Вакуумный выключатель представляет собой высоковольтное коммутационное устройство нового типа. Данная разновидность оборудования приобретает заслуженную популярность, вытесняя конкурирующие с ней маломасляные и электромагнитные выключатели. Под коммутацией понимаются периодические подключения и отключения аппарата. За счет включения и отключения начинается или прекращается подача тока в рабочих режимах. Также выключатель используется в аварийной ситуации (при коротком замыкании). В этом случае электрическая дуга, находящаяся между контактами, прекращает свое существование. Вакуумный выключатель имеет множество преимуществ в сравнении с электромагнитными и масляными: Недостатки вакуумных выключателей: Конструкция вакуумного выключателя включает два элемента: подвижный и неподвижный контакты. Устройство оснащается тремя полюсами, на каждом из которых имеются пофазно установленные электромагнитные приводы. Эти приводы монтируются на одном основании. Размещенные внутри прибора фазные приводы соединяются друг с другом за счет вала, который осуществляет синхронизацию фаз и защищает от неполных фаз. Кроме того, вал предназначен для механической блокировки расположенных поблизости распределительных систем и управления индикацией расположения контактов. В качестве примера рассмотрим особенности вакуумного выключателя от компании «Таврида Электрик» (серия BB/TEL). Условные обозначения: На рисунке видно, что вакуумный выключатель нагрузки включает в себя три полюса, которые имеют пофазно встроенные приводы электромагнитного типа. Приводы установлены на общем основании. Все приводы соединяются друг с другом при помощи вала. Особенности одного из полюсов с номинальным током 2 тысячи ампер показаны на рисунке ниже. Условные обозначения: Магнитный привод может располагаться в одном из двух положений: «включено» или «выключено». Закрепление якоря в указанных положениях осуществляется без использования механических щеколд. Фиксация возможна благодаря упругой пружине в положении «выключено» и кольцевому магниту в положении «включено». Подключение и отключение производится за счет передачи управляющих импульсов разнополярных напряжений на обмоточную катушку привода. При размыкании контактов в вакууме коммутируемый ток провоцирует электрический разряд — вакуумную дугу, которая существует благодаря металлу, исходящему в виде испарений от поверхности контактов в период вакуумного промежутка. Ионизированные пары образуют проводящую плазму, которая способствует току между контактами вплоть до его прохода через ноль. Когда ток перешел через ноль, дуга прекращает свое существование, а металлические пары стремительно (в течение 8-10 микросекунд) образовывают конденсат на контактных поверхностях и других частях дугогасящей камеры. Таким образом, воссоздается приложенное к контактам напряжение. Если после возобновления напряжения на контактной поверхности сохраняются перегретые места, они становятся источником продуцирования заряженных частиц, пробивающих вакуумный промежуток, через который затем проникает ток. Чтобы избежать таких отказов, нужно управлять дугой так, чтобы поток тепла распределялся по контактной поверхности как можно равномернее: на поверхность направляется продольная дуга, с таким же направлением, как и у тока. Такой принцип управления дугой реализован в дугогасящих камерах вакуумных выключателей серии BB/TEL. Ниже рассмотрим технические характеристики популярных моделей выключателей. Аббревиатура расшифровывается как «выключатель вакуумный электромагнитный модернизированный». Число 10 обозначает номинальное напряжение — 10 кВт, а 20 — указывает на номинальный ток отключения. Устройство монтируется в КРУ следующих видов: К-104, К-49, К-59 и КМ-1Ф. Выключатели ВВЭ-М-10-20 могут без каких-либо проблем быть заменены на модели ВКЭ-10 или ВК-10. Благодаря используемой схеме управления, можно достичь следующих характеристик системы: Выключатели могут эксплуатироваться при соблюдении следующих параметров: Срок эксплуатации выключателя до проведения ремонта средней сложности составляет примерно 10 лет. Капитальный ремонт, согласно заявлению производителя, предстоит не ранее, чем через 25 лет. Вес выключателя — 93 килограмма. Включение устройства производится благодаря тяговому усилию магнита подключения. Время включения — 1/10 секунды, время отключения — 1/50 секунды. Прибор рассчитан на номинальный ток отключения в 40 кА. Монтируется в КРУ моделей К-59 и К-105. Кроме того, ВВЭ-М-10-40 применяется в качестве замены масляных и электромагнитных выключателей во всех разновидностях распределительных систем. Управленческая схема и эксплуатационные условия для этого выключателя такие же, как и в случае с моделью ВВЭ-М-10-20. Данный выключатель работает на постоянном или переменном токе. Может устанавливаться в ячейки таких разновидностей, как КРУЭ-6П, 2КВЭ-6М, КРУП-6П. Модель может применяться как замена масляных выключателей во всех типах распределительных приборов. Аппарат используется в нефтегазовой промышленности, высокомощной экскаваторной технике, мобильных электрогенерирующих станциях, электроподстанциях, шахтах и метрополитенах. Также устройство применяется в оборудовании для оросительных систем и на промышленных предприятиях различных отраслей. energomir.biz Вакуумные выключатели серии BB/TEL — это коммутационные аппараты нового поколения, в основе принципа действия которых лежит гашение возникающей при размыкании контактов электрической дуги в глубоком вакууме, а фиксация контактов вакуумных дугогасительных камер (ВДК) в замкнутом положении осуществляется за счет остаточной индукции приводных электромагнитов ("магнитная защелка"). Отличительная особенность конструкции вакуумных выключателей серии BB/TEL по сравнению с традиционными коммутационными аппаратами заключается в использовании принципа соосности электромагнита камеры в каждом полюсе выключателя, которые механически соединены между собой общим валом. Оригинальность конструкции выключателей BB/TEL позволила достичь следующих преимуществ по сравнению с другими коммутационными аппаратами: высокий механический и коммутационный ресурс; малые габариты и вес; небольшое потребление энергии по цепям управления; возможность управления по цепям постоянного, выпрямленного и переменного оперативного тока; простота встраивания в различные типы КРУ и КСО и удобство организации необходимых блокировок; отсутствие необходимости ремонта в течение всего срока службы; доступная цена. Принцип фиксации контактов ВДК в замкнутом положении с применением магнитной защелки в настоящее время активно используется в новых конструкциях вакуумных выключателей ряда различных фирм (GEC Alsthom, Whipp & Bourne, Cooper), однако "Таврида Электрик" является первым предприятием-изготовителем, открывшим дорогу вакуумным выключателям с магнитной защелкой к массовому потребителю (оригинальность выключателей BB/TEL защищена патентом Российской Федерации № 2020631). Благодаря своим преимуществам вакуумные выключатели BB/TEL широко применяются во вновь разрабатываемых комплектных распределительных устройствах (КРУ, КСО, КРН), а также для реконструкции ячеек КРУ, находящихся в эксплуатации и имеющих в своем составе на момент реконструкции выключатели других конструкций, которые устарели морально и физически. Выключатель вакуумный серии BB/TEL состоит из трех полюсов, установленных на общем основании. Все три полюса имеют одинаковую конструкцию, изображенную на рис. 1 . Рис. 1. Устройство выключателя ВВ/TEL Привод вакуумного выключателя серии BB/TEL состоит из электромагнитов (по одному на каждую фазу), электрически соединенных между собой параллельно, и блока управления БУ. Механически якори 7 приводных выключателей соединены между собой общим валом 10, который в процессе включения и отключения поворачивается вокруг своей продольной оси, и обеспечивает выполнение следующих функций: управление указателем положении выключателя "ВКЛ — ОТКЛ"; ручное отключение выключателя при аварийных ситуациях; управление контактами для внешних вспомогательных цепей с помощью постоянного магнита; предотвращение срабатывания выключателя в неполно-фазном режиме. Исходное разомкнутое состояние контактов 1, 3 вакуумной дугогасительной камеры выключателя обеспечивается за счет воздействия на подвижный контакт 3 отключающей пружины 8 через тяговый изолятор 4. При подаче сигнала "ВКЛ" блок управления выключателя формирует импульс напряжения положительной полярности, который прикладывается к катушкам 9 электромагнитов. При этом в зазоре магнитной системы появляется электромагнитная сила притяжения, по мере своего возрастания преодолевающая усилие пружин отключения 8 и поджатия 5, в результате чего под действием разницы указанных сил якорь электромагнита 7 вместе с тяговыми изоляторами 4 и 2 в момент времени 1 начинают движение в направлении неподвижного контакта 1, сжимая при этом пружину отключения 8.После замыкания основных контактов (момент времени 2 на осциллограммах) якорь электромагнита продолжает двигаться вверх, дополнительно сжимая пружину поджатия 5. Движение якоря продолжается до тех пор, пока рабочий зазор в магнитной системе электромагнита не станет равным нулю (момент времени 2а на осциллограммах). Далее кольцевой магнит 6 продолжает запасать магнитную энергию, необходимую для удержания выключателя во включенном положении, а катушка 9 по достижении момента времени 3 начинает обесточиваться, после чего привод оказывается подготовленным к операции отключения. Таким образом, выключатель становится на магнитную защелку, т.е. энергия управления для удержания контактов 1 и 3 в замкнутом положении не потребляется.В процессе включения выключателя пластина 11, входящая в прорезь вала 10, поворачивает этот вал, перемещая установленный на нем постоянный магнит 12 и обеспечивая срабатывание герконов 13, коммутирующих внешние вспомогательные цепи. При подаче сигнала "ОТКЛ" блок управления формирует импульс тока, который имеет противоположное направление по отношению к току включения и меньшее амплитудное значение (интервал времени 4 — 5 на осциллограммах). Магнит 6 при этом размагничивается, привод снимается с магнитной защелки, и под действием энергии, накопленной в пружинах отключения 8 и поджатия 5 якорь 7 перемещается вниз, в процессе движения ударяя по тяговому изолятору 4, связанному с подвижным контактом 3. Контакты 1 и 3 размыкаются (момент времени 5 на осциллограммах), и выключатель отключает нагрузку. Ручное оперативное отключение выключателя осуществляется путем механического воздействия на кнопку ручного отключения, которая в свою очередь через толкатель, шарнирно связанный с валом 10 выключателя, воздействует через этот вал на якоря 7 электромагнитов привода. При этом разрывается магнитная система привода, ее магнитная энергия уменьшается, после чего механической энергии пружины отключения 8 оказывается достаточно для размыкания контактов 1 и 3 выключателя. Кнопка ручного отключения одновременно выполняет функцию указателя положения выключателя "ВКЛ — ОТКЛ". Ручное включение выключателя не предусмотрено. Для первого включения выключателя, когда на подстанции отсутствует питание цепей оперативного тока, разработан способ включения выключателя электрическим путем от автономного источника питания. В настоящее время выпускаются выключатели двух основных конструктивных исполнений: конструктивное исполнение с межполюсным расстоянием 200 мм; конструктивное исполнение с межполюсным расстоянием 250 мм. Выключатели конструктивного исполнения с межполюсным расстоянием 200 мм предназначены преимущественно для замены в ячейках КРУ выключателей типов ВМР-10, ВМПЭ-10, ВМПП-10, ВК-10, ВКЭ-10 и других, а также для применения во вновь разрабатываемых ячейках КРУ. Выключатели данного конструктивного исполнения выпускаются двух модификаций: с выводом толкателя кнопки ручного отключения в сторону силовых токосъемников; с выводом толкателя кнопки ручного отключения в сторону, противоположную силовым токосъемникам. Выключатели конструктивного исполнения с межполюсным расстоянием 250 мм предназначены преимущественно для замены в камерах КСО и КРН выключателей типа ВМГ-133 и других, а также для применения во вновь разрабатываемых камерах КСО и КРН. Техническая характеристика выключателей серии BB/TEL Номинальное напряжение, кВ 10 Наибольшее рабочее напряжение, кВ. 12 Номинальный ток, А. 630, 1000 Номинальный ток отключения, кА 1 2,5 20 Сквозной ток короткого замыкания, наибольший пик, кА 32 52 Нормированное процентное содержание апериодической составляющей, %, не более.. 40 40 Время отключения полное, мс, не более. 25 25 Время отключения собственное, мс, не более. 15 15 Время включения собственное, мс, не более. 70 70 Ресурс по коммутационной стойкости при отключении:номинального тока, операций "ВО" 50 000 50 000 (60 — 100) % от номинального тока отключения, операций 1 00 100 Ресурс по механической стойкости, операций "ВО". 50 000 50 000 Номинальное напряжение электромагнитов управления, В 220 220 Диапазон напряжений электромагнитов при включении,% от номинального значения.. 85—110 85— 11 0 Диапазон напряжений электромагнитов при отключении, % от номинального значения 65— 1 20 65— 1 20 Наибольший ток электромагнитов управления при номинальном напряжении, А 10 10 Срок службы до списания, лет 25 25 Масса, кг: исполнение с межполюсным расстоянием 200 мм 32 32 исполнение с межполюсным расстоянием 250 мм 35,5 35,5 Вакуумные выключатели серии BB/TEL предназначены для эксплуатации в следующих условиях. Климатическое исполнение и категория размещения У2 по ГОСТ 15150—69, при этом: наибольшая высота над уровнем моря — до 1000 м; верхнее рабочее значение температуры окружающего воздуха не должно превышать плюс 55 °С, эффективное значение температуры окружающего воздуха — плюс 40 °С; нижнее рабочее значение температуры окружающего воздуха — минус 40 °С; верхнее значение относительной влажности воздуха 1 00 % при температуре плюс 25 °С; окружающая среда невзрывоопасная, не содержащая газов и паров, вредных для изоляции, не насыщенная токопроводящей пылью в концентрациях, снижающих параметры выключателя; рабочее положение выключателей в пространстве — любое. Устройства управления вакуумными выключателями серии TEL являются неотъемлемой частью привода этих выключателей, хотя конструктивно они выполняются в виде отдельных модулей и могут быть установлены как в релейном отсеке шкафов КРУ, так и на выкатных элементах этих шкафов. Устройства управления серии TEL обеспечивают функционирование вакуумных выключателей BB/TEL при управлении ими от любого источника постоянного, выпрямленного или переменного оперативного тока. В настоящее время выпускаются следующие виды устройств управления: блок управления BU/TEL-220-05; блок управления BU/TEL-220-02. Для адаптации блоков управления типа BU/TEL-01-220-05 к различным источникам оперативного питания и различным схемам вторичных соединений шкафов КРУ разработаны и выпускаются следующие дополнительные виды устройств управления: блок управления и размножения сигналов PR/TEL-01; блок управления и размножения сигналов PR/TEL-03; блок питания ВР/TEL-01-220-02-У2; фильтр O/TEL-220-01; фильтр O/TEL-220-02; блок автономного включения BU/TEL-220-02. Выбор необходимых устройств управления для организации вторичных цепей модернизируемых КРУ определяется видом источника оперативного питания (аккумуляторная батарея, БПНС, БПТ, УПНС и др.), а также схемой цепей защит и управления этих КРУ. Выбор устройств управления для вновь разрабатываемых КРУ осуществляется на стадии их проектирования. Предприятием "Таврида Электрик" разработан ряд схем подключения выключателя BB/TEL и устройств управления ко вторичным цепям шкафов различных КРУ. В настоящее время разработан проект привода БУ/TEL-220-10У2, который совмещает в себе функции всех перечисленных устройств управления и является функционально взаимозаменяемым с большинством приводов других выключателей. Особенностью находящихся в эксплуатации ячеек КРУ, КРУН и камер КСО, КРН с выключателями различных заводов-изготовителей прежних лет выпуска является то обстоятельство, что на данный момент времени эти выключатели, как правило, являются устаревшими физически и морально, в то время как остальные элементы ячеек и камер еще вполне пригодны к эксплуатации и смогут прослужить определенное время. Таким образом, при проведении реконструкции подстанций перед потребителем встает вопрос: либо закупать взамен устаревших ячеек КРУ или камер КСО новые ячейки и камеры в полном комплекте, либо оставить в эксплуатации существующие ячейки и камеры, заменив в них устаревшие выключатели на более современные. Преимуществом второго пути решения проблемы является его экономичность, поскольку при реализации этого пути затраты осуществляются лишь на приобретение новых выключателей и их адаптацию к существующим ячейкам. Затраты потребителя на реконструкцию могут быть сведены к минимуму, если приобретаемые выключатели будут обладать приемлемой ценой и относительно просто встраиваться в модернизируемые ячейки и камеры подстанций. Дополнительными факторами в пользу выбора того или иного выключателя могут быть простота их дальнейшего обслуживания и отсутствие необходимости ремонта в течение всего с рока служб ы. Всем перечисленным требованиям в полной мере отвечают вакуумные выключатели серии BB/TEL, благодаря чему они успешно приходят на замену другим выключателям в существующих энергосистемах. Для того, чтобы потребитель не испытывал затруднений в адаптации выключателей серии BB/TEL к существующим шкафам КРУ и камерам КСО, предприятием "Таврида Электрик" разработан и успешно внедрен в эксплуатацию ряд проектов, которые условно разделены на две основные группы: реконструкция шкафов КРУ и камер КСО стационарного типа; реконструкция шкафов КРУ с выкатными элементами. Для реконструкции находящихся в эксплуатации шкафов КРУ (КСО) потребитель может: заказать монтажный комплект и проводить реконструкцию своими силами; пригласить для показательной реконструкции и обучения персонала специалистов предприятия "Таврида Электрик"; пригласить специалистов предприятия "Таврида Электрик" для монтажа объекта "под ключ". В настоящее время предприятием "Таврида Электрик" разработаны и успешно реализованы следующие проекты реконструкции шкафов КРУ с выкатными элементами. 1 . Замена выключателей типов ВК-1 0, ВКЭ-1 0 на вакуумные выключатели серии BB/TEL, установленные на выкатном элементе BЭ/TEL, в ячейках КРУ следующих типов: К-47, К-49, К-59, К-104, КМ-1, КМ-1Ф. Данный выкатной элемент применяется и во вновь выпускаемых КРУ. 2. Замена масляных выключателей на выключатели серии BB/TEL в ячейках зарубежного производства: К-03 (производство Болгарии), CSIM-1 (производство бывшей ГДР). Замена маломасляных выключателей различных типов на выключатели серии BB/TEL в ячейках следующих типов: КВВ0-2, КВС-09, КОФ-120, К-34, К-ШУ, К-YiY, К-IY. 3. Замена маломасляных выключателей серии ВМП на выключатели серии BB/TEL с применением универсального комплекта деталей сопряжения в шкафах КРУ следующих типов: КРУ2-10, КР-10/500, К-ХШ, К-37, К-ХП, К-XXYI. Выкатные элементы тип ВЭ/TEL с вакуумными выключателями BB/TEL применяются в составе новых проектов комплектных распредустройств следующих типов: К-104м — производства АООТ Московский завод "Электрощит"; К-59 — производства АО "Самарский завод "Электрощит"; КМВ — производства Ишлейского завода высоковольтной аппаратуры; КРУН-6(10)Л — производства Люберецкого электромеханического завода. Габаритные и присоединительные размеры выкатных элементов ВЭ/TEL совпадают с аналогичными размерами выкатных элементов с выключателями ВК-10 (ВКЭ-10). Выкатные элементы ВЭ/TEL поставляются потребителю в полностью собранном и отрегулированном виде, поэтому службам потребителя остается лишь вкатить этот выкатной элемент в ячейку КРУ и состыковать разъемы жгутов вторичных цепей выключателя с ответными частями разъемов релейного отсека шкафа КРУ. Схема соединения вторичных цепей выкатного элемента ВЭ/TEL с выключателем ВВ/TEL и блоком управления ВU/TEL-220-05 согласована с ведущими КРУ-строительными заводами (МЭЩ, СЭЩ, ЗЗВА). Схема соединения вторичных цепей выкатного элемента ВЭ/TEL с выключателем ВВ/TEL и приводом БУ/TEL-220-10 повторяет схему выкатного элемента с выключателем ВК-10 или ВКЭ-1 0. Для выкатного элемента ВЭ/TEL с выключателем ВВ/TEL и приводом БУ/TEL-220-10 предусмотрена установка привода выключателя как в релейном отсеке шкафов КРУ, так и на выкатном элементе. Для защиты от перенапряжений в комплекте с вакуумными выключателями рекомендуется применять ограничители перенапряжений. Ограничители перенапряжений серий TEL на оксидно-цинковых нелинейных резисторах без искровых промежутков предназначены для защиты электрооборудования станций и сетей от коммутационных и атмосферных перенапряжений и используются для внутренней и наружной установки в сетях низкого, среднего и высокого переменного напряжения промышленной частоты 48 — 62 Гц. По сравнению с вентильными разрядниками ограничители серий TEL имеют следующие преимущества: глубокий уровень ограничения для всех видов волн перенапряжений; отсутствие сопровождающего тока после затухания волны перенапряжения; простота конструкции и высокая надежность в эксплуатации; стабильность характеристик и устойчивость к старению; способность к рассеиванию больших энергий; непрерывное подключение к защищаемой сети; стойкость к атмосферным загрязнениям; малые габариты, масса и стоимость. Ограничители серий TEL представляют собой разрядники без искровых промежутков, в которых активная часть состоит из металлооксидных нелинейных резисторов, изготавливаемых из окиси цинка (ZnO) с малыми добавками окислов других металлов. Высоконелинейная вольт-амперная характеристика резисторов позволяет длительно находиться под действием рабочего напряжения, обеспечивая при этом глубокий уровень защиты перенапряжений. Резисторы опрессовываются в оболочку из полимерных материалов, которая обеспечивает заданную механическую прочность и изоляционные характеристики. Полимерный корпус обеспечивает надежную защиту от всех внешних воздействий на протяжении всего срока службы. Эта конструкция отлично зарекомендовала себя во всех условиях эксплуатации, включая районы с высоким уровнем атмосферных загрязнений. В нормальном рабочем режиме ток через ограничитель носит емкостной характер и составляет десятые доли миллиампера. При возникновении волн перенапряжений резисторы ограничителя переходят в проводящее состояние и ограничивают дальнейшее нарастание напряжения на выводах. Когда перенапряжение снижается, ограничитель возвращается в непроводящее состояние. Ограничители серий TEL были испытаны в соответствии с различными стандартами на взрывобезопасность. При возникновении импульсов тока, значительно превышающих расчетный уровень, разрушение ограничителя происходит без взрывного эффекта. Все испытания показали отсутствие разрушительных эффектов на окружающую среду, что является принципиальным отличием от ограничителей в фарфоровом или другом прочном корпусе. Всего комментариев: 0 ukrelektrik.com В вакуумных выключателях контакты расходятся в среде с давлением 10-4 Па. При таком вакууме дугогасительный промежуток имеет высокую электрическую прочность - примерно 100 кВ/мм. Малая плотность воздуха создает возможность гашения дуги без ДУ за время 0,01 - 0,02 с. Высокие значения напряжённости электрического поля являются причиной возникновения дуги в вакууме благодаря автоэлектронной эмиссии. Малая плотность среды обусловливает высокую скорость диффузии зарядов из-за большой разности плотности частиц в разряде и вакууме. Быстрая диффузия частиц, высокая электрическая прочность вакуума позволяют эффективно гасить дугу в выключателе. При работе выключателя распыленные материалы контактов осаждаются на поверхности изоляционного цилиндра, что создает возможность перекрытия изоляции. Для защиты цилиндра от паров металла электроды защищаются металлическими экранами 8 и 9 (рис. 20.1). В вакуумной дугогасительной камере контактный стержень 4 с контактным наконечником 1-2 жестко укреплен в металлическом фланце 6 керамического корпуса 10. Контактный стержень подвижного контакта 5 связан с сильфоном 7, выполненным из нержавеющей стали. Сильфон представляет собой цилиндрическую эластичную гармошку. Поэтому стержень 5 имеет возможность осевого перемещения. Внутренняя полость сильфона связана с атмосферой, поэтому контакт 3 верхнего контакта нажимает на контакт 3 нижнего контакта с силой, равной произведению площади сильфона на атмосферное давление. При больших номинальных токах и для получения необходимой динамической стойкости ставится дополнительная пружина, создающая необходимое нажатие контактов. Металлические экраны 8 и 9 служат для выравнивания электрического поля между контактами с целью повышения электрической прочности. Экран 8 защищает также керамику 10 от напыления паров металла, образующихся при гашении дуги. Касание контактов 1 происходит в шести точках, что позволяет снизить переходное сопротивление и уменьшить температуру контактов. Тепло, выделяемое в контактах 1, 1' и контактных стержнях 4, 5, отводится в основном теплопроводностью к нижнему фланцу 6 и шинам, соединяемым с контактом 5. Из-за высокого вакуума отдача тепла в радиальном направлении идет только за счет излучения. Рис. 20.1. Вакуумная дугoгасительная камера Поперечное магнитное поле в месте перехода тока из контакта 1 в контакт 1' быстро перебрасывает дугу на криволинейные сегменты 2. Перемещение дуги по контактам с большой скоростью позволяет уменьшить эрозию контактов и снизить количество паров металла в вакуумной дуге. Однако при больших токах отключения напряжение на дуге начинает расти с увеличением тока (до 100 В и выше). При этом энергия дуги увеличивается, процесс гашения затрудняется. Общий вид выключателя, использующего ДУ по схеме рис. 20.1, показан на рис. 20.2. Рис. 20.2. Вакуумный выключатель Дугогасительные камеры 1, залитые в эпоксидный компаунд, имеют выходные контакты 2 в виде розеток. ДУ укреплены на тележке 3, в которой расположены механизм и привод выключателя. Преимущества вакуумных выключателей: · отсутствие специальной дугогасящей среды, требующей замены; · высокая износостойкость; · быстрое восстановление электрической прочности междуконтактного промежутка; · высокое быстродействие, обусловленное малой массой контактов и их малым ходом; · широкий диапазон рабочих температур: от –70 до +200°С. К недостаткам можно отнести: · возникновение больших перенапряжений при отключении индуктивной нагрузки, что может приводить к повреждению изоляции; · большие трудности при создании выключателей на номинальное напряжение 100 кВ и выше, когда приходится соединять несколько разрывов последовательно; · сложность разработки и изготовления; · большие затраты для организации производства. В воздушном выключателе в качестве гасящей среды используется сжатый воздух, находящийся в баке под давлением 1 – 5 МПа. При отключении сжатый воздух из бака подается в ДУ. Дуга, образующаяся в камере ДУ, обдувается интенсивным потоком воздуха, выходящим в атмосферу. На рис. 20.3 показан воздушный выключатель типа ВВП-35 для электротермических установок. Рис. 20.3. Выключатель типа ВВП-35 Принципиальной особенностью выключателя является наличие отделителя 1, включенного последовательно с ДУ3. В ДУ продольного дутья ток отключения зависит от отношения l/d, где l - расстояние между контактами, d - диаметр сопла ДУ. Для одностороннего сопла наибольшее значение тока отключения достигается при l/d=0,33. После отключения обычно в ДУ устанавливается атмосферное давление и расстояние l=0,33d может пробиваться восстанавливающимся напряжением. Поэтому последовательно с ДУ включается отделитель, который создает надёжный изоляционный промежуток после гашения дуги и смыкания контактов ДУ. При отключении сначала расходятся контакты в ДУ и дуга гаснет, затем расходятся контакты разъединителя. После этого подача сжатого воздуха в ДУ прекращается и контакты ДУ смыкаются. Включение выключателя производится замыканием контактов отделителя 1 и 2. Работа узлов выключателя описывается ниже. Сжатый воздух находится в стальном баке 4. На стеклоэпоксидной трубе 5 расположено ДУ 3. Цепь высокого напряжения присоединяется к выводам 9 и 7. Последовательно с ДУ включены контакты 1 и 2. Неподвижный контакт отделителя 2 укреплен на стеклопластиковом цилиндре 8. Привод ножа отделителя осуществляется через изоляционную штангу 6. Для ограничения перенапряжений дуговой промежуток шунтирован нелинейным резистором 16. При отключении электромагнит воздействует на пусковой клапан 18 и сообщает с атмосферой полость справа от поршня 10. Под действием сжатого воздуха поршень 10 перемещается вправо вниз и открывает главный клапан 11. Сжатый воздух из бака 4 поступает по трубе 5 в ДУ. В ДУ (рис. 20.4) под действием сжатого воздуха поршень 12 вместе с трубчатым контактом 13 поднимается вверх. Дуга между контактами 13 и 14 интенсивно охлаждается сжатым воздухом. Предельная длина дуги ограничивается электродом 15. Длительность горения дуги составляет 0,5-1,5 полупериода. После погасания дуги привод приводит нож отделителя 1 в положение, обозначенное пунктиром. После отключения клапан 11 закрывается и под действием пружины 17 контакты ДУ замыкаются. Для включения выключателя изменяется направление потока сжатого воздуха, поступающего в привод отделителя, благодаря чему нож 1 и контакт 2 замыкаются. Из-за невысокой надежности отделителей такие выключатели не применяются в открытых распределительных устройствах (ОРУ). В ОРУ используются выключатели с газонаполненным отделителем (серии ВВН), в которых контакты отделителя защищены от воздействия окружающей среды. В электротермических установках на напряжение 110 и 220 кВ используются выключатели серии ВВБ, в которых дугогасительная камера размещается непосредственно в баке с сжатым воздухом. На рис. 20.5, а показан полюс выключателя серии ВВБ на напряжение 110 кB. Бак с сжатым воздухом 1 располагается на опорном изоляторе 2, в этом же изоляторе проходят управляющие воздухопроводы, воздух в которых находится под давлением 2,6 МПа. Шкаф управления 3 расположен в основании выключателя. ДУ соединяется с внешней цепью токоведущими частями проходных изоляторов 4. Равномерное распределение напряжения между двумя разрывами устройства обеспечивается с помощью конденсаторов 5. Рис. 20.4. Дугогасительное устройство выключателя ВВП-35 Схема устройства представлена на рис. 20.5,б, где 5 - шунтирующие конденсаторы, обеспечивающие равенство напряжений на двух разрывах устройства; 6 - основные контакты; 7 вспомогательные; 8 - шунтирующие резисторы, служащие для снижения скорости восстановления напряжения. Ток через шунтирующие резисторы отключается контактами 7 после гашения дуги в основных разрывах 6. Рис. 20.5. Баковый воздушный выключатель серии ВВБ-110 В ДУ (рис. 20.5,в) неподвижный контакт 9 укреплен на конце токоведущего стержня изолятора 10. Подвижный контакт 11 укреплен на траверсе 12, связанной с приводным штоком 13. Выступ 14 на штоке 13 служит для фиксации механизма ДУ во включенном положении с помощью защелок 15. Во включенном положении полость бака отделена от атмосферы с помощью клапана, закрывающего выхлоп 1. При отключении в привод подается сжатый воздух, под действием которого шток 13 перемещается вверх и открывает клапан выхлопа 1, отделяющий полость бака от атмосферы. Дуга между контактами 11 и 9 потоком выходящего воздуха сдувается на точки а и б, где подвергается интенсивному продольному дутью сжатым воздухом. После отключения клапан закрывается и бак разобщается с атмосферой. В современных выключателях используется модульный принцип. ДУ на рис. 20.5,в, рассчитанное на напряжение 110 кВ, может использоваться при напряжении 220 кВ при том же токе отключения, но два ДУ соединяются последовательно, а опорная изоляция соответственно усиливается. На напряжение 500 кВ соединяются пять ДУ. Выключатели, используемые для расширения номинального напряжения путем последовательного их соединения, называются модулями. Совершенствование модуля ВВБ позволило повысить номинальное напряжение со 110 до 220 кВ. При этом сокращается число разрывов выключателя в 2 раза, что дает большой технико-экономический эффект. Развитием этой серии выключателей является выключатель ВВБК, в котором давление воздуха поднято до 4 МПа. В результате конструктивных усовершенствований при отключении создается двустороннее несимметричное дутье, повышающее эффективность гашения дуги. Для уменьшения времени отключения в выключателях на напряжение 220 кВ и выше пневматическая система управления заменена механической. Номинальное напряжение выключателя ВВБК достигает 1150 кВ. Серия воздушных выключателей ВНВ предназначена для напряжений 220-1150 кB и тока отключения до 63 кА. Модуль на напряжение 250 кВ представлен на рис. 20.6, а. При отключении контакты ДУ расходятся и открывается выхлопной клапан, соединяющий внутреннюю полость ДУ с атмосферой. После гашения дуги контакты остаются в разведенном состоянии, а выхлопной клапан закрывается, ДУ герметизируется. Расположение трёх полюсов выключателя показано на рис. 20.6,б, где 1 - бак с сжатым воздухом; 2 - опорный изолятор; 3 - основной разрыв; 4 - конденсатор для выравнивания напряжения по разрывам; 5 - шунтирующий резистор с ДУ. Выключатель на 500 кВ имеет два модуля, включенных последовательно, и три модуля при напряжении 750 кВ. Опорные изоляторы усиливаются соответственно классу напряжения. Рис. 20.6. Воздушный выключатель серии ВНВ В основании модуля выключателя расположен бак 1 с сжатым воздухом (рис. 20.7). Сжатый воздух по трубопроводу подается в верхний бак, образованный металлическим цилиндром 9 и стеклоэпоксидным цилиндром 11 и содержащий ДУ. Главный контакт создается пальцами 19 неподвижного контакта и внешней поверхностью подвижного цилиндрического контакта 18. Пальцы дугогасительного контакта 20 расположены в прорезях дутьевого сопла неподвижного контакта и скользят по внутренней поверхности контакта 18. Во включенном положении (см. рис. 20.7) контакт 18 прижат к седлу 25. Внутренняя полость контакта 18 соединяется с атмосферой через открытый выхлопной клапан 24, а его внешняя поверхность и пальцы 19 находятся в среде сжатого воздуха. Сопло 17 подвижное. Начальное расстояние между контактом 20 и соплом 17 - оптимальное для данного сечения сопла. Рис. 20.7. Пневмомеханическая схема полюса выключателя ВНВ-500 (А- к коммутирующему устройству шунтирующего резистора) После гашения дуги подвижное сопло 17 перемещается под действием давления внутри ДУ вправо, садится на седло 26 и герметизирует камеру. Для уменьшения напряженности электрического поля между контактами в разведенном состоянии они окружены экранами 16, что позволяет поднять электрическую прочность промежутка и номинальное напряжение модуля. При отключении срабатывает отключающий электромагнит 3, открывающий клапан 6. Сжатый воздух подаётся на поршень 7, воздействующий на тягу 8. Через звенья 5, 4, 2 усилие передается на изоляционные тяги 13, которые перемещаются вниз. Звенья 15 и 37 соединяются с тягой 13, трубкой 14 и перемещают горизонтальную тягу 36, которая связана с подвижным контактом 18. Контакт 18 сначала размыкается с пальцами 19, а затем с пальцами 20. Между последними и внутренней поверхностью контакта 18 загорается дуга, которая быстро перемещается воздушным потоком, вытекающим в атмосферу через дутьевое сопло неподвижного контакта и подвижное сопло 17. Гашение дуги происходит за счёт двустороннего дутья. Шток 31 связан с тягой 13 и при движении тяги вниз действует на рычаг 30 и открывает клапан 34. При этом сжатый воздух, находящийся под поршнем 35, через змеевик 29 выходит в атмосферу. Поршень 35 освобождает рычаги 27 и 28 и с помощью тяг 22, 23 и коромысла 21 закрывает клапан 24. Одновременно подвижное сопло 17 вместе с ограничивающим электродом 41 перемещается вправо, пока не сядет на седло 26. Таким образом, внутренний объем ДУ герметизируется и отделяется от атмосферы. Электрод 41 ограничивает длину дуги, горящий между ним и неподвижным дугогасительным контактом 20, что уменьшает энергию, выделяемую дугой. При включении срабатывает электромагнит 12. Kлaпан 10 открывается и соединяет полость над поршнем 7 с атмосферой. Одновременно подается сжатый воздух на поршень 38, который отделяет полость бака от поршня 7. Под действием заранее заведенной пружины 33 шток 32 опускается и клапан 34 закрывается. Сжатый воздух подаётся к поршню 35, и он опускается, воздействуя на рычаги 28,27. Клапан 24 открывается, а подвижное сопло 17 устанавливается в положение, показанное на рис. 20.7. При этом внутренняя полость контакта 18 и сопла 17 соединяется с атмосферой. При закрытии клапана 34 сжатый воздух подаётся в контейнер со вспомогательным контактным блоком, который включает резистор. При движении тяги 13 вверх подвижный контакт 18 замыкается с неподвижным, одновременно поршень 7 переходит в положение, указанное на рис. 20.7. После выхода воздуха из полости над поршнем 7 закрываются клапаны 10, 6 и поршень 38 устанавливается в исходное положение соответствующими пружинами. В выключателе на напряжение 1150 кВ при включении замыкаются вспомогательные контакты и в цепь вводится резистор, сопротивление которого равно волновому сопротивлению коммутируемой линии. Затем, примерно через 10 мс, включается контакт 18, который шунтирует этот резистор. Это ограничивает перенапряжение при включении холостых линий электропередачи. Конструктивные особенности данного выключателя: Стоимость выключателей с приводами довольно велика. С учетом необходимых для управления выключателем трансформаторов тока и устройств релейной защиты стоимость современного распределительного устройства получается очень высокой. Если длительный ток установки невелик (400 – 600 А при напряжении 10 кВ) вместо выключателя с релейной защитой целесообразно использовать выключатель нагрузки и предохранители. Выключатель нагрузки имеет ДУ небольшой мощности для отключения номинальных токов. В случае КЗ используется высоковольтный предохранитель. В выключателях нагрузки для гашения дуги применяются камеры с автогазовым, электромагнитным, элегазовым дутьем и вакуумными элементами. В камерах с автогазовым дутьем гашение дуги осуществляется газами, которые выделяются под действием высокой температуры дуги стенками из газогенерирующего материала (органического стекла, винипласта и др.). Общий вид автогазового выключателя нагрузки типа ВН-16 на напряжение 10 кВ и отключаемый ток 200 А показан на рис. 20.8. Рис. 20.8. Выключатель нагрузки ВН-16 Все три полюса размещаются на сварной раме. На нижнем опорном изоляторе полюса расположены вывод полюса и шарнир подвижного контакта 1. На верхнем изоляторе укреплены неподвижный главный контакт 2, дугогасительная камера 5 и второй вывод полюса. Подвижный главный контакт 1 выполнен из двух стальных пластин. В середине укреплен дугогасительный контакт 4 в виде изогнутой медной шины. Подвижные контакты приводятся в движение валом выключателя 3, который соединен с контактами фарфоровой тягой. Отключение выключателя происходит под действием пружин 6, которые заводятся при включении. В дугогасительной камере (рис. 20.8, б) расположен неподвижный дугогасительный контакт точечного типа 7, соединенный с главным неподвижным контактом 2. Корпус камеры выполнен из пластмассы и состоит из двух половин, стянутых винтами. Внутри корпуса размещены два вкладыша 8 из органического стекла. Управление выключателем осуществляется ручным рычажным приводом со встроенным электромагнитом для дистанционного отключения. Во время отключения сначала размыкаются главные контакты и весь ток перебрасывается в цепь дугогасительных контактов, после расхождения которых между вкладышами 8 загорается дуга. Малая толщина подвижного дугогасительного контакта 4 и узкая щель, в которой он перемещается, обеспечивают хороший контакт дуги со стенками вкладышей. Благодаря высокой температуре дуги вкладыши интенсивно выделяют газ, который стремится выйти из камеры через зазор между подвижным контактом и вкладышами. При этом возникает продольный обдув дуги, в результате чего она гаснет. Зона выброса газов из камеры – 200–500 мм. Контакт 4 выходит из камеры тогда, когда дуга погаснет. В отключенном положении дугогасительный контакт отходит от камеры на расстояние, обеспечивающее достаточную электрическую прочность для данного класса напряжения. Последовательно с выключателем нагрузки включаются мощные предохранители типа ПК, которые защищают установку от КЗ. Bыбoр выключателей При выборе выключателя его номинальные параметры сравниваются с параметрами сети в месте его установки. Номинальное напряжение выключателя должно быть равно или больше номинального напряжения защищаемой сети. Номинальный длительный ток выключателя должен быть больше номинального тока установки. Номинальный ток отключения выключателя должен быть больше максимального расчетного тока КЗ к моменту расхождения контактов. При выборе выключателя в момент размыкания контактов выключателя апериодическая составляющая тока КЗ не должна превышать апериодический ток, гарантированный заводом-изготовителем. Расчетное время размыкания берется равным минимально возможному. Термическая стойкость проверяется из условия протекания через выключатель тока КЗ в течение максимального времени, обусловленного срабатыванием защиты. Номинальный ток электродинамической стойкости выключателя должен превышать максимально возможное значение ударного тока КЗ, которое может быть в установке. При выборе типа выключателя следует учитывать следующие обстоятельства: Лекция № 21 Выключатель вакуумный трехфазный ВВ/TEL. Выключатели вакуумные
Вакуумный выключатель - устройство и принцип работы
Достоинства и недостатки
Конструктивные особенности
Принцип работы
Модели вакуумных выключателей
ВВЭ-М-10-20
ВВЭ-М-10-40
ВВТЭ-М-10-20
Выключатель вакуумный трехфазный ВВ/TEL - Статьи об энергетике
Продукция предприятия выпускается под общей маркой TEL. Выключатели вакуумные серии BB/TEL предназначены для коммутации электрических цепей с изолированной нейтралью при нормальных и аварийных режимах работы в сетях переменного тока частоты 50 Гц с номинальным напряжением 6—10 кВ. Устройство и работа выключателя ВВ/TEL
Включение выключателя
Отключение выключателя
Ручное отключение выключателя
Конструктивные исполнения выключателя ВВ/TEL
Условия эксплуатации выключателей
Устройства управления вакуумными выключателями BB/TEL
Модернизация КРУ с использованием вакуумных выключателей BB/TEL
Реконструкция шкафов КРУ с выкатными элементами
Выкатной элемент КРУ с вакуумными выключателями
Конструкция и принцип действия ограничителей перенапряжения TEL
Вакуумные и воздушные выключатели
Похожие статьи:
poznayka.org
Вакуумный выключатель - это... Что такое Вакуумный выключатель?
Вакуумный выключатель — высоковольтный выключатель, в котором вакуум служит средой для гашения электрической дуги. Вакуумный выключатель предназначен для коммутаций (операций включения-отключения) электрического тока — номинального и токов короткого замыкания (КЗ) в электроустановках.
История создания
Первые разработки вакуумных выключателей были начаты в 30-е годы XX века, действующие модели могли отключать небольшие токи при напряжениях до 40 кВ. Достаточно мощные вакуумные выключатели в те годы так и не были созданы из-за несовершенства технологии изготовления вакуумной аппаратуры и, прежде всего, из-за возникших в то время технических трудностей по поддержанию глубокого вакуума в герметизированной камере.
Для создания надежно работающих вакуумных дугогасительных камер, способных отключать большие токи при высоком напряжении электрической сети, потребовалось выполнить обширную программу исследовательских работ. В ходе проведения этих работ примерно к 1957 г. были выявлены и научно объяснены основные физические процессы, происходящие при горении дуги в вакууме.
Переход от единичных опытных образцов вакуумных выключателей к их серийному промышленному производству занял еще два десятилетия, поскольку потребовал проведения дополнительных интенсивных исследований и разработок, направленных, в частности, на отыскание эффективного способа предотвращения опасных коммутационных перенапряжений, возникавших из-за преждевременного обрыва тока до его естественного перехода через нуль, на решение сложных проблем, связанных с распределением напряжения и загрязнением внутренних поверхностей изоляционных деталей осаждавшимися на них парами металла, проблем экранирования и создания новых высоконадежных сильфонов и др.
В настоящее время в мире налажен промышленный выпуск высоконадежных быстродействующих вакуумных выключателей, способных отключать большие токи в электрических сетях среднего (6, 10, 35 кВ) и высокого напряжения (до 500 кВ включительно).
Принцип действия
Поскольку разрежённый газ (10−6 …10−8 Н/см²) обладает электрической прочностью, в десятки раз превышающей прочность газа при атмосферном давлении, то это свойство широко используется в высоковольтных выключателях: в них при размыкании контактов в вакууме сразу же после первого прохождения тока в дуге через ноль изоляция восстанавливается, и дуга вновь не загорается.
В момент размыкания контактов в вакуумном промежутке коммутируемый ток инициирует возникновение электрического разряда — вакуумной дуги, существование которой поддерживается за счет металла, испаряющегося с поверхности контактов в вакуумный промежуток. Плазма, образованная ионизированными парами металла, проводит электрический ток, поэтому ток протекает между контактами до момента его перехода через ноль. В момент перехода тока через ноль дуга гаснет, а оставшиеся пары металла мгновенно (за 7—10 микросекунд) конденсируются на поверхности контактов и других деталей дугогасящей камеры, восстанавливая электрическую прочность вакуумного промежутка. В то же время на разведенных контактах восстанавливается приложенное к ним напряжение (см. иллюстрацию процесса отключения).
Достоинства и недостатки
Достоинства- простота конструкции;
- надежность;
- высокая коммутационная износостойкость;
- малые размеры;
- пожаро- и взрывобезопасность;
- отсутствие шума при операциях;
- отсутствие загрязнения окружающей среды;
- удобство эксплуатации;
- малые эксплуатационные расходы.
- сравнительно небольшие номинальные токи и токи отключения;
- возможность коммутационных перенапряжений при отключении малых индуктивных токов;
- небольшой ресурс дугогасительного устройства по отключению токов короткого замыкания.
Источники информации
- Солянкин А. Г., Павлов М. В., Павлов И. В., Желтов И. Г. Теория и конструкции выключателей. — П.: Энергоиздат, 1982. — С. 350.
- Кравченко А. Н., Метельский В. П., Рассальский А. Н. Высоковольтные выключатели 6—10 кВ // Электрик. — 2006. № 9-10, 11-12; 2007.-№ 1-2.
dic.academic.ru
Что такое вакуумный выключатель? Описание, принцип работы, виды
Что такое вакуум? Со скамьи средней общеобразовательной школы известно, что вакуум — это безвоздушное пространство, и в нем никакие процессы — физические или химические происходить не могут. Именно этой аксиомой руководствовались ученые-испытатели, когда разрабатывали конструкцию вакуумного выключателя, впоследствии заменившего собой все остальные.
Что представляют собой выключатели и для чего они нужны?
Назначение любого выключателя — замыкать или размыкать электросеть.
Ярким конкретным примером служит применение электрических приборов в быту. В любом частном доме и в каждой городской квартире в обязательном порядке существует электрический щиток, предназначенный для подвода электроэнергии от главной электромагистрали (к частному дому — от ближайшего столба электропередач, к городской квартире — от распределительного щитка на лестничной площадке).
На этом распределительном щитке располагается электросчетчик для подсчета потребляемой энергии, устройство защитного отключения (УЗО), автоматические выключатели и предохранители.
И вот с этого-то щитка (столба электропередач) и берут питание и частный дом и городская квартира через выключатели и розетки. Через выключатели в помещение идет осветительная энергия, через розетки — энергия силового характера (телевизор, утюг, стиральная машина и т.д.). Если в качестве эксперимента быстро и резко выдернуть вилку из розетки, то можно заметить мелькнувшую голубую искру — это и есть электрическая дуга, возникшая от разъединения контакта, которую успешно гасит выключатель, расположенный в щитке на лестничной площадке (на столбе электропередач).
Но электрическая дуга возникает не только от разъединения контакта, но и в аварийной ситуации от короткого замыкания, когда оголенный провод фазы случайно соприкасается с оголенным проводом ноля, и здесь от короткого замыкания может произойти взрыв (в зависимости от напряжения и силы тока), либо в помещении возникнет пожар. И чтобы избежать столь неприятных и опасных для жизни последствий и применяются дугогасительные выключатели.
До недавнего времени в энергетике использовались масляные выключатели, принцип работы которых основывался на том, что они при помощи минерального масла, специально залитого в определенную емкость, гасят электрическую дугу, возникающую вследствие разрыва контакта электроцепи, либо вследствие короткого замыкания. Опасность возникающей электрической дуги чрезвычайно велика, сила тока может вызвать взрыв и, как следствие, может повлечь за собой большие разрушения и человеческие жертвы.
Принцип работы вакуумного выключателя основывается на том, что здесь в качестве гашения опасной электрической дуги является не минеральное масло, а вакуум — безвоздушное пространство, в котором гашение электродуги происходит как при постоянном токе, так и при переменном. Устойчивая электрическая прочность вакуума мгновенно гасит дугу при первом же прохождении тока (фазы) через ноль.
Самые первые шаги для разработки подобных выключателей начали предприниматься еще в 1930 году, но, не имея поддержки государства в плане бюджета, их производство ограничивалось единичными экземплярами в узком кругу потребителей. И потребовалось еще более двух десятков лет исследовательских работ и научных экспериментов, прежде чем была доказана крайняя необходимость применения в промышленности и в быту вакуумных выключателей, после чего началось серийное производство повыпуску данных устройств.
Виды вакуумных выкючателей
- на напряжение до 35 кВ;
- на напряжение свыше 35 кВ.
Выключатель, рассчитанный на напряжение до 35 кВ, состоит из рамы, на которой закреплены 3 полюса на отдельных крышках, на каждом из полюсов сконструирована вакуумная дугогасительная камера и прикреплен специальный узел поджатия контактов. И на раме же устанавливается привод (либо электромагнитный, либо пружиномоторный). Посредством этого привода осуществляется управление дугогасительной камерой.
Выключатель, рассчитанный на напряжение свыше 35 кВ, имеет на каждом из трех полюсов уже не по одной дугогасительной камере, а по нескольку в прямой зависимости от напряжения. Если по мере необходимости на каждый полюс устанавливается 2 дугогасительных камеры, то они устанавливаются симметричным образом горизонтально, их подвижные контакты направлены друг к другу, а управление ими происходит за счет изоляционной тяги, которая соприкасается с контактами верхней рычажной передачи.
Когда же необходимо иметь на каждом полюсе 3 и более дугогасительных камер, то они располагаются в ряд, одна за другой, и в качестве привода в этом случае применяется гидравлическая система управления.
Выключатели предназначены для работы в сетях 3-фазного переменного тока частотой 50-60 Гц. Их можно устанавливать как в районах тропического климата, так и в районах холодного края, они выдерживают температуру воздуха от минус 60 до плюс 40 градусов по Цельсию.
Преимущество вакуумных моделей выключателей в сравнении с другими аналогичными устройствами заключается в том, что они очень просты в использовании, обладают большой надежностью, долгим сроком службы, незначительными затратами на эксплуатацию, имеют несложную конструкцию единого блока, поэтому легкозаменяемы. Они могут работать, пребывая в любом положении, имеют небольшие размеры, взрыво- и пожаробезопасны, при работе не создают постороннего шума, экологически чисты и удобны при монтаже и эксплуатации.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.
podvi.ru
Вакуумный выключатель — WiKi
Первые разработки вакуумных выключателей были начаты в 30-е годы XX века, действующие модели могли отключать небольшие токи при напряжениях до 40 кВ. Достаточно мощные вакуумные выключатели в те годы так и не были созданы из-за несовершенства технологии изготовления вакуумной аппаратуры и, прежде всего, из-за возникших в то время технических трудностей по поддержанию глубокого вакуума в герметизированной камере.
Для создания надежно работающих вакуумных дугогасительных камер, способных отключать большие токи при высоком напряжении электрической сети, потребовалось выполнить обширную программу исследовательских работ. В ходе проведения этих работ примерно к 1957 г. были выявлены и научно объяснены основные физические процессы, происходящие при горении дуги в вакууме.
Переход от единичных опытных образцов вакуумных выключателей к их серийному промышленному производству занял ещё два десятилетия, поскольку потребовал проведения дополнительных интенсивных исследований и разработок, направленных, в частности, на отыскание эффективного способа предотвращения опасных коммутационных перенапряжений, возникавших из-за преждевременного обрыва тока до его естественного перехода через нуль, на решение сложных проблем, связанных с распределением напряжения и загрязнением внутренних поверхностей изоляционных деталей осаждавшимися на них парами металла, проблем экранирования и создания новых высоконадежных сильфонов и др.
В настоящее время в мире налажен промышленный выпуск высоконадежных быстродействующих вакуумных выключателей, способных отключать большие токи в электрических сетях среднего (6, 10, 35 кВ) и высокого напряжения (до 220 кВ включительно).
Поскольку разрежённый газ (10−6 …10−8 Н/см²) обладает электрической прочностью, в десятки раз превышающей прочность газа при атмосферном давлении, то это свойство широко используется в высоковольтных выключателях: в них при размыкании контактов в вакууме сразу же после первого прохождения тока в дуге через ноль изоляция восстанавливается, и дуга вновь не загорается. В момент размыкания контактов в вакуумном промежутке коммутируемый ток инициирует возникновение электрического разряда — вакуумной дуги, существование которой поддерживается за счет металла, испаряющегося с поверхности контактов в вакуумный промежуток. Плазма, образованная ионизированными парами металла, проводит электрический ток, поэтому ток протекает между контактами до момента его перехода через ноль. В момент перехода тока через ноль дуга гаснет, а оставшиеся пары металла мгновенно (за 7—10 микросекунд) конденсируются на поверхности контактов и на других деталях дугогасящей камеры, восстанавливая электрическую прочность вакуумного промежутка. В то же время на разведенных контактах восстанавливается приложенное к ним напряжение (см. иллюстрацию процесса отключения).
ru-wiki.org
Что такое вакуумный выключатель
В настоящее время повсеместно проводится замена масляных и элегазовых выключателей на выключатели вакуумные. Данный тип коммутационной аппаратуры предназначен для защиты силовых цепей от токов короткого замыкания и перегрузки на различных ступенях напряжения от 10 кВ до 220 кВ. Причины замены оборудования обусловлены не только эксплуатационным износом и моральным устареванием. Масляные выключатели имеют достаточно небольшой ресурс отключений, необходимо контролировать уровень масла, а также устанавливать мощные электроприводы для обеспечения требуемой скорости срабатывания. Кроме того, имеется вероятность возникновения взрыва во время процесса отключения.
В свою очередь элегазовые выключатели способствуют развитию парникового эффекта, их сложно производить и обслуживать. Выключатели данного типа достаточно дороги, требуют контроля за использованием элегаза, а также предъявляют высокие требования к качеству закачанного газа.
Преимущества, которыми обладают вакуумные выключатели, следующие:
1. Экологическая безопасность.
2. Большое число коммутаций.
3. Малые затраты на эксплуатацию.
4. Простота конструкции.
5. Высокая надежность.
6. Небольшие размеры.
7. Взрыво- и пожаробезопасность.
8. Отсутствие шумового загрязнения.
К недостаткам вакуумных выключателей можно отнести:
1. Относительно малые номинальные токи и токи отключения.
2. Вероятность коммутационных перенапряжений.
Разработкой вакуумных коммутационных аппаратов занимается целый ряд стран, таких как Япония, Китай, Россия и т.д.
Вакуумный выключатель может быть представлен в баковом и колонковом исполнении. В первом случае роль изоляции играет сухой воздух, который закачивается под давлением. Данная конструкция позволяет сделать выключатель вакуумный абсолютно безопасным для окружающей среды. Важнейшей особенностью баковой конструкции является то, что во время демонтажа нет необходимости в сборе газа изоляционной среды.
Вакуумный выключатель может иметь один и более разрывов, приходящихся на один полюс. Это значит, что электрическая цепь будет прерываться в нескольких местах, для того чтобы гашение возникающей электрической дуги происходило эффективнее.
Давление сухого воздуха равняется 5 атмосферам, поскольку при больших значениях дугогасительная камера, которая установлена в вакуумный выключатель, может потерять свою устойчивость и непоправимо деформироваться. Тем не менее, считается, что баковый вакуумный выключатель получил более широкое распространение, чем выключатель колонковой конструкции.
Процесс гашения электрической дуги в вакуумном выключателе происходит следующим образом: в вакуумной дугогасительной камере продольное магнитное поле накладывается на проходящую дугу. Это создает эффект так называемого продольного магнитного дутья, за счет чего происходит увеличение длины дуги. Как известно, чем больше длина дуги, тем проще ее погасить. В связи с этим напряжение электрической дуги имеет большое влияние на размеры выключателя, поскольку чем выше напряжение, тем больше размеры дугогасительной камеры и, следовательно, тем большие габариты должна иметь вся установка в целом.
Размыкание электродов осуществляется пружинным приводом, взвод пружины которого осуществляется при помощи электромагнита.
fb.ru
Поделиться с друзьями: