляющие пожарную опасность. Это могут быть: Следует помнить, что к проблемам может привести небрежность при выполнении подключения, плохое качество контактов или составляющих цепи, что чаще всего происходит при использовании совсем дешевых аппаратов, приобретенных у неизвестных производителей. Добросовестные компании дают гарантию на свою продукцию, а технические параметры приборов, указанные на корпусе или упаковке, соответствуют действительности. Этот факт прямо влияет на срок службы как самого ПРА, так и разрядной лампочки Тонкости сборки схемы из двух ЛЛ с последовательным включением: Видеоролик о том, что такое дроссель и зачем он нужен: Проверка дросселя на предмет поломки: О правилах выбора дросселя в зависимости от типа разрядной лампы: Ознакомившись с назначением и устройством дросселей, используемых для запуска люминесцентных лампочек, можно вооружиться схемой подключения и попытаться реализовать ее самостоятельно. Правда, это актуально для дома. В общественных учреждениях решение подобных вопросов следует доверить электрикам, имеющим спецдопуск к электромонтажным работам. sovet-ingenera.com Общие сведенья Гидродросселем называется аппарат, представляющий собой регулируемое гидравлическое сопротивление. Назначение дросселя заключается в регулировании расхода жидкости в гидросистеме, а так же служат для регулирования скорости движения гидродвигателя и для регулирования времени опорожнения и заполнения гидравлических емкостей. Принцип работы дросселя основан на том, что для протекания жидкости через какую-либо щель или отверстие, представляющее собой существенное сопротивление потоку, необходим некоторый перепад давлений, зависящий от площади проходного сечения этого сопротивления и величины расхода жидкости. Эта зависимость выражается следующим соотношением: Q=µ·fad· (2·Pad /ρ) Здесь Q –расход жидкости [см3/с];µ- коэффициент расхода, который можно считать величиной постоянной в пределах значений 0,68-072; fad - площадь проходного сечения сопротивления [см2];ρ- плотность жидкости [кгс·c2/см3]; Pad- перепад давления на этом сопротивлении [кгс/см2]Протекание жидкости через такое существенное сопротивление принято называть дросселированием потока. На рис.1 показана схема дросселей, отличающаяся формой проходного сечения сопротивления. Отверстие в корпусе 1 диаметром “d” и затвором конической формы 2, положение которого относительно этого отверстия регулируется винтом, образуют кольцевую дроссирующую щель с площадью проходного сечения fad=п·d·h (рис.1а). Изменение площади проходного сечения щели происходит за счет изменения величины “h”, при неизменной ширине щели – п·d, что является недостатком такой схемы из-за трудности поддержания стабильных малых расходов при большом периметре щели. На рис.1 б показана схема дросселя, у которого проходное сечение сопротивления образуется затвором 2, перекрывающим окна, выполнены во втулке 3, установленной в корпусе 1, причем одно из окон выполнено каплеобразной формы, благодаря чему для регулирования малых расходов используется щель с малым периметром. Такая схема регулирования потока позволяет обеспечить достаточно глубокий диапазон изменения потока с сохранением его стабильных значений. На рис. 1 в показана схема дросселя, представляющего собой комбинацию двух вариантов - вначале изменяется величина сечения кольцевой щели, а затем - только величина сечения продольных пазов треугольной формы, выполненных на поверхности затвора, так что при регулировании больших потоков изменяются кольцевая щель, а при регулировании потоков – площадь поперечного сечения пазов с малым периметром щели. Благодаря быстрому формированию цветной металлургии, компания «САММЕТ» продолжает сотрудничать с крупными российскими заводами, предоставляя клиентам очень качественный товар на очень хороших условиях. Цветмет производится в значительных объемах, что вызвано его хорошими качествами и рядом позитивных параметров. Изделия их цветмета владеют длительным служебным сроком. Алюминиевые элементы, по типу профилей и рифленых листов, имеют очень высокую прочность и маленький вес, и еще очень пластичны. Более того, достойной заменой труб из пластика станут подобного типа продукты из меди, которая выделяется стойкостью к ударам царапинам и так далее. www.metalstanki.com.ua Николай Петрушов Такое название в последнее время приходится часто встречать в схемах блоков питания ламповых и не ламповых конструкций. Что это такое? давайте поближе познакомимся с особенностями работы "электронного дросселя" и с часто встречающимися ошибками при его сборке и использовании. Рисунок 1. В блоках питания ламповых усилителей в последнее время, радиолюбителями довольно широко используются стабилизаторы напряжения, выполненные на полевом транзисторе. Такие стабилизаторы называют ещё "электронный дроссель", "усилитель ёмкости" и даже "виртуальная батарея".Будем называть его "электронный дроссель", хотя по сути - это обычный стабилизатор с плавающим опорным напряжением, изменяющимся в зависимости от входного, или активный фильтр с функцией задержки подачи напряжения и ничего общего с обычным дросселем (накопителем энергии) и принципом его работы он не имеет."Электронный дроссель" можно собирать и на биполярных транзисторах, такие схемы известны ещё с 60-х годов, но на полевых схема имеет гораздо лучшую эффективность, поэтому будем рассматривать здесь "электронный дроссель" на мощных полевых транзисторах.Рассмотрим обычную схему, гуляющую по сети. См. рисунок 2. Рисунок 2."Электронный дроссель" на IRF830. У некоторых радиолюбителей эта схема работает, у некоторых нет, почему? Эта схема имеет свои недостатки, которые сейчас рассмотрим.Входное напряжение здесь подаётся на С1 через резистор R1 большого сопротивления. Ток стока транзистора практически нулевой и при качественном конденсаторе С1 (с очень маленькой утечкой) он зарядится до уровня напряжения входа, транзистор уйдёт в насыщение и пользы от такого "дросселя" будет мало.Если конденсатор С1 будет не очень качественный (иметь утечку больше тока заряда R1), то напряжение на затворе транзистора будет меньше входного и схема может работать. Для нормальной работы схемы, напряжение на затворе должно быть меньше входного, минимум на величину пульсаций при номинальном токе нагрузки. Это ещё не учитывается нестабильность напряжения сети.То есть входное напряжение сначала должно подаваться на делитель напряжения. Этот делитель и определяет разность между входным и выходным напряжением "электронного дросселя". Сделать такой делитель можно, добавив всего одно сопротивление (R3). Рисунок 3."Электронный дроссель" на IRF830. Второй вариант. На второй схеме ЭД, входное напряжение на конденсатор С1 подаётся с делителя (R1, R3). Коэффициент такого делителя рассчитывается таким образом, что бы разница между входным и выходным напряжением, для обеспечения нормальной работы ЭД, была 20 - 30 вольт. Сопротивление резистора R1 можно уменьшить, что бы компенсировать ток утечки у конденсатора С1, если он попадётся не очень качественный. Для увеличения времени заряда конденсатора (увеличение времени задержки нарастания выходного напряжения), его ёмкость можно увеличить. Время заряда конденсатора определяется величиной R1 и ёмкостью конденсатора, т.е. постоянная времени заряда.Так, как постоянная времени R1, C1 очень большая (десятки секунд), то;1) Обеспечивается плавное нарастание выходного напряжения.2) Быстрые изменения и колебания сети не проходят на выход схемы.3) Очень качественная фильтрация напряжения, так как на затворе транзистора практически отсутствуют пульсации и в виду наличия у полевого транзистора огромнейшего входного сопротивления и весьма большой крутизны характеристики, на выходе имеем пульсации почти такие же как и на RC-фильтре в цепи затвора.Рассмотрим назначение элементов схемы;Резистор R2 подобен "антизвоновому" резистору в цепи сетки лампы выходного каскада, и необходим для предотвращения самовозбуждения транзистора. Его величина выбирается в пределах 1 - 10 кОм. Наличие его обязательно. При монтаже, его лучше припаять непосредственно к выводу транзистора (и стабилитрон VD2 тоже).Стабилитрон VD2 предназначен для защиты транзистора от переходных процессов и статики. Напряжение его стабилизации выбирается в пределах 14 - 18 вольт. В нормальном режиме работы он заперт. Его можно не ставить, если он уже встроен в транзистор (есть транзисторы со встроенным стабилитроном).Если у транзистора отсутствует встроенный диод между истоком и стоком, то его необходимо поставить. Он защищает транзистор от обратного напряжения, и если (например при выключении питания) входные конденсаторы разрядились (на схеме не показаны), а выходные ещё нет и напряжение на них больше напряжения входного, то открывается этот диод и конденсаторы на выходе, подключаются через диод к входным и к делителю R1, R3.Диод VD1 необходим для быстрой разрядки конденсатора С1. Рассмотрим некоторые особенности монтажа подобных схем.Транзистор желательно применять в изолированном корпусе. Если корпус транзистора не изолирован, то на радиатор он крепится через изолирующую прокладку (например слюда), а корпус радиатора заземляется.Антизвоновый резистор и защитный стабилитрон лучше распаять непосредственно на выводах транзистора.Наличие в схеме "электронного дросселя" не отменяет необходимость в установке конденсаторов после него,которые играют роль источника энергии для быстрых импульсов тока потребления нагрузкой и уменьшают выходное сопротивление источника питания."Электронный дроссель", в отличии от обычного дросселя, не является накопителем энергии, и соответственно не применим (как замена обычному дросселю) в схемах выпрямителей с L-фильтром там, где дроссель отдаёт накопленную энергию. Хотя бытуют различные мнения у противников "транзисторизации" ламповых схем, вплоть до замены индикаторов на светодиодах - неоновыми лампочками (хотя попадаются неонки с очень большим уровнем шума), скажу однозначно - применение в блоке питания лампового усилителя "электронного дросселя", нисколько не ухудшает его звучание, а в некоторых случаях гораздо его улучшает, позволяя при этом сэкономить габариты и вес любительских конструкций. vprl.ru Одним из самых распространенных элементов электрических схем является индуктивность. Это в общем случае катушка с проводом с вставленным в нее ферромагнитным сердечником или без него. Рассмотрим применения свойств катушки индуктивности в различных областях техники. Индуктивность применяется в различных приборах в радиотехнике, электротехнике, технике связи, электронике, автоматике и многих других областях. Это трансформаторы, различные электрические фильтры, электромагнитные реле, преобразователи электрической энергии и т.д. Если конденсатор – это накопитель электрической энергии (заряда), то индуктивность – это накопитель электромагнитной энергии. При прохождении электрического тока по проводу, вокруг него образуется постоянное магнитное поле. Чем больше витков в катушке и чем больше электрический ток, проходящий через нее, тем больше магнитный поток пронизывающий витки катушки. Для увеличения силы притяжения электромагнита в катушку вводят ферромагнитный (стальной) сердечник. Свойство катушки с проводом образовывать магнитное поле, используется в мощных электромагнитах, во всевозможных электромеханических реле, электрических двигателях и генераторах и т.д. Катушка индуктивности имеет минимальное сопротивление для прохождения постоянного электрического тока, но для переменного тока имеет большое сопротивление. Это свойство индуктивности используется для разделения цепей переменного и постоянного токов. В технике электросвязи и радиосвязи используется множество различных фильтров нижних и верхних частот, схем дистанционного питания и т.д.Катушка с ферромагнитным стальным сердечником используется в фильтрах блоков питания сетевых выпрямителей для сглаживания пульсаций переменного тока. При воздействии на катушку переменного магнитного поля в ней образуется переменный электрический ток. Это свойство катушки индуктивности используется в электрических генераторах постоянного и переменного тока. В них идет преобразование механической энергии в электрическую энергию. Дизель-генераторные электростанции используют энергию сгорания дизельного топлива; Тепловые электростанции – ТЭЦ используют энергию газа, угля, и др.; Гидроэлектростанции – ГЭС используют энергию падающей воды; Атомные электростанции — АЭС используют энергию деления атомного ядра. Во всех циклах преобразования энергии конечным элементом является электрический генератор одно или трех — фазного переменного тока. При протекании переменного тока через катушку вокруг нее образуется переменное магнитное поле, которое в свою очередь воздействует на соседнюю катушку (обмотку) и создает в ней переменный электрический ток. Трансформаторы тока – напряжения используются для преобразования переменного электрического напряжения и тока одной величины в напряжение и ток другой величины. Трансформаторы служат также для согласования сопротивления нагрузки с внутренним сопротивлением источника (генератора) электрической энергии. Трансформаторы используются во всех областях электротехники, радиотехники, электросвязи, автоматики и т.д. Если объединить свойства конденсатора и индуктивности, то можно создать электромагнитный контур для получения синусоидальных колебаний переменного тока. В этом контуре заряд, накопленный в конденсаторе, передается в катушку и преобразуется в магнитное поле. Магнитное поле в свою очередь, наводит ЭДС самоиндукции в катушке, которая и заряжает конденсатор. Процесс этот повторяется многократно, постепенно затухая из-за потерь в контуре. Колебательные контуры бывают двух видов — параллельный и последовательный. Колебательные контуры используются для получения незатухающих колебаний синусоидальной формы низкой – НЧ, высокой ВЧ и сверхвысокой СВЧ частот. Электросвязь, радиотехника, автоматика, космическая связь – перечень применения колебательного контура в технике безграничен. domasniyelektromaster.ruГде применяется катушка с проводом (индуктивность)? На схеме дроссель
Устройство дросселя, принцип работы и назначение
В этой статье мы расскажем читателям энциклопедии домашнего мастера что такое дроссель и для чего он нужен. Drossel — это немецкое слово, которое обозначает сглаживание. Конкретно будем говорить об электрическом дросселе. Сейчас трудно найти электрическую схему в которой нет данного устройства, которое даже в цифровой век широко используется в технике. Он нужен для регулирования либо отсекания, в зависимости от назначения — сглаживать резкие скачки тока или отсекать электрические сигналы другой частоты, постоянный ток отделять от переменного. Конструкция и принцип работы
Область применения
Дроссель и его параметры | HomeElectronics
Что такое электрический дроссель?
Принцип работы идеального дросселя
Принцип работы реального дросселя
Эквивалентная схема дросселя
Как рассчитать межвитковую ёмкость обмотки дросселя?
Как рассчитать индуктивность рассеяния дросселя?
Электронный дроссель: типы, схемы, применение
Общая информация
Параметрические стабилизаторы – электронные дроссели
Кратко об обычных дросселях
Схема электронного дросселя
Обоснование применения электронного дросселя
Стабилизаторы
Классификация
Простейшие схемы стабилизаторов
Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения
Назначение и устройство дросселя
Назначение балласта в схеме включения
Из чего состоит пускорегулятор?
Схема + самостоятельное подключение
Перегрев дросселя и возможные последствия
Полезное видео по теме
Гидродроссель:назначение,типы,схема.Ремонт дросселя
Типы дросселей
"Электронный дроссель". - Блоки питания - Источники питания
дроссель | Электрознайка. Домашний Электромастер.
Самое простое применение катушки с проводом – это электромагнит.
Катушка индуктивности — фильтр
Катушка с проводом источник Э.Д.С.
Катушка индуктивности — трансформатор.
Катушка индуктивности — элемент колебательного контура.
Поделиться с друзьями: