Не редко при ремонте или переделке блока питания ATX в автомобильное зарядное устройство необходима схема этого блока. С учетом того, что на данный момент, моделей блоков огромное количество, мы решили собрать небольшую подборку из сети, где будут размещены типовые схемы компьютерных блоков питания ATX. На данном этапе подборка далеко не полная и будет постоянно пополняться. Если у Вас есть схемы компьютерных блоков питания ATX, которые не вошли в данную статью и желание поделиться, мы всегда будем рады добавить новые и интересные материалы. Схема JNC LC-250ATX Схема JNC LC-B250ATX Схема JNC SY-300ATX Схема JNC LC-B250ATX Схема FSP145-60SP Схема Enlight HPC-250 и HPC-350 Схема Linkworld 200W, 250W и 300W Схема Green Tech MAV-300W-P4 Схема AcBel API3PCD2 ATX-450P-DNSS 450W Схема AcBel API4PC01 400W Схема Maxpower PX-300W Схема PowerLink LPJ2-18 300W Схема Shido LP-6100 ATX-250W Схема Sunny ATX-230 Схема KME PM-230W Схема Delta Electronics DPS-260-2A Схема Delta Electronics DPS-200PB-59 Схема InWin IW-P300A2-0 Схема SevenTeam ST-200HRK Схема SevenTeam ST-230WHF Схема DTK PTP-2038 Схема PowerMaster LP-8 Схема PowerMaster FA-5-2 Схема Codegen 200XA1 250XA1 CG-07A CG-11 Схема Codegen 300X 300W Схема ISO-450PP Схема PowerMan IP-P550DJ2-0 Схема LWT 2005 Схема Microlab 350w Схема Sparkman SM-400W (STM-50CP) Схема GEMBIRD 350W (ShenZhon 350W) Схема блока питания FSP250-50PLA (FSP500PNR) Схема блока ATX Colorsit 330U (Sven 330U-FNK) на SG6105 Схема блока NT-200ATX (KA3844B+LM339) Вконтакте Facebook Twitter Одноклассники diodnik.com sdelaysam-svoimirukami.ru Работа любого компьютера невозможна без блока питания. Поэтому стоит отнестись серьезно к выбору. Ведь от стабильной и надежной работы БП будет зависеть работоспособность самого компьютера. Главной задачей блока питания является преобразование переменного тока и дальнейшее формирование требуемого напряжения, для нормальной работы всех комплектующих ПК. Напряжение, требуемое для работы комплектующих: Кроме этих заявленных величин существует и дополнительное величины: Фото: блок питания БП выполняет роль гальванической развязки между электрическим током из розетки и комплектующими потребляющие ток. Простой пример, если произошла утечка тока и человек дотронулся до корпуса системного блока его ударило бы током, но благодаря блоку питания этого не происходит. Часто используются источники питания (ИП) формата ATX. Главной частью структурной схемы ИП, формата ATX, является полумостовой преобразователь. Работа преобразователей этого типа заключается в использовании двухтактного режима. Стабилизация выходных параметров ИП осуществляется применением широтно-импульсной модуляции (ШИМ-контроллер) управляющих сигналов. В импульсных источниках питания часто используется микросхема ШИМ-контроллера TL494, которая обладает рядом положительных свойств: Принцип работы обычного импульсного БП можно увидеть на фото. Фото: блок схема работы импульсного Первый блок выполняет изменение переменного тока в постоянный. Преобразователь выполнен в виде диодного моста, который преобразовывает напряжение, и конденсатора, сглаживающего колебания. Кроме этих элементов могут присутствовать еще дополнительные комплектующие: фильтр напряжения и термисторы. Но, из-за дороговизны, эти комплектующие могут отсутствовать. Генератор создает импульсы с определенной частотой, которые питают обмотку трансформатора. Трансформатор выполняет главную работу в БП, это – гальваническая развязка и преобразование тока до требуемых величин. Далее переменное напряжение, генерируемое трансформатором, идет на следующий блок. Этот блок из диодов, выравнивающих напряжение, и фильтра пульсаций. Фильтр состоит из группы конденсаторов и дросселя. Простой импульсный БП хоть и рабочее устройство, но на практике его использовать неудобно. Многие из его параметров на выходе «плавают», в том числе и напряжение. Все эти показатели изменяются из-за нестабильного напряжения, температуры и загруженности выхода преобразователя. Но если осуществлять управление этими показателями с помощью контроллера, который будет выполнять роль стабилизатора и дополнительные функции, то схема будет вполне пригодной для применения. Структурная схема БП с использованием контроллера широтно-импульсной модуляции проста и представляет генератор импульсов на ШИМ-контроллере. Фото: ИП для компьютера с ШИМ-контроллером ШИМ-контроллер регулирует амплитуду изменения сигналов проходящих через фильтр низких частот (ФНЧ). Главным достоинством являются высокие показатели КПД усилителей мощности и широкие возможности в использовании. В новых источниках питания для ПК появляется дополнительный блок – корректор коэффициента мощности (ККМ). ККМ убирает появляющиеся погрешности мостового выпрямителя переменного тока и повышает коэффициент мощности (КМ). Поэтому производителями активно изготавливаются БП с обязательной коррекцией КМ. Это означает, что ИП на компьютере будет работать в диапазоне от 300Вт и более. Фото: схема блока питания компьютера 300w В этих БП используют специальный дроссель с индуктивностью выше чем на входе. Такой ИП называют PFC или пассивным ККМ. Имеет внушительный вес из-за дополнительного использования конденсаторов на выходе выпрямителя. Из недостатков можно выделить невысокую надежность ИП и некорректную работу с ИБП во время переключения режима работы «батарея/сеть». Часто используют в современных источниках питания для компьютера двухканальные ШИМ-контроллеры. Единственная микросхема способна выполнять роль преобразователя и корректора КМ, что сокращает общее количество элементов в схеме БП. Фото: схема БП с использованием двухканального ШИМ-котроллера В приведенной схеме первая часть выполняет формирование стабилизированного напряжение +38В, а вторая часть является преобразователем, который формирует стабилизированное напряжение +12В. Для подключения блока питания к компьютеру следует выполнить ряд последовательных действий: фото: схема подключения питания компьютера PcCar CarPc Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. На задней его части расположен разъем под сетевой кабель и кнопка выключателя. Кроме этого может находится еще на задней стенке БП и разъем для подключения монитора. В различных моделях могут быть и другие разъемы: Фото: внешний вид БП для ПК В современных источниках питания для ПК реже устанавливают вентилятор на задней стенке, который вытягивал горячий воздух из БП. В замен этого решения начали использовать вентилятор на верхней стенке, который был больше и работал тише. На некоторых моделях возможно встретить сразу два вентилятора. Из стенки, которая находится внутри системного блока, выходит провод со специальным разъемом для подачи тока на материнскую плату. На фото указаны возможные разъемы подключения и обозначение контактов. Фото: обозначение контактов разъемов БП Каждый цвет провода подает определенное напряжение: У различных производителей могут изменяться значения для этих цветов проводов. Также есть разъемы для подачи тока комплектующим компьютера. Фото: специальные разъемы для комплектующих БП персонального компьютера имеет много параметров, которые могут не указываться в документации. На боковой этикетке указываются несколько параметров – это напряжение и мощность. Эта информация пишется на этикетке крупным шрифтом. Показатель мощности БП указывает на общее количество электроэнергии доступной для внутренних комплектующих. Казалось бы, выбрать БП с требуемой мощностью будет достаточным просуммировать потребляемые показатели комплектующими и выбрать БП с небольшим запасом. Поэтому большой разницы между 200w и 250w не будет существенной. Фото: Импульсный блок питания компьютера (ATX) на з00 Вт Но на самом деле ситуация выглядит сложнее, потому что выдаваемое напряжение может быть разным — +12В, -12В и другим. Каждая линия напряжения потребляет определенную мощность. Но в БП расположен один трансформатор, который генерирует все напряжения, используемые ПК. В редких случаях может быть размещено два трансформатора. Это дорогой вариант и используется в качестве источника на серверах. В простых же БП используется 1 трансформатор. Из-за этого мощность на линиях напряжений может меняться, увеличиваться при малой нагрузке на других линиях и наоборот уменьшаться. При выборе БП следует обратить внимание на максимальные значения рабочих напряжений, а также диапазон входящих напряжений, он должен быть от 110В до 220В. Правда большинство из пользователей на это не обращают своего внимания и выбирая БП с показателями от 220В до 240В рискуют к появлению частых отключений ПК. Фото: параметры блока питания компьютера Такой БП будет выключаться при падении напряжения, которые не редкость для наших электросетей.Превышение заявленных показателей приведет к выключению ПК, сработает защита. Чтобы включить обратно БП придется отключить его от сети и подождать минуту. Следует помнить, что процессор и видеокарта потребляю самое большее рабочее напряжение в 12В. Поэтому следует обращать внимание на эти показатели.Для снижения нагрузки на разъемы, линию 12В разделяют на пару параллельных с обозначением +12V1 и +12V2. Эти показатели должны быть указаны на этикетке. Перед тем как выбрать для покупки БП, следует обратить внимание на потребляемую мощность внутренними компонентами ПК. Но некоторые видеокарты требуют особый потребляемый ток +12В и эти показатели следует учитывать при выборе БП. Обычно для ПК, в котором установлена одна видеокарта, достаточно источника с мощностью в 500вт или 600. Фото: Super Power 300X Также следует ознакомится с отзывами покупателей и обзорами специалистов о выбранной модели, и компании производителе. Лучшие параметры, на которые следует обратить внимание, это: мощность, тихая работа, качество и соответствие написанным характеристикам на этикетке. Интересует настройка роутера ZYXEL KEENETIC LITE PPPoE? Читайте тут. Настройка IPTV в роутере DIR 620 от Ростелеком? Читайте в статье. Экономить при этом не следует, ведь от работы БП будет зависеть работа всего ПК. Поэтому чем качественнее и надежнее источник, тем дольше прослужит компьютер. Пользователь может быть уверен, что сделал правильный выбор и не беспокоится о внезапных выключениях своего ПК. proremontpk.ru
Приветствую всех зрителей , особенно начинающих радиолюбителей, поскольку именно они очень часто сталкиваются с проблемой поиска источников питания для самодельных конструкций и поэтому в этом ролике будет рассмотрен вариант постройки простейшего лабораторного блока питания с возможностью ограничения тока.
Наш блок питания может обеспечивать на выходе стабилизированное напряжение от 0 до 15 вольт и ток до полутора Ампер.
Естественно наиболее простым решением является использование специализированных микросхем на подобии LM317, которая обеспечивает хорошую стабилизацию, стоит дешево и может отдавать в нагрузку ток до полторы ампер, но я этого не сделал, зная что многие радиолюбители могут не иметь возможности приобретения специализированных микросхем по тем или иным причинам, поэтому рассмотрим самый простой стабилизированный блок питания построенный всего на двух транзисторах.
В проекте специально использованы наиболее доступные радиокомпоненты, чтобы ни у кого не возникли трудности с их поиском .
А теперь давайте рассмотрим схему и поймем как она работает.
Состоит она из трех основных частей
Сетевой понижающий трансформатор для обеспечения нужного нам напряжения а также для гальванической развязки с сетью. В своем варианте я использовал трансформатор от блока питания кассетного магнитофона, подойдет любой другой, основные параметры блока будут зависеть в первую очередь от трансформатора, притом нужно учитывать один момент - максимальное выходное напряжение блока питания будет на несколько вольт меньше, чем напряжение на выпрямителе.
Трансформатор подбирается с нужным током, в моем случае имеются две обмотки по 20 Вольт, ток с каждой из них составляет около 0,7 Ампер, обмотки подключены параллельно, т.е общий ток около полутора ампер.
Вторая часть из себя представляет выпрямитель для выпрямления переменного напряжения в постоянку и конденсатор для сглаживания напряжения после выпрямителя и фильтрации помех.
Третий узел это плата самого стабилизатора, рассмотрим ее поподробней.
А работает схема следующим образом.
Сетевое напряжение поступает на первичную обмотку трансформатора, на вторичной обмотке уже получаем пониженное напряжение, максимальный ток будет зависеть от габаритных размеров трансформатора и от диаметра провода вторичной обмотки.
Далее переменное напряжение со вторичной обмотки трансформатора поступает на двухполупериодный выпрямитель диодного типа, построенный на 4-х одинаковых диодах.
После выпрямителя установлен электролитический конденсатор для сглаживания напряжения до "идеальной постоянки".
Уже постоянное напряжение поступает на схему стабилизатора где стабилизируется до некоторого уровня, напряжение стабилизации будет завесить от стабилитрона, в нашем случае он на 15 Вольт, который задает максимальное напряжение на выходе.
Но беда в том, что ток такого простого стабилизатора невелик, по нему протекает около 15 -20 мА, вот поэтому его нужно усилить с помощью простого каскада усиления по току построенный на транзисторе VT1 и VT2 , транзисторы подключены таким образом для того , чтобы обеспечить максимально большое усиление, т.е. по сути это аналог составного транзистора.
Регулятор напряжения в лице переменного резистора R1 выполняет функцию простого делителя напряжения и может быть рассмотрен как два последовательно соединенных резистора с отводом от места их соединения, изменяя сопротивление каждого, мы можем регулировать напряжение, это напряжение усиливается ранее указанным каскадом.
Второй переменный резистор позволит ограничивать выходной ток.
Большую их часть, а если быть точнее то все компоненты можно найти в старой аппаратуре, например в советских телевизорах, усилителях, приемниках, магнитолах и в прочей технике, также возможно использование импортных аналогов, которые имеют одинаковое расположение выводов.
Диодный мост - можно использовать готовые мосты, которые можно найти в компьютерных блоках питания или же собрать мост из любых 4-х аналогичных диодов с током от 2-х ампер, список некоторых таких диодов тоже найдешь в архиве проекта, ссылка на архив как всегда в описании.
Для увеличения выходного напряжения блока питания нужно во первых найти соответствующий трансформатор а также заменить стабилитрон на более высоковольтный , скажем на или 18 или 24 Вольта, Резистор ограничивает ток через стабилитрон, расчет производится исходя из напряжения с выпрямителя, резистор рассчитывают так, чтобы ток через стабилитрон не превышало значение в 25-30мА в случае стабилитронов пол ватта и 40-45 мА в случае если использован одноваттный стабилитрон.
Если нет нужного стабилитрона, то можно последовательно соединить два или несколько, для получения нужного напряжения стабилизации.
Схема стабилизатора работает в линейном режиме, поэтому силовой транзистор VT22 нуждается в радиаторе.
Теперь проверим конструкцию в работе.
Как видим напряжение плавно регулируется от нуля до 15 Вольт
Теперь проверим ограничение тока. Без нагрузки вращая регулятор тока, напряжение у нас почти не меняется, что свидетельствует о корректной работе функции ограничения.
Ток регулируется плавно от 180мА.
Максимальный выходной ток, в моем случае составляет около 1,5 Ампер, этого вполне достаточно для средних нужд большинства радиолюбителей.
Не смотря на простоту конструкции при выходных токах токах около 1А , наблюдаем просадку выходного напряжения меньше 0,2 вольт , это очень хороший показатель для стабилизаторов такого класса.
Блок питания может переносить короткого замыкания с продолжительностью не более 5 секунд, в этом режиме ток ограничивается в районе 1,7А.
Монтаж можно сделать и навесным, но более красиво смотрится конструкция на печатной плате, тем более, что я для вас ее нарисовал.
В качестве индикаторов советую использовать стрелочные приборы, чтобы не путаться с подключением, хотя можно и цифровые.
Корпусом может служить кожух от компьютерного блока питания, либо любой другой удобный вариант, хоть фанерные доски.
По мне, довольно годный вариант в качестве первого лабораторного блока питания, смело собирайте.
Скачать плату vip-cxema.org sdelaysam-svoimirukami.ru Работа любого компьютера невозможна без блока питания. Поэтому стоит отнестись серьезно к выбору. Ведь от стабильной и надежной работы БП будет зависеть работоспособность самого компьютера. Главной задачей блока питания является преобразование переменного тока и дальнейшее формирование требуемого напряжения, для нормальной работы всех комплектующих ПК. Напряжение, требуемое для работы комплектующих: Кроме этих заявленных величин существует и дополнительное величины: БП выполняет роль гальванической развязки между электрическим током из розетки и комплектующими потребляющие ток. Простой пример, если произошла утечка тока и человек дотронулся до корпуса системного блока его ударило бы током, но благодаря блоку питания этого не происходит. Часто используются источники питания (ИП) формата ATX. Главной частью структурной схемы ИП, формата ATX, является полумостовой преобразователь. Работа преобразователей этого типа заключается в использовании двухтактного режима. Стабилизация выходных параметров ИП осуществляется применением широтно-импульсной модуляции (ШИМ-контроллер) управляющих сигналов. В импульсных источниках питания часто используется микросхема ШИМ-контроллера TL494, которая обладает рядом положительных свойств: Принцип работы обычного импульсного БП можно увидеть на фото. Первый блок выполняет изменение переменного тока в постоянный. Преобразователь выполнен в виде диодного моста, который преобразовывает напряжение, и конденсатора, сглаживающего колебания. Кроме этих элементов могут присутствовать еще дополнительные комплектующие: фильтр напряжения и термисторы. Но, из-за дороговизны, эти комплектующие могут отсутствовать. Генератор создает импульсы с определенной частотой, которые питают обмотку трансформатора. Трансформатор выполняет главную работу в БП, это – гальваническая развязка и преобразование тока до требуемых величин. Далее переменное напряжение, генерируемое трансформатором, идет на следующий блок. Этот блок из диодов, выравнивающих напряжение, и фильтра пульсаций. Фильтр состоит из группы конденсаторов и дросселя. Простой импульсный БП хоть и рабочее устройство, но на практике его использовать неудобно. Многие из его параметров на выходе «плавают», в том числе и напряжение. Все эти показатели изменяются из-за нестабильного напряжения, температуры и загруженности выхода преобразователя. Но если осуществлять управление этими показателями с помощью контроллера, который будет выполнять роль стабилизатора и дополнительные функции, то схема будет вполне пригодной для применения. Структурная схема БП с использованием контроллера широтно-импульсной модуляции проста и представляет генератор импульсов на ШИМ-контроллере. ШИМ-контроллер регулирует амплитуду изменения сигналов проходящих через фильтр низких частот (ФНЧ). Главным достоинством являются высокие показатели КПД усилителей мощности и широкие возможности в использовании. В новых источниках питания для ПК появляется дополнительный блок – корректор коэффициента мощности (ККМ). ККМ убирает появляющиеся погрешности мостового выпрямителя переменного тока и повышает коэффициент мощности (КМ). Поэтому производителями активно изготавливаются БП с обязательной коррекцией КМ. Это означает, что ИП на компьютере будет работать в диапазоне от 300Вт и более. В этих БП используют специальный дроссель с индуктивностью выше чем на входе. Такой ИП называют PFC или пассивным ККМ. Имеет внушительный вес из-за дополнительного использования конденсаторов на выходе выпрямителя. Из недостатков можно выделить невысокую надежность ИП и некорректную работу с ИБП во время переключения режима работы «батарея/сеть». Это связано с маленькой емкостью фильтра сетевого напряжения и в момент падения напряжения повышается ток ККМ, и в этот момент включается защита от короткого замыкания. Часто используют в современных источниках питания для компьютера двухканальные ШИМ-контроллеры. Единственная микросхема способна выполнять роль преобразователя и корректора КМ, что сокращает общее количество элементов в схеме БП. В приведенной схеме первая часть выполняет формирование стабилизированного напряжение +38В, а вторая часть является преобразователем, который формирует стабилизированное напряжение +12В. Для подключения блока питания к компьютеру следует выполнить ряд последовательных действий: Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. На задней его части расположен разъем под сетевой кабель и кнопка выключателя. Кроме этого может находится еще на задней стенке БП и разъем для подключения монитора. В различных моделях могут быть и другие разъемы: В современных источниках питания для ПК реже устанавливают вентилятор на задней стенке, который вытягивал горячий воздух из БП. В замен этого решения начали использовать вентилятор на верхней стенке, который был больше и работал тише. На некоторых моделях возможно встретить сразу два вентилятора. Из стенки, которая находится внутри системного блока, выходит провод со специальным разъемом для подачи тока на материнскую плату. На фото указаны возможные разъемы подключения и обозначение контактов. Каждый цвет провода подает определенное напряжение: У различных производителей могут изменяться значения для этих цветов проводов. Также есть разъемы для подачи тока комплектующим компьютера. БП персонального компьютера имеет много параметров, которые могут не указываться в документации. На боковой этикетке указываются несколько параметров – это напряжение и мощность. Эта информация пишется на этикетке крупным шрифтом. Показатель мощности БП указывает на общее количество электроэнергии доступной для внутренних комплектующих. Казалось бы, выбрать БП с требуемой мощностью будет достаточным просуммировать потребляемые показатели комплектующими и выбрать БП с небольшим запасом. Поэтому большой разницы между 200w и 250w не будет существенной. Но на самом деле ситуация выглядит сложнее, потому что выдаваемое напряжение может быть разным — +12В, -12В и другим. Каждая линия напряжения потребляет определенную мощность. Но в БП расположен один трансформатор, который генерирует все напряжения, используемые ПК. В редких случаях может быть размещено два трансформатора. Это дорогой вариант и используется в качестве источника на серверах. В простых же БП используется 1 трансформатор. Из-за этого мощность на линиях напряжений может меняться, увеличиваться при малой нагрузке на других линиях и наоборот уменьшаться. При выборе БП следует обратить внимание на максимальные значения рабочих напряжений, а также диапазон входящих напряжений, он должен быть от 110В до 220В. Правда большинство из пользователей на это не обращают своего внимания и выбирая БП с показателями от 220В до 240В рискуют к появлению частых отключений ПК. Такой БП будет выключаться при падении напряжения, которые не редкость для наших электросетей.Превышение заявленных показателей приведет к выключению ПК, сработает защита. Чтобы включить обратно БП придется отключить его от сети и подождать минуту. Следует помнить, что процессор и видеокарта потребляю самое большее рабочее напряжение в 12В. Поэтому следует обращать внимание на эти показатели.Для снижения нагрузки на разъемы, линию 12В разделяют на пару параллельных с обозначением +12V1 и +12V2. Эти показатели должны быть указаны на этикетке. Перед тем как выбрать для покупки БП, следует обратить внимание на потребляемую мощность внутренними компонентами ПК. Но некоторые видеокарты требуют особый потребляемый ток +12В и эти показатели следует учитывать при выборе БП. Обычно для ПК, в котором установлена одна видеокарта, достаточно источника с мощностью в 500вт или 600. Также следует ознакомится с отзывами покупателей и обзорами специалистов о выбранной модели, и компании производителе. Лучшие параметры, на которые следует обратить внимание, это: мощность, тихая работа, качество и соответствие написанным характеристикам на этикетке. Экономить при этом не следует, ведь от работы БП будет зависеть работа всего ПК. Поэтому чем качественнее и надежнее источник, тем дольше прослужит компьютер. Пользователь может быть уверен, что сделал правильный выбор и не беспокоится о внезапных выключениях своего ПК. compsch.com Изготовить лабораторный блок питания своими руками несложно, если имеются навыки обращения с паяльником и вы разбираетесь в электрических схемах. В зависимости от параметров источника вы можете с его помощью заряжать аккумуляторы, подключать практически любую бытовую аппаратуру, использовать для опытов и экспериментов при конструировании электронных средств. Главное при монтаже – использование проверенных схем и качество сборки. Чем надежнее корпус и соединения, тем удобнее работать с источником питания. Желательно наличие регулировок и приборов контроля выходного тока и напряжения. Если у вас нет навыков в изготовлении электрических приборов, то лучше начинать с самого простого, постепенно передвигаясь к сложным конструкциям. Состав простейшего источника постоянного напряжения: В случае если вы используете в схеме один полупроводниковый диод, то получите однополупериодный выпрямитель. Если применяете диодную сборку или мостовую схему включения, то блок питания называется двухполупериодным. Разница в выходном сигнале – во втором случае меньше пульсаций. Такой самодельный блок питания хорош только в тех случаях, когда необходимо провести подключение приборов с одним рабочим напряжением. Так, если вы занимаетесь конструированием автомобильной электроники либо ее ремонтом, лучше выбирать трансформатор с выходным напряжением 12-14 вольт. От количества витков вторичной обмотки зависит выходное напряжение, а от сечения используемого провода - сила тока (чем больше толщина, тем больше ток). Такой источник необходим для обеспечения работы некоторых микросхем (например, усилителей мощности и НЧ). Отличает двухполярный блок питания следующая особенность: на выходе у него отрицательный полюс, положительный и общий. Для реализации такой схемы требуется применять трансформатор, вторичная обмотка которого имеет средний вывод (причем значение переменного напряжения между средним и крайними должно быть одинаковое). Если нет трансформатора, удовлетворяющего этому условию, можно модернизировать любой, у которого сетевая обмотка рассчитана на 220 вольт. Удалите вторичную обмотку, только сначала проведите замер напряжения на ней. Сосчитайте число витков и разделите на напряжение. Полученное число – это количество витков, необходимых для вырабатывания 1 вольта. Если вам нужно получить двухполярный блок питания с напряжением 12 вольт, то потребуется намотать две одинаковых обмотки. Начало одной соедините с концом второй и эту среднюю точку подключите к общему проводу. Два вывода трансформатора необходимо соединить с диодной сборкой. Отличие от однополярного источника – нужно применять 2 электролитических конденсатора, соединенных последовательно, средняя точка включается с корпусом устройства. Задача может показаться не очень простой, но сделать регулируемый блок питания можно путем сборки схемы из одного или двух полупроводниковых транзисторов. Но потребуется на выходе установить хотя бы вольтметр для контроля напряжения. Для этой цели можно использовать стрелочный индикатор с приемлемым диапазоном измерений. Можно приобрести дешевый цифровой мультиметр и адаптировать его под ваши нужды. Для этого потребуется разобрать его, установить при помощи пайки нужное положение переключателя (при интервале изменения напряжения 1-15 вольт требуется, чтобы прибор мог проводить замер напряжения до 20 вольт). Регулируемый блок питания можно подключать к любому электрическому прибору. Сначала только вам потребуется выставить необходимое значение напряжения, чтобы не вывести из строя приборы. Изменение напряжения производится при помощи переменного резистора. Его конструкцию вы вправе выбрать самостоятельно. Это может быть даже ползункового типа устройство, главное – соблюдение номинального сопротивления. Чтобы блок питания было удобно использовать, можно установить переменный резистор, спаренный с выключателем. Это позволит избавиться от лишнего тумблера и облегчить отключение аппаратуры. Такая конструкция окажется посложнее, но и ее можно реализовать достаточно быстро при наличии всех необходимых элементов. Смастерить простой лабораторный блок питания, да еще двухполярный и с регулировкой напряжения, сможет не каждый. Схема усложняется тем, что требуется установка не только полупроводникового транзистора, работающего в режиме ключа, но и операционного усилителя, стабилитронов. При пайке полупроводников будьте аккуратны: старайтесь не сильно их нагревать, ведь диапазон допустимых температур у них крайне мал. При чрезмерном нагреве кристаллы германия и кремния разрушаются, в результате устройство перестает функционировать. Когда делаете лабораторный блок питания своими руками, помните одну важную деталь: транзисторы требуется монтировать на алюминиевом радиаторе. Чем мощнее источник питания, тем больше площадь радиатора должна быть. Особое внимание уделяйте качеству пайки и проводам. Для маломощных устройств допускается использовать тонкие провода. Но если выходной ток большой, то необходимо применять провода с толстой изоляцией и большой площадью сечения. От надежности коммутации зависит ваша безопасность и удобство пользования устройством. Даже короткое замыкание во вторичной цепи может стать причиной возгорания, поэтому при изготовлении блока питания следует позаботиться о защите. Да, именно так можно назвать осуществление регулировки подобным образом. Для реализации необходимо вторичную обмотку трансформатора перемотать и сделать несколько выводов в зависимости от того, какой шаг изменения напряжения и диапазон вам нужен. Например, лабораторный блок питания 30В 10А с шагом в 1 вольт должен иметь 30 выводов. Между выпрямителем и трансформатором необходимо установить переключатель. Вряд ли получится найти на 30 положений, а если и найдете, то его габариты окажутся очень большими. Для монтажа в небольшом корпусе он явно не подойдет, поэтому лучше использовать для изготовления стандартные напряжения – 5, 9, 12, 18, 24, 30 вольт. Этого вполне достаточно для удобного пользования устройством в домашней мастерской. Для изготовления и расчета вторичной обмотки трансформатора вам нужно сделать следующее: Сделать подобный лабораторный блок питания своими руками под силу каждому, а самое главное – не требуется паять схему на транзисторах. Выводы вторичной обмотки соединяете с переключателем, чтобы значения напряжений изменялись от меньшего к большему. Центральный вывод переключателя соединяется с выпрямителем, нижний по схеме вывод трансформатора подается на корпус устройства. Такие схемы используются практически во всех современных приборах – в зарядных устройствах телефонов, в блоках питания компьютеров и телевизоров и др. Изготовить лабораторный блок питания, импульсный особенно, оказывается проблематично: слишком много нюансов требуется учитывать. Во-первых, относительно сложная схема и непростой принцип действия. Во-вторых, большая часть устройства работает под высоким напряжением, которое равно тому, которое протекает в сети. Посмотрите на основные узлы такого блока питания (на примере компьютерного): Подобные узлы и элементы присутствуют во всех импульсных источниках питания. Стоимость даже нового блока питания, который устанавливается в компьютерах, довольно низкая. Зато вы получаете готовую конструкцию, можно даже не делать шасси. Один недостаток – на выходе имеются только стандартные значения напряжения (12 и 5 вольт). Но для домашней лаборатории этого вполне достаточно. Пользуется популярностью лабораторный блок питания из ATX по той причине, что не нужно совершать большие переделки. А чем проще конструкция, тем лучше. Но есть и «болезни» у таких устройств, но излечить их можно достаточно просто. Зачастую выходят из строя электролитические конденсаторы. Из них вытекает электролит, это можно увидеть даже невооруженным глазом: на печатной плате появляется слой этого раствора. Он гелеобразный или жидкий, со временем застывает и становится твердым. Чтобы отремонтировать лабораторный блок питания из БП компьютера, нужно установить новые электролитические конденсаторы. Вторая поломка, которая встречается намного реже, заключается в пробое одного или нескольких полупроводниковых диодов. Симптом – это выход из строя плавкого предохранителя, смонтированного на печатной плате. Для ремонта нужно прозвонить все диоды, установленные в мостовой схеме. Простейший способ обезопасить себя – это установка плавких предохранителей. Использовать такой лабораторный блок питания с защитой можно, не боясь, что из-за короткого замыкания произойдет возгорание. Для реализации этого решения вам потребуется установить два плавких предохранителя в цепи питания сетевой обмотки. Их нужно брать на напряжение 220 вольт и ток порядка 5 ампер для маломощных приборов. На выходе источника питания следует установить плавкие предохранители с подходящими параметрами. Например, при защите выходной цепи с напряжением 12 вольт можно применить предохранители, используемые в автомобилях. Значение тока подбирается исходя из максимальной мощности потребителя. Но на дворе - век высоких технологий, а делать защиту при помощи предохранителей с экономической точки зрения не очень выгодно. Приходится проводить замену элементов после каждого случайного задевания проводов питания. Как вариант – вместо обычных плавких вставок установить самовосстанавливающиеся предохранители. Но ресурс у них небольшой: могут верой и правдой прослужить несколько лет, а могут и через 30-50 отключений выйти из строя. Но блок питания лабораторный 5А, если он собран грамотно, функционирует правильно и не требует дополнительных устройств защиты. Элементы нельзя назвать надежными, зачастую бытовая техника приходит в негодность по причине поломки таких предохранителей. Намного эффективнее оказывается применение релейной схемы либо тиристорной. В качестве устройства аварийного отключения могут также использоваться симисторы. Большая часть работ – это проектирование корпуса, а не сборка электрической схемы. Придется вооружиться дрелью, напильниками, а при необходимости окрашивания еще и освоить малярное дело. Можно изготовить самодельный блок питания на основе корпуса от какого-нибудь устройства. Но если есть возможность приобрести листовой алюминий, то при желании вы сделаете красивое шасси, которое прослужит вам долгие годы. Для начала нарисуйте эскиз, в котором расположите все элементы конструкции. Особое внимание уделите проектированию лицевой панели. Ее можно сделать из тонкого алюминия, только изнутри провести усиление – прикрутить к алюминиевым уголкам, которые применяются для придания большей жесткости конструкции. В лицевой панели обязательно следует предусмотреть отверстия для установки измерительных приборов, светодиодов (или ламп накаливания), клемм, соединенных с выходом блока питания, гнезда для установки плавких предохранителей (при выборе такого варианта защиты). Если вид лицевой панели не очень привлекательный, то ее нужно покрасить. Для этого обезжириваете и зачищаете до блеска всю поверхность. Перед началом окрашивания сделайте все необходимые отверстия. Нанесите 2-3 слоя грунтовки на прогретую поверхность, дайте высохнуть. Далее нанесите столько же слоев краски. В качестве финишного покрытия нужно применять лак. В итоге мощный лабораторный блок питания благодаря краске и получившемуся блеску будет выглядеть красиво и привлекательно, впишется в интерьер любой мастерской. Красиво будет выглядеть только та конструкция, которая полностью изготавливается самостоятельно. Но в качестве материала можно использовать что угодно: начиная с листового алюминия и заканчивая корпусами от персональных компьютеров. Нужно только тщательно продумать всю конструкцию, чтобы не возникло непредвиденных ситуаций. Если выходным каскадам требуется дополнительное охлаждение, то установите кулер для этой цели. Он может работать как постоянно при включенном устройстве, так и в автоматическом режиме. Для реализации последнего лучше всего применить простой микроконтроллер и датчик температуры. Датчик отслеживает значение температуры радиатора, а в микроконтроллере заложено то значение, при котором необходимо включить обдув воздухом. Даже лабораторный блок питания 10А, мощность которого немаленькая, будет стабильно работать с такой системой охлаждения. Для обдува нужен воздух извне, поэтому вам потребуется устанавливать кулер и радиатор на задней стенке блока питания. Для обеспечения жесткости шасси применяйте алюминиевые уголки, из которых сначала сформируйте «скелет», а после установите на него обшивку – пластины из того же алюминия. Если есть возможность, то уголки соедините при помощи сварки, это увеличит прочность. Нижняя часть шасси должна быть крепкой, так как на ней монтируется силовой трансформатор. Чем выше мощность, тем большие габариты трансформатора, тем больше его вес. В качестве примера можно сравнить лабораторный блок питания 30В 5А и подобную конструкцию, но на 5 вольт и током порядка 1 А. У последнего габариты окажутся намного меньшими, да и вес незначительный. Между электронными компонентами и корпусом должен находиться слой изоляции. Делать это нужно исключительно для себя, чтобы в случае случайного обрыва провода внутри блока он не закоротил на корпус. Перед установкой обшивки на «скелет» проведите ее изоляцию. Можно наклеить плотный картон или толстую липкую ленту. Главное, чтобы материал не проводил электричество. При помощи такой доработки улучшается безопасность. Но трансформатор может издавать неприятный гул, от которого избавиться можно путем фиксации и проклейки пластин сердечника, а также установки между корпусом и шасси резиновых подушек. Но максимальный эффект вы получите только при комбинировании этих решений. В завершение стоит упомянуть, что все монтажные и испытательные работы проводятся при наличии напряжения, опасного для жизни. Поэтому нужно думать о себе, в комнате обязательно установите автоматические выключатели, спаренные с устройствами защитного отключения электроэнергии. Даже если вы коснетесь фазы, удар током не получите, так как сработает защита. При проведении работ с импульсными блоками питания компьютеров соблюдайте технику безопасности. Электролитические конденсаторы, находящиеся в их конструкции, долгое время после отключения находятся под напряжением. По этой причине перед началом ремонта разрядите конденсаторы, соединив их выводы. Не пугайтесь только искры, она не причинит вреда ни вам, ни приборам. Когда делаете лабораторный блок питания своими руками, обращайте внимание на все мелочи. Ведь для вас главное – это обеспечить стабильную, безопасную и удобную его работу. А достичь этого можно только в том случае, когда тщательно продуманы все мелочи, причем не только в электрической схеме, но и в корпусе устройства. Лишними приборы контроля в конструкции не будут, поэтому установите их, чтобы иметь представление о том, например, какой ток потребляет устройство, собранное вами в домашней лаборатории. www.syl.ruЛабораторный источник питания из блока ATX компьютера. Блок питания для питания схемы
Cхемы компьютерных блоков питания ATX
Cхемы компьютерных блоков питания ATX
Блок питания на стабилитроне и транзисторе своими руками
Рассмотренный далее стабилизированный блок питания является одним из первых устройств, которые собираются начинающими радиолюбителями. Это очень простой, но весьма полезный прибор. Для его сборки не нужны дорогостоящие компоненты, которые достаточно легко подобрать новичку в зависимости от требуемых характеристик блока питания.Материал будет также полезен тем, кто желает более детально разобраться в назначении и расчете простейших радиодеталей. В том числе, вы подробно узнаете о таких компонентах блока питания, как:
Также в статье детально рассказано, как подобрать радиодетали для своего блока питания и что делать, если нет нужного номинала. Наглядно будет показана разработка печатной платы и раскрыты нюансы этой операции. Несколько слов сказано конкретно о проверке радиодеталей перед пайкой, а также о сборке устройства и его тестировании.Типовая схема стабилизированного блока питания
Всевозможных схем блоков питания со стабилизацией напряжения существует сегодня очень много. Но одна из самых простых конфигураций, с которой и стоит начинать новичку, построена всего на двух ключевых компонентах – стабилитроне и мощном транзисторе. Естественно, в схеме присутствуют и другие детали, но они вспомогательные.Схемы в радиоэлектронике принято разбирать в том направлении, в котором по ним протекает ток. В блоке питания со стабилизацией напряжения все начинается с трансформатора (TR1). Он выполняет сразу несколько функций. Во-первых, трансформатор понижает сетевое напряжение. Во-вторых, обеспечивает работу схемы. В-третьих, питает то устройство, которое подключено к блоку.Диодный мост (BR1) – предназначен для выпрямления пониженного сетевого напряжения. Если говорить другими словами, то в него заходит переменное напряжение, а на выходе получается уже постоянное. Без диодного моста не будет работать ни сам блок питания, ни устройства, которые будут к нему подключаться.Сглаживающий электролитический конденсатор (C1) нужен для того, чтобы убирать пульсации, присутствующие в бытовой сети. На практике они создают помехи, которые отрицательно сказываются на работе электроприборов. Если для примера взять усилитель звука, запитанный от блока питания без сглаживающего конденсатора, то эти самые пульсации будут отчетливо слышны в колонках в виде постороннего шума. В других приборах помехи могут привести к некорректной работе, сбоям и прочим проблемам.Стабилитрон (D1) – это компонент блока питания, который стабилизирует уровень напряжения. Дело в том, что трансформатор будет выдавать желаемые 12 В (например) только тогда, когда в сетевой розетке будет ровно 230 В. Однако на практике таких условий не бывает. Напряжение может как просаживаться, так и повышаться. То же самое трансформатор будет давать и на выходе. Благодаря своим свойствам стабилитрон выравнивает пониженное напряжение независимо от скачков в сети. Для корректной работы этого компонента нужен токоограничивающий резистор (R1). О нем более детально сказано ниже.Транзистор (Q1) – нужен для усиления тока. Дело в том, что стабилитрон не способен пропускать через себя весь потребляемый прибором ток. Более того, корректно он будет работать только в определенном диапазоне, например, от 5 до 20 мА. Для питания каких-либо приборов этого откровенно мало. С данной проблемой и справляется мощный транзистор, открывание и закрывание которого управляется стабилитроном.Сглаживающий конденсатор (C2) – предназначен для того же, что и вышеописанный C1. В типовых схемах стабилизированных блоков питания присутствует также нагрузочный резистор (R2). Он нужен для того, чтобы схема сохраняла работоспособность тогда, когда к выходным клеммам ничего не подключено.В подобных схемах могут присутствовать и другие компоненты. Это и предохранитель, который ставится перед трансформатором, и светодиод, сигнализирующий о включении блока, и дополнительные сглаживающие конденсаторы, и еще один усиливающий транзистор, и выключатель. Все они усложняют схему, однако, повышают функциональность устройства.Расчет и подбор радиокомпонентов для простейшего блока питания
Трансформатор подбирается по двум основным критериям – напряжению вторичной обмотки и по мощности. Есть и другие параметры, но в рамках материала они не особо важны. Если вам нужен блок питания, скажем, на 12 В, то трансформатор нужно подбирать такой, чтобы с его вторичной обмотки можно было снять чуть больше. С мощностью все то же самое – берем с небольшим запасом.Основной параметр диодного моста – это максимальный ток, который он способен пропускать. На эту характеристику и стоит ориентироваться в первую очередь. Рассмотрим примеры. Блок будет использоваться для питания прибора, потребляющего ток 1 А. Это значит, что диодный мост нужно брать примерно на 1,5 А. Допустим, вы планируете питать какой-либо 12-вольтовый прибор мощностью 30 Вт. Это значит, что потребляемый ток будет около 2,5 А. Соответственно, диодный мост должен быть, как минимум, на 3 А. Другими его характеристиками (максимальное напряжение и прочее) в рамках такой простой схемы можно пренебрегать.Дополнительно стоит сказать, что диодный мост можно не брать уже готовый, а собрать его из четырех диодов. В таком случае каждый из них должен быть рассчитан на ток, проходящий по схеме.Для расчета емкости сглаживающего конденсатора применяются достаточно сложные формулы, которые в данном случае ни к чему. Обычно берется емкость 1000-2200 мкФ, и этого для простого блока питания будет вполне достаточно. Можно взять конденсатор и побольше, но это существенно удорожит изделие. Другой важный параметр – максимальное напряжение. По нему конденсатор подбирается в зависимости от того, какое напряжение будет присутствовать в схеме.Здесь стоит учитывать, что на отрезке между диодным мостом и стабилитроном после включения сглаживающего конденсатора напряжение будет примерно на 30% выше, чем на выводах трансформатора. То есть, если вы делаете блок питания на 12 В, а трансформатор выдает с запасом 15 В, то на данном участке из-за работы сглаживающего конденсатора будет примерно 19,5 В. Соответственно, он должен быть рассчитан на это напряжение (ближайший стандартный номинал 25 В).Второй сглаживающий конденсатор в схеме (C2) обычно берется небольшой емкости – от 100 до 470 мкФ. Напряжение на этом участке схемы будет уже стабилизированным, например, до уровня 12 В. Соответственно, конденсатор должен быть рассчитан на это (ближайший стандартный номинал 16 В).А что делать, если конденсаторов нужных номиналов нет в наличии, и в магазин идти неохота (или банально нет желания их покупать)? В таком случае вполне возможно воспользоваться параллельным подключением нескольких конденсаторов меньшей емкости. При этом стоит учесть, что максимальное рабочее напряжение при таком подсоединении суммироваться не будет!Стабилитрон подбирается в зависимости от того, какое напряжение нам нужно получить на выходе блока питания. Если подходящего номинала нет, то можно соединить несколько штук последовательно. Стабилизируемое напряжение, при этом, будет суммироваться. Для примера возьмем ситуацию, когда нам надо получить 12 В, а в наличии есть только два стабилитрона на 6 В. Соединив их последовательно мы и получим желаемое напряжение. Стоит отметить, что для получения усредненного номинала параллельное подключение двух стабилитронов не сработает.Максимально точно подобрать токоограничивающий резистор для стабилитрона можно только экспериментально. Для этого в уже рабочую схему (например, на макетной плате) включается резистор номиналом примерно 1 кОм, а между ним и стабилитроном в разрыв цепи ставится амперметр и переменный резистор. После включения схемы нужно вращать ручку переменного резистора до тех пор, пока через участок цепи не потечет требуемый номинальный ток стабилизации (указывается в характеристиках стабилитрона).Усиливающий транзистор подбирается по двум основным критериям. Во-первых, для рассматриваемой схемы он обязательно должен быть n-p-n структуры. Во-вторых, в характеристиках имеющегося транзистора нужно посмотреть на максимальный ток коллектора. Он должен быть немного больше, чем максимальный ток, на который будет рассчитан собираемый блок питания.Нагрузочный резистор в типовых схемах берется номиналом от 1 кОм до 10 кОм. Меньшее сопротивление брать не стоит, так как в случае, когда блок питания не будет нагружен, через этот резистор потечет слишком большой ток, и он сгорит.Разработка и изготовление печатной платы
Теперь вкратце рассмотрим наглядный пример разработки и сборки стабилизированного блока питания своими руками. В первую очередь, необходимо найти все присутствующие в схеме компоненты. Если нет конденсаторов, резисторов или стабилитронов нужных номиналов – выходим из ситуации вышеописанными путями.Далее нужно будет спроектировать и изготовить печатную плату для нашего прибора. Начинающим лучше всего использовать для этого простое и, самое главное, бесплатное программное обеспечение, например, Sprint Layout.Размещаем на виртуальной плате все компоненты согласно выбранной схемы. Оптимизируем их расположение, корректируем в зависимости от того, какие конкретно детали есть в наличии. На этом этапе рекомендуется перепроверять реальные размеры компонентов и сравнивать их с добавляемыми в разрабатываемую схему. Особое внимание обратите на полярность электролитических конденсаторов, расположение выводов транзистора, стабилитрона и диодного моста.Если вы заходите добавить в блок питания сигнальный светодиод, то его можно будет включить в схему как до стабилитрона, так и после (предпочтительнее). Чтобы подобрать для него токоограничивающий резистор, необходимо выполнить следующий расчет. Из напряжения участка цепи вычитаем падение напряжения на светодиоде и делим результат на номинальный ток его питания. Пример. На участке, к которому мы планируем подключать сигнальный светодиод, имеется стабилизированные 12 В. Падение напряжения у стандартных светодиодов около 3 В, а номинальный ток питания 20 мА (0,02 А). Получаем, что сопротивление токоограничивающего резистора R=450 Ом.Проверка компонентов и сборка блока питания
После разработки платы в программе переносим ее на стеклотекстолит, травим, лудим дорожки и удаляем излишки флюса.После этого выполняем установку радиокомпонентов. Здесь стоит сказать, что не лишним будет сразу же перепроверить их работоспособность, особенно, если они не новые. Как и что проверять?Обмотки трансформатора проверяются омметром. Где сопротивление больше – там первичная обмотка. Далее его нужно включить в сеть и убедиться, что он выдает требуемое пониженное напряжение. При его измерении соблюдайте предельную осторожность. Также учтите, что напряжение на выходе переменное, потому на вольтметре включается соответствующий режим.Резисторы проверяются омметром. Стабилитрон должен «звониться» только в одном направлении. Диодный мост проверяем по схеме. Встроенные в него диоды должны проводить ток только в одном направлении. Для проверки конденсаторов потребуется специальный прибор для измерения электрической емкости. В транзисторе n-p-n структуры ток должен протекать от базы к эмиттеру и к коллектору. В остальных направлениях он протекать не должен.Начинать сборку лучше всего с мелких деталей – резисторов, стабилитрона, светодиода. Затем впаиваются конденсаторы, диодный мост.Особое внимание обращайте на процесс установки мощного транзистора. Если перепутать его выводы – схема не заработает. Кроме того, этот компонент будет достаточно сильно греется под нагрузкой, потому его необходимо устанавливать на радиатор.Последним устанавливается самая большая деталь – трансформатор. Далее к выводам его первичной обмотки припаивается сетевая вилка с проводом. На выходе блока питания тоже предусматриваются провода.Осталось только хорошенько перепроверить правильность установки всех компонентов, смыть остатки флюса и включить блок питания в сеть. Если все сделано правильно, то светодиод будет светиться, а на выходе мультиметр покажет желаемое напряжение. Схема блока питания компьютера - электрическая, структурная, подключение, импульсного
Что это такое
Обзор схем источников питания
Простой импульсный БП
Видео: Принцип работы ШИМ контроллера БП
АТХ без коррекции коэффициента
АТХ с коррекцией коэффициента мощности
На двухканальном ШИМ-контролере
Схема подключения блока питания компьютера
Конструктивные особенности
Параметры и характеристики
Мощность – основной показатель
Рабочие напряжение
Советы по выбору источника
cxema.org - Простейший лабораторный блок питания для начинающего
Простейший лабораторный блок питания для начинающего
Лабораторный источник питания из блока ATX компьютера
Если у вас дома есть старый блок питания от компьютера (ATX), то не стоит его выбрасывать. Ведь из него можно сделать отличный блок питания для домашних или лабораторных целей. Доработка потребуется минимальная и в конце вы получите почти универсальный источник питания с рядом фиксированных напряжений.Компьютерные блоки питания обладают большой нагрузочной способностью, высокой стабилизацией и защитой от короткого замыкания.Я взял вот такой блок. У всех есть такая табличка с рядом выходных напряжений и максимальным током нагрузки. Основные напряжения для постоянной работы 3,3 В; 5 В; 12 В. Есть ещё выходы, которые могут быть использованы на небольшой ток, это минус 5 В и минус 12 В. Так же можно получить разность напряжений: к примеру, если подключится в к «+5» и «+12», то вы получите напряжение 7 В. Если подключиться к «+3,3» и «+5», то получите 1,7 В. И так далее… Так что линейка напряжений намного больше, чем может показаться с разу.Распиновка выходов блока питания компьютера
Цветовой стандарт, в принципе, един. И эта схема цветовых подключений на 99 процентов подойдет и вам. Может что-то добавиться или удалиться, но конечно все не критично.Переделка началась
Что нам понадобиться?Схема доработки блока питания компьютера
Тут все просто, так что не бойтесь. Первое что нужно сделать, так это разобрать между собой и соединить провода по цветам. Затем, согласно схемы подключить светодиоды. Первый слева будет индицировать наличие питания на выходе после включения. А второй справа будет гореть всегда, пока сетевое напряжение присутствует на блоке.Подключить переключатель. Он будет запускать основную схему, замыканием зеленого провода на общий. И выключать блок при размыкании.Также, в зависимости от марки блока, вам понадобится повесить нагрузочный резистор на 5-20 Ом между общим выходом и плюсом пять вольт, иначе блок может не запуститься из-за встроенной защиты. Так же если не заработает, будьте готовы повесить такие резисторы на все напряжения: «+3,3», «+12». Но обычно хватает одного резистора на выход 5 Вольт.Начнем
Снимаем верхнюю крышку кожуха.Откусываем разъемы питания, идущие к материнской плате компьютера и другим устройствам.Распутываем провода по цветам.Сверлим отверстия в задней стенке под клеммы. Для точности сначала проходим тонким сверлом, а затем толстым под размер клеммы.Будьте осторожны, не насыпьте металлическую стружку на плату блока питания.Вставляем клеммы и затягиваем.Складываем черные провода, это будет общий, и зачищаем. Затем залуживаем паяльником, одеваем термоусадочную трубку. Припаиваем к клемме и надев трубку на спайку – обдуваем термофеном.Так делаем со всеми проводами. Которые не планируете использовать – откусите под корень у платы.Также сверлим отверстия по тумблер и светодиоды.Устанавливаем и фиксируем горячим клеем светодиоды. Припаиваем по схеме.Нагрузочные резисторы ставим на монтажную платы и привинчиваем винтами.Закрываем крышку. Включаем и проверяем ваш новый лабораторный блок питания.Не лишним будет замерить выходное напряжение на выходе каждой клеммы. Чтобы быть уверенным, что ваш старый блок питания вполне работоспособен и выходные напряжения не вышли за пределы допустимых.Как вы могли заметить, я использовал два переключателя – один есть в схеме, и он запускает работу блока. А второй, который побольше, двухполюсный – коммутирует входное напряжение 220 В на вход блока. Его можно не ставить.Так что друзья, собирайте свой блок и пользуйтесь на здоровье.Смотрите видео изготовления лабораторного блока своими руками
Виды электрических схем блока питания компьютера
Что это такое
Обзор схем источников питания
Простой импульсный БП
Видео: Принцип работы ШИМ контроллера БП
АТХ без коррекции коэффициента
АТХ с коррекцией коэффициента мощности
На двухканальном ШИМ-контролере
Схема подключения блока питания компьютера
Конструктивные особенности
Параметры и характеристики
Мощность – основной показатель
Рабочие напряжение
Советы по выбору источника
Лабораторный блок питания своими руками. Самодельный блок питания: схемы, инструкции :: SYL.ru
Простейший самодельный блок питания
Как сделать двухполярное питание?
Регулировка напряжения в однополярном источнике питания
Регулировка напряжения в двухполярном источнике
Регулировка напряжения в стиле ретро
Особенности импульсных источников питания
Блок питания от компьютера
Способы защиты блоков питания
Как сделать лицевую панель?
Как изготовить шасси для блока питания?
Подведение итогов
Поделиться с друзьями: