Содержание
Лампы дневного света: виды, плюсы и минусы
/в Лампочки /от admin
Светильники дневного света подразделяются на светодиодные и люминесцентные. Люминесцентные источники состоят из стеклянной колбы, на которую с внутренней стороны нанесён слой люминофора. Люминофор представляет собой фосфорную смесь с небольшими примесями. Также внутрь колбы закачен инертный газ низкого давления – аргон с небольшим количеством ртути (амальгамы).
Принцип работы основан на разогревании под действием электрического тока элементов, состоящих из вольфрама и расположенных с противоположных сторон. Смесь частиц аргона, паров ртути, разогретая вольфрамовыми нитями, вызывает ультрафиолетовое излучение, которое поглощается специальным составом, находящимся внутри трубки. Взаимодействие люминофора и ультрафиолета образует свечение, воспринимаемое человеческим глазом и необходимое для освещения помещений. Поскольку состав люминофора может принудительно меняться, соответственно, оттенок света лампочки тоже может быть разным. Лампы дневного света подразделяются на люминесцентные лампы разного давления. Посмотрите еще один вид светодиодных ламп это филаментные лампы.
Принцип работы светодиодных ламп осуществляется на процессах, происходящих в обычном кремниевом или германиевом диоде. Под воздействием электричества заряженные частицы движутся только в одном направлении. Но в отличие от обычного диода, такие источники света состоят из иных полупроводниковых материалов. Поток фотонов, выделяемый в результате взаимодействия частиц, вызывает свечение определённого спектра. Светодиодные устройства не содержат паров ртути и других вредных компонентов в своём устройстве, поэтому считаются наиболее экологически чистыми и безопасными из всех приборов. Различают светодиодные светильники дневного света и сменные лампы.
Люминесцентная лампа
Виды приборов для освещения, области применения
Современный мир предлагает следующие люминесцентные потолочные источники света:
- линейная электрическая модель – предназначена для освещения офисных зданий, длинных коридоров, других подобных помещений;
- кольцевая (или круглая) – такие лампы используются для освещения жилых, кухонных помещений, квартир и загородных домов;
- светильники высокого давления – используются в осветительных установках большой мощности и для освещения улиц и кварталов;
- приборы низкого давления применяются как потолочные лампы дневного света в жилых помещениях, на производстве.
Различные виды люминесцентных ламп
Люминесцентные светильники широко применяются в общественных помещениях: медицинских и школьных учреждениях, офисных организациях. При появлении первых компактных люминесцентных ламп с цоколями марки Е14 и Е27, последние начали повсеместно устанавливаться на потолках бытовых помещений и жилых многоквартирных домов. Также подобные виды устройств используются для освещения общественных мест значительной площади, поскольку при этом снижается количество потребляемой энергии, и увеличивается срок службы ламп. Следует заметить, что кроме общественных помещения люминесцентные приборы нашли широкое применение на индивидуальных рабочих местах, для подсветки домовых территорий, различной рекламы, шоу-бизнеса.
Светодиодные устройства используются в качестве направленного, а также местного освещения, поскольку светодиодная лампа способна излучать свет только в одном направлении. Их можно разделить на следующие группы:
- светильники для парков, дорожных проспектов, улиц и площадей, объектов архитектуры. Корпус таких ламп специально защищён от воздействия окружающей среды;
- специальные потолочные источники света для зданий производственных служб, жилищно-коммунального хозяйства, офисных помещений. Таким лампам характерен особо прочный корпус, а рассеиватель у них изготавливается из поликарбонатных материалов, которые намного прочнее обычного стекла;
- лампы дневного света небольшой мощности для бытового сектора. К ним применяются требования повышенного качества света, внешнего вида, пожарной безопасности. Кроме того, они обычно выполняются со сменными лампами.
Следует отметить, что светодиодные светильники применяются для освещения музеев, поскольку спектр их не имеет ультрафиолетовой составляющей, поэтому не влияет на произведения искусства.
Промышленное освещение
Температурный спектр и маркировка люминесцентного свечения
Человеческий глаз воспринимает цвета в зависимости от их яркости. Если яркость невысокая, то лучше воспринимается синий спектр. Поэтому с выбором светильников стоит определиться на начальной стадии, например, по окончании работы по ремонту и отделке того или иного помещения. Если необходимо установить потолочные лампы в квартире или загородном доме, то наиболее естественным будет выглядеть свет с температурой в три тысячи кельвин. Поскольку для таких помещений средняя яркость составляет около восьмидесяти люкс. Для яркости четыреста люкс такой свет будет казаться жёлтым. Подобная освещённость характерна массовым рабочим местам, офисам, объектам производственного назначения. Исходя из такой яркости, этому типу помещений более подходят лампы дневного света температурой в четыре – шесть тысяч кельвин.
Цветовая температура
Все светильники различаются по маркировке. Буква «Л» впереди означает тип источника света – люминесцентные. Ниже приведена краткая маркировка люминесцентных светильников.
- «Д» – дневной свет;
- «ХБ» – холодный белый свет;
- «Б» – простой белый;
- «ТБ» – тёплый белый свет;
- «Е» – белый дневной;
- последняя буква в ряде случаев определяет оттенок свечения, например, красный – «К», зелёный – «З», синий – «С», ультрафиолетовый – «УФ» и другие.
Кроме того, современная промышленность выпускает специальные лампы дневного света с улучшенной цветопередачей. У них после букв, указывающих цвет свечения и оттенок, ставится буква «Ц». Буквами «ЦЦ» обозначается самый высокий уровень цветопередачи. Особенности конструкции этого вида устройств также обозначаются буквами:
- «Р» – лампа с рефлектором;
- «К» – кольцевого типа;
- «У» – вид подковы;
- амальгамная – «А»;
- светильники, оборудованные специальным устройством быстрого запуска – «Б»;
- лампы тлеющего разряда – «ТЛ».
В конце отображаются цифры, характеризующие мощность данной лампы в ваттах.
Достоинства и недостатки светодиодных и люминесцентных источников света
Преимущества светодиодных ламп:
- потребление очень малого количества энергии по сравнению с лампами накаливания;
- долгий срок эксплуатации;
- потолочные светильники этого типа устанавливаются достаточно просто и имеют низкую температуру корпуса;
- довольно высокая прочность;
- такие источники света не имеют вредных или опасных компонентов, поэтому они являются экологически безопасными при работе, утилизации.
Недостатки:
- поскольку для изготовления светодиодных ламп используются дорогостоящие материалы, то главным их недостатком является высокая стоимость;
- в настоящее время большое количество светодиодных источников света изготавливаются без соблюдения норм и стандартов, что приводит к неприятным последствиям.
Преимущества люминесцентных ламп:
- длительный срок эксплуатации;
- рассеянный свет и разнообразие оттенков;
- хорошая цветопередача.
Недостатки:
- люминесцентные лампы являются химически вредными, потому что их состав содержит пары ртути;
- неравномерный спектр и искажение цвета в процессе эксплуатации;
- высыхание люминофора приводит к изменению спектра;
- потолочные устройства этого вида обычно имеют большие габариты по сравнению со светодиодными лампами.
- небольшой коэффициент мощности, что отрицательно сказывается на всей электрической сети.
маркировка, размеры, состав, напряжение и преимущества
Виды
Видов люминесцентных ламп очень много.
Классификации бывают разные – например, по тому, какого цвета свет лампы. Они бывают холодно-белого, теплого света. Популярны лампы дневного света.
Для особых помещений выбирают взрывозащищенные, влагозащищенные, пылевлагозащищенные лампы.
Благодаря современным технологиям на рынке появились устройства с датчиком движения. Это очень удобно. Такие варианты особенно часто предпочитают те, кто регулярно забывает выключать свет, уходя из комнаты. Но чаще всего такие устройства ставят в подъездах, чтобы экономить общедомовое электричество. Они включаются лишь тогда, когда в помещение кто-то заходит.
Еще одно современное устройство – варианты с диммером. Диммеры используются очень давно. Они были придуманы для эксплуатации с лампами накаливания. Новый виток в развитии они получили именно в современности. Диммер – специальный прибор, с помощью которого регулируется яркость освещения.
Когда диммеры только появились, они были практически единственным способом экономии электроэнергии. Сейчас с такой задачей справляются энергосберегающие лампы. Диммеры же сейчас в первую очередь направлены на то, чтобы сделать акценты в световом дизайне помещения. Появляется возможность подстраивать свет под разные нужды.
Важно отметить, что далеко не всякая лампочка приспособлена для работы в совокупности с диммером. О такой возможности должно быть указано на упаковке
Иногда можно встретить устаревшую модель с балластом. Он позволяет снизить значение тока до необходимого уровня, чтобы конструкция не вышла из строя.
Второй вариант более предпочтителен, так как такие лампы практически перестают мерцать. Кроме того, значительно снижается уровень шума, который издает устройство. Такой гул знаком многим, кто хотя бы раз бывал, например, в старых поликлиниках.
Люминесцентные лампы различаются по форме.
Линейные лампы могут иметь U-образную или кольцевую форму. По ГОСТу-6825-64 такие приборы должны иметь диаметр 38 мм. Благодаря именно этому параметру колбы достигается возможность зажигания такой лампы даже при низкой температуре.
Отдельно нужно сказать о компактных люминесцентных лампах. Эти лампы имеют изогнутую форму колбы, что позволяет размещать их в светильниках меньшего размера. Так можно достичь полной замены ламп накаливания люминесцентными.
Варианты подключений
Подключение с использованием электромагнитного баланса (ЭмПРА)
Наиболее распространенный тип подключения люминесцентного источника света — схема со стартером, где используется ЭмПРА.
Принцип действия схемы базируется на том, что в результате подключения питания в стартере возникает разряд и происходит замыкание биметаллических электродов.
Ток в электроцепи проводников и стартера ограничивается только внутренним дроссельным сопротивлением. В результате рабочий ток в лампочке увеличивается почти в три раза, происходит стремительный нагрев электродов, а после потери температуры проводниками возникает самоиндукция и зажигание лампы.
Недостатки схемы:
- В сравнении с другими способами это довольно затратный вариант с точки зрения расхода электроэнергии.
- Пуск занимает не меньше 1 – 3 секунд (в зависимости от степени износа источника света).
- Невозможность работы при низкой температуре воздуха (например, в условиях неотапливаемого подвального или гаражного помещения).
- Имеется стробоскопический эффект мигания лампочки. Этот фактор отрицательно действует на человеческое зрение. Такое освещение нельзя применять в производственных целях, потому что быстро движущиеся предметы (например, заготовка в токарном станке) кажутся неподвижными.
- Неприятное гудение дроссельных пластинок. По мере износа устройства звук нарастает.
Схема включения устроена таким образом, что в ней есть один дроссель на две лампочки. Индуктивности дросселя должно хватать на оба источника света. Используются стартеры на 127 Вольт. Для одноламповой схемы они не подходят, там нужны устройства на 220 Вольт.
На картинке внизу показано бездроссельное подключение. Стартер отсутствует.
Схема используется в случае перегорания у ламп нитей накала. Используется повышающий трансформатор Т1 и конденсатор С1, ограничивающий ток, идущий через лампочку от 220-вольтной сети.
Следующая схема используется для лампочек с перегоревшими нитями. Однако отсутствует необходимость в повышающем трансформаторе, благодаря чему конструкция устройства становится проще.
Ниже показан способ использования диодного выпрямительного моста, который нивелирует мерцание лампочки.
На рисунке внизу та же методика, но в более сложном исполнении.
Две трубки и два дросселя
Чтобы подключить лампу дневного света, можно использовать последовательное подключение:
- Фаза от проводки направляется на вход дросселя.
- От дроссельного выхода фаза идет на контакт источника света (1). Со второго контакта направляется на стартер (1).
- Со стартера (1) отходит на вторую контактную пару этой же лампочки (1). Оставшийся контакт стыкуют с нулем (N).
Тем же образом подключают вторую трубку. Вначале дроссель, затем один контакт лампочки (2). Второй контакт группы направляется на второй стартер. Выход стартера объединяется со второй парой контактов источника света (2). Оставшийся контакт следует подсоединить к нулю ввода.
Схема подключения двух ламп от одного дросселя
Схема предусматривает наличие двух стартеров и одного дросселя. Наиболее дорогостоящий элемент схемы — дросселя. Более экономный вариант — двухламповый светильник с дросселем.
О том, как реализовать схему, рассказывается в видео.
Конструкция люминесцентной лампы
Лампа линейная люминесцентная относится к газоразрядным светильниками низкого давления, где электрический разряд образуется в газовой среде, смешанной с ртутными парами.
Основным конструктивным элементом является стеклянная колба со стандартными диаметрами 12, 16, 26 и 38 мм. В обычных лампах она имеет прямую форму, а в компактных применяется более сложная конфигурация. На концах цилиндра установлены стеклянные ножки, герметично впаянные в торцы. Они предназначены для размещения электродов, изготовленных из вольфрамовой проволоки. В свою очередь, электроды соединяются методом пайки со штырьками цоколя.
Во внутреннем пространстве колбы создается вакуум, после чего сюда закачивается инертных газ, чаще всего аргон. К нему добавляется небольшое количество ртути или ртутного сплава. Поверхность электродов покрывается активными веществами, содержащими окислы бария, кальция, стронция и других элементов. Их работа заметно влияет на коэффициент пульсации.
Под действием приложенного напряжения в газовой среде возникает разряд электричества, значение которого ограничено компонентами пускорегулирующей аппаратуры. Одновременно из электродов начинает испускаться поток электронов, подвергающих ионизации атомы ртути. В результате, возникает видимое свечение и ультрафиолетовое излучение, невидимое обычным зрением. Далее, ультрафиолет попадает на слой люминофора, покрывающего внутреннюю поверхность колбы. Под его воздействием возникает световое излучение в видимой части спектра.
Таким образом, свечение лампы происходит за счет электрического разряда (в меньшей степени) и светящегося люминофорного покрытия, выдающего основную часть светового потока. В зависимости от состава люминофора можно получать любые цвета, начиная от обычного белого, и заканчивая разнообразными тонами и оттенками, количество которых постоянно увеличивается.
Конструкция люминесцентной лампы
Лампа линейная люминесцентная относится к газоразрядным светильниками низкого давления, где электрический разряд образуется в газовой среде, смешанной с ртутными парами.
Основным конструктивным элементом является стеклянная колба со стандартными диаметрами 12, 16, 26 и 38 мм. В обычных лампах она имеет прямую форму, а в компактных применяется более сложная конфигурация. На концах цилиндра установлены стеклянные ножки, герметично впаянные в торцы. Они предназначены для размещения электродов, изготовленных из вольфрамовой проволоки. В свою очередь, электроды соединяются методом пайки со штырьками цоколя.
Во внутреннем пространстве колбы создается вакуум, после чего сюда закачивается инертных газ, чаще всего аргон. К нему добавляется небольшое количество ртути или ртутного сплава. Поверхность электродов покрывается активными веществами, содержащими окислы бария, кальция, стронция и других элементов. Их работа заметно влияет на коэффициент пульсации.
Под действием приложенного напряжения в газовой среде возникает разряд электричества, значение которого ограничено компонентами пускорегулирующей аппаратуры. Одновременно из электродов начинает испускаться поток электронов, подвергающих ионизации атомы ртути. В результате, возникает видимое свечение и ультрафиолетовое излучение, невидимое обычным зрением. Далее, ультрафиолет попадает на слой люминофора, покрывающего внутреннюю поверхность колбы. Под его воздействием возникает световое излучение в видимой части спектра.
Таким образом, свечение лампы происходит за счет электрического разряда (в меньшей степени) и светящегося люминофорного покрытия, выдающего основную часть светового потока. В зависимости от состава люминофора можно получать любые цвета, начиная от обычного белого, и заканчивая разнообразными тонами и оттенками, количество которых постоянно увеличивается.
Как устроена люминесцентная лампа
Основная деталь люминесцентной газоразрядной лампы низкого давления — стеклянная трубка, которой придают разную форму:
- линейную — длиной до 1.5 м, для получения равномерного рассеянного освещения;
- спиральную и U-образную — для компактности;
- круглую (кольцевидную) — для декоративных светильников.
Лампа люминесцентная OSRAM 22Вт G10q 1350лм 4000K 230В кольцо
С двух сторон трубки, изнутри покрытой люминофором, располагаются электроды, между которыми при подаче напряжения возникает дуговой разряд. Горение дуги внутри колбы поддерживается благодаря инертному газу, обычно аргону, с добавлением ртутных паров. Атомы ртути под воздействием потока электронов излучают невидимые глазу лучи в ультрафиолетовом диапазоне. Под их воздействием люминофор, расположенный на внутренних стенках колбы, начинает испускать видимый свет. Цветовая температура свечения люминесцентной лампы зависит от состава люминофора.
Газовая среда внутри колбы в холодном состоянии имеет высокое электрическое сопротивление. Для зажигания газоразрядной дуги при включении требуется подать на электроды импульс высокого напряжения. Горящая дуга, наоборот, обладает отрицательным дифференциальным сопротивлением и для предотвращения короткого замыкания необходим балласт, подключенный в цепь последовательно с электродами. В современных светильниках используют электронные пускорегулирующие аппараты — ЭПРА, которые управляют зажиганием и горением дуги. А компактные лампы с винтовым цоколем уже имеют ЭПРА, встроенный прямо в корпус, поэтому их можно включать напрямую в сеть 220 В.
В светильниках старого образца в качестве балласта используется ЭмПРА — электромагнитный аппарат для пуска и регулирования на основе дросселя, имеющего индуктивное сопротивление, и неонового стартера.
ЭПРА имеет ряд преимуществ перед ЭмПРА:
- исключает заметное для глаз мерцание света благодаря питанию лампы током высокой частоты;
- снижает потребления электроэнергии — до 25%;
- помогает продлить ресурс ламп.
Поэтому их часто приобретают для модернизации ранее установленных светильников с электромагнитными дросселями.
Электронный пускорегулирующий аппарат ЭПРА Navigator 94 449 4*18Вт
Плюсы и минусы светильников дневного света
Еще недавно люминесцентные лампы массово устанавливались в помещениях, где требуется создать максимально комфортные условия для органов зрения. Не то чтобы светильники горят по-особенному ярко, наоборот, от них просто меньше устают глаза при чтении, печатании или мелкой ручной работе.
К преимуществам использования потолочных светильников дневного света можно отнести следующее:
- Спектр излучения максимально близок к естественному солнечному. При разработке специалисты постарались приблизить его характеристики к дневному солнечному свету в условиях облачного неба;
- Люминесцентные колбы дают мягкий распределенный световой поток, чего не скажешь о лампах накаливания, галогенках или точечных светодиодных фонарях, причем без каких-либо дополнительных плафонов, экранов или рассеивателей потока. На потолочный светильник с люминесцентными лампами можно смотреть без особого дискомфорта и риска ослепления;
- Относительная экономичность, если сравнивать люминесцентную колбу с обычной лампой накаливания или галогенкой;
- Неприхотливость в работе, люминесцентные светильники требуют минимальной дополнительной аппаратуры, управления и обслуживания.
Именно последний пункт стал причиной массового распространения ламп дневного света в подавляющем большинстве учебных, торговых, лечебных заведений. Благодаря газоразрядному принципу излучения светильник легко выдерживал перепады напряжения в бытовой сети от 180В до 250В без потери работоспособности.
Стартерную часть светильника можно ремонтировать своими руками
Важно! Почти все, даже современные, модели легко ремонтируются. В старых потолочных конструкциях проблема решалась заменой стартерного блока, на это уходило буквально несколько минут.. В современных моделях стартерный блок, как правило, спрятан внутри цоколя, но и в этом случае лампу легко отремонтировать заменой конденсатора или пропайкой контактов
Никакой другой тип светильника, галогеновый или светодиодный, восстановить так же быстро не удается
В современных моделях стартерный блок, как правило, спрятан внутри цоколя, но и в этом случае лампу легко отремонтировать заменой конденсатора или пропайкой контактов. Никакой другой тип светильника, галогеновый или светодиодный, восстановить так же быстро не удается.
Недостатки ламп дневного освещения
Понятно, что люминесцентные светильники имеют определенные недостатки, благодаря которым лампы дневного света серьезно уступили нишу потолочного освещения светодиодам. В первую очередь – проблемы с безопасностью, в стеклянной колбе содержатся соединения ртути, поэтому люминесцентные лампы необходимо не выбрасывать, а утилизировать сдачей в пункты приема.
Второй недостаток связан с наличием мерцания, световой поток меняет свою интенсивность 100 раз в секунду. Заметить мерцающие участки можно на непрогретых или сильно изношенных колбах. Даже новые люминесцентные светильники могут дать стробоскопический эффект, когда движущийся или колеблющийся предмет воспринимаются глазами, как неподвижный.
Совет! Если в домашней мастерской или в гараже установлены длинные потолочные люминесцентные лампы, то при работе на станке или с движущимся приспособлением — механизмом обязательно нужно включать подсветку обычной маломощной лампочкой накаливания. Таким образом удается убрать эффект стробоскопа.
Еще один минус касается снижения светового потока. Старые колбы теряют эмиссию на электродах и люминесцентном слое, из-за чего становятся тусклыми при том же уровне потребления электроэнергии. Если люминесцентный светильник очень старой модели, то его работа может сопровождаться гулом электромагнитного балластного модуля, установленного внутри корпуса.
Распространенные виды таких лампочек
Первичная классификация изделий на люминесцентной основе производится по уровню базового давления. Приборы высокого давления используются для осветительных установок большой мощности и наружного уличного освещения.
Лампы низкого давления применяются в быту для подачи света в производственные, технические и жилые помещения различного назначения.
Вид #1 — модули высокого давления
Устройства высокого давления вырабатывают насыщенный светопоток хорошей плотности. Внутренняя поверхность колбового элемента имеет специальное люминофорное покрытие из фторогерманата или арсената магния.
Рабочая мощность таких люминесцентных ламп колеблется в диапазоне 50-2000 Вт.
Ртутные модули высокого давления для корректной работы нуждаются в 220 ваттном номинальном сетевом напряжении. Коэффициент их пульсации обычно составляет от 61 до 74%
Полный розжиг осветительного модуля происходит в течение 3 секунд. Срок службы 80-125-ваттных изделий составляет около 6 000 ч, а лампы от 400 Вт и более могут проработать до 15 000 ч при беспрекословном соблюдении правил эксплуатации, установленных изготовителем.
Вид #2 — изделия низкого давления
ЛЛ низкого давления применяется для обеспечения светопотоком жилых, технических и производственных помещений.
Конструкционно прибор является трубкой из прочного стекла, содержащей внутри аргон под давлением 400 Па и в небольшом количестве ртуть либо амальгаму. На рынке предлагается в самых разнообразных модификациях и оснащается двумя электродными элементами.
Самая низкая температура, которую могут переносить ЛЛ низкого давления, составляет -15 °C. Поэтому для использования на открытых площадках эти источники света считаются неактуальными
Стеклянная колба может иметь самый разный диаметр. Уровень светоотдачи варьируется в зависимости от мощности самого устройства. Для его корректной работы требуется стартер дроссельного типа. Средний срок службы составляет 10 000 часов.
Сравнение с другими источниками света
Изделия ЛЛ-типа существенно отличаются как от устаревающих ламп накаливания, так и от прогрессивных светодиодных.
По сравнению с первыми они потребляют в 5 раз меньше электроэнергии, обеспечивая при этом такой же уровень насыщенности светопотока. Зато LED-приборам они несколько уступают по мощности в сочетании с энергопотреблением.
Таблица наглядно в цифрах показывает, насколько выгоднее использовать вместо традиционных лампочек Эдисона более современные источники качественного освещения
Правда, лампа накаливания весь период работы горит с одинаковой интенсивностью, тогда как люминесценты теряют часть насыщенности из-за выгорания внутреннего слоя, отражающего ультрафиолет.
LED-изделия в процессе эксплуатации приобретают некоторую тусклость благодаря деградации рабочих диодов. А в отдельных моделях есть возможность регулировки яркости освещения при помощи диммера.
В лампах накаливания или люминесцентах такая функция не предусмотрена. Но этот удобный режим в LED-приборах не бесплатен и за него придется отдать дополнительную сумму.
По уровню конструкционной хрупкости лампы накаливания и люминесценты схожи, так как имеют стеклянную колбу. Лед-модули в этом плане более устойчивы к ударам и механическим повреждениям. Да и отсутствие внутри каких-либо вредных и токсичных элементов делает их значительно привлекательнее для эксплуатации в домашних условиях.
Самые высокие расходы за весь эксплуатационный период влечет за собой использование ламп накаливания. Люминесценты расходуют энергию в разумных пределах, а светодиоды дают возможность снизить затраты до самых минимальных показателей
Что касается финансовой стороны, то изначально меньше других стоит лампочка накаливания. Однако, учитывая ее рабочий ресурс всего в 1 000 часов, это вряд ли можно считать ярко выраженным достоинством.
Базовая цена люминесцентов выше, однако, и служат они значительно дольше. Как говорят солидные производители, их хватает на 10 000-15 000 часов в том случае, если количество ежедневных активаций не превышает 5-6 раз.
Светодиодные модули могут похвастаться еще лучшими показателями, но и заплатить за это удовольствие придется намного больше, а это не во всех случаях целесообразно. Хотя тенденция замены одних источников света другими, прослеживается повсеместно. О необходимости замены люминесцентных лампочек светодиодными и порядке выполнения этой работы мы писали здесь.
Виды ламп и цоколя
Как правило, в своих квартирах и частных домах люди используют компактные газоразрядные устройства освещения, которые вкручиваются в привычный для всех цоколь, эти светильники питаются от сети 220 Вт. Также имеет место в использовании небольших четырехштырьковых световых устройств, которые обычно используются в светильниках. За редким исключением эти источники света имеют дугообразный вид. В отличие от цокольных, таким светильникам необходимо устройство пуска «реле», поэтому в основном их использование приходится на промышленную или административную структуру помещений.
Цоколи ламп.
Необходимой деталью в конструкции любого светового устройства является цоколь. Цоколь, в каком бы из типов ламп он не стоял, обеспечивает за счет специального соединения, контакт люминесцентных ламп с электрической цепью. Итак, цоколи для световых устройств могут быть следующих видов:
- Резьбовой (винтовой). Резьбовые постаменты отличаются элементарной и комфортной конструкцией, позволяющей вкручивать колбу максимально быстро. Электролампы по конструкции колб отличаются большим разнообразием, однако наиболее распространенными являются электролампы с цоколем типа e14 и e27.
- Штыковой. Поначалу предназначался для газоразрядных светильников трубчатого типа. Позже стали использовать также для установки галогеновых и светодиодных конструкций. Он выполнен в виде штырьков. Постаменты светильников штырькового типа различаются по числу штырьков и расстоянию между ними. Так, например, если цоколь лампы g13, то это свидетельствует, что будут расстояние между его штырями, равняется 13 миллиметрам. К недостаткам такого постамента можно отнести сложность в определении его размера на глаз.
- С утопленным контактом. Используется в трубчатых кварцевых и галогеновых светильниках, обладающих повышенной температурой нагревания и мощностью. Цифра в его маркировке означает длину металлического элемента.
- Софитный. Раньше использовали только для освещения сцены. Его контакты могут располагаться как с одной стороны светильника, так и сразу с двух.
- Штифтовой. По внешнему диаметру расположено два штифта, связывающих сам постамент и патрон. При помощи такой простой конструкции светильник без особого труда подключается к сети.
- Фокусирующий вариант. Представляет собой конструкцию из линзы, способствующей фокусировке светового потока.
- Телефонный вариант. Для него обязательно наличие маленькой лампочки.
Анализируем технические характеристики разных видов люминесцентных ламп
Технические характеристики энергосберегающих люминесцентных ламп разделяются по следующим параметрам:
по потребляемой энергии измеряется в «W»;
Также стоит отметить, что показатель ламп накаливания определяет силу излучаемого света, а люминесцентных – энергоемкость.
по потоку света измеряется в «Лм»;
Проведем аналогию с лампами накаливания, так 200W – соответствует 3040 «Лм», 100 «W» — 1340 «Лм» и 60 «W» — 710 «Лм» соответственно.
по температуре в зависимости от цвета;
Диапазон варьируется от 7000 «К» (Бело-голубой) до 2000 «К» (Красный).
по индексу цветопередачи «Ra».
Здесь идет разделение по шкале баллов максимальное количество 100 баллов. Чем выше показатель, там точнее будет выглядеть цвет предметов, на которые падает освещение.
Наиболее распространенными газоразрядными устройствами являются лампы серии лб (белого света) и серии лд (дневного света).
Все лампы различаются по техническим параметрам, так, к примеру, лампа мощностью 36 Вт будут иметь следующие технические характеристики:
- лампы серии лб являются источниками освещения общего назначения;
- создают имитацию естественного света, максимально приближают его цветовые и спектральные характеристики к естественному свету.
- 36 Вт лампы лб являются полным аналогом источников освещения мощность, которых составляет 40 Вт, их характеристики практически идентичны. Отличие состоит в качестве материала и измененном технологическом процессе.
Наибольшим спросом пользуются люминесцентные лампы с мощностью18 вт. Лампа лб 18 имеет такие технические характеристики как:
- белая лампа с низким давлением;
- мощность составляет 18 ватт;
- тип цоколя в таком устройстве освещения g13;
- высокая световая отдача;
- низкое потребление электроэнергии;
- срок службы лампы достаточно продолжительный.
Лампа лб 20 имеет такие же технические характеристики, что и предыдущий световой источник. Различие между ними состоит только в мощности.
Лампы ЛБ 40 предназначены для освещения закрытых помещений, а также для наружной установки, работают в электрических сетях переменного тока напряжением 220 В, частотой 50 Гц и включаются в сеть вместе с соответствующей пускорегулирующей аппаратурой, в схемах стартерного зажигания. Тип цоколя люминесцентной лампы G13.
Лампа лб 80 значительно отличается от предыдущих ламп, поскольку ее технические характеристики значительно выше. Так, габаритный размер составляет D=38; L1=1514,2; L=1500 имея такие габариты, лампа лб 80 по своим техническим параметрам превосходит остальные газоразрядные источники серии лб.
Для большей наглядности, характеристики люминесцентных ламп серии лб отображает следующая таблица:
Люминесцентные лампы, мощность которых составляет 58 вт, используются в местах, где требования к высокой цветопередаче минимальны.
Люминесцентные лампы т8 могут иметь следующие технические характеристики: мощность варьируется от 18 ватт до 36 ватт, световой поток составляет 35 тысяч Лм, световая отдача – 89 Лм, индекс цветопередачи равен 65 Ra, цоколь — Е40, напряжение светового устройства должно быть 220 В. По техническим параметрам лампа т8 схожа со световым устройством т12. При необходимости может стать отличной ей заменой, с экономией энергии в 10 %.
Люминесцентные лампы с коэффициентом т5 относят к новому светотехническому прогрессу. По своим техническим показателями этим источникам освещения очень быстро удалось вытеснить световые устройства т12 и т8.
Люминесцентные лампы(CFL) и лампы накаливания — разница и сравнение
Преимущества и недостатки
Люминесцентные лампы лучше ламп накаливания почти во всех отношениях: стоимость срока службы, воздействие на окружающую среду и экономия энергии.
Долговечность
Известно, что люминесцентные лампы снижают затраты на замену и экономят энергию. Она также длится в 10-20 раз дольше, чем лампа накаливания. Они страдают от мерцания и сокращения срока службы, если используются в местах, где их часто включают и выключают. Эти лампы также требуют оптимальной температуры для хорошей работы; известно, что они работают с пониженной мощностью при включении при более низких температурах.
Лампа накаливания очень чувствительна к изменениям напряжения, поэтому ее срок службы можно удвоить, отрегулировав напряжение питания. Однако это влияет на светоотдачу и, как известно, используется только в исключительных случаях.
Энергоэффективность
Люминесцентные лампы экономят энергию и служат дольше, но они дороже. Эти лампы также преобразуют больше электроэнергии в видимый свет, чем их популярные аналоги. При этом люминесцентная лампа излучает меньше тепла и равномерно распределяет свет, не напрягая глаза.
Проблемы со здоровьем и воздействие на окружающую среду
Хотя официального исследования не проводилось, некоторые люди предполагают, что лампы накаливания представляют меньший риск для организма, чем люминесцентные лампы. Люминесцентные лампы являются энергосберегающими, поэтому в этом смысле они полезны для окружающей среды. Но он также наносит вред окружающей среде из-за содержания в нем ртути. При утилизации этих ламп ртуть, содержащаяся в них, испаряется и вызывает загрязнение воздуха и воды.
Лампы накаливания содержат вольфрам, который не представляет опасности для окружающей среды. Следовательно, лампы накаливания не представляют такого большого риска для здоровья, как люминесцентные лампы.
Цена
Когда КЛЛ впервые были представлены, они были значительно дороже, чем лампы накаливания. Но сейчас разница в цене практически сведена на нет. Стоимость зависит от производителя и продавца. Например, упаковка из 8 ламп GE CFL (13 Вт, которая заменяет 60-ваттную лампу накаливания) стоит на Amazon 14,11 доллара, а восемь (две по 4 упаковки) мягких белых ламп мощностью 60 Вт от GE стоят на Amazon 12 долларов.
Характеристики и типы люминесцентных ламп и ламп накаливания
Существуют различные типы ламп накаливания, которые доступны на рынке, и декоративные лампы, возможно, являются наиболее часто используемыми сегодня лампами. Лампы общего назначения либо прозрачные, либо матовые, а лампы общего назначения высокой мощности имеют мощность 200 Вт или более. Рефлекторные лампы помогают направить свет вперед и используются в прожекторах и точечных лампах.
Люминесцентная лампа обычно характеризуется потребляемой мощностью, долговечностью, цветом излучаемого света и другими характеристиками освещения, такими как яркость. Существуют различные типы люминесцентных ламп, такие как:
- лампы для загара , используемые для получения искусственного загара.
- Лампы для выращивания растений также содержат флуоресцентный свет и используются для стимуляции фотосинтеза и роста растений.
- Свет также нашел применение в медицинских процедурах с билирубиновые лампы , помогающие расщепить избыток билирубина в организме. Кроме того, бактерицидные лампы используются для уничтожения микробов, присутствующих в организме.
Примеры ламп накаливания включают PAR45 и A55. Буквы ( A и R ) обозначают форму, а числа обозначают максимальный диаметр колбы. Диаметр измеряется в дюймах и обычно доступен с шагом 1/8 от исходного размера. «A» используется для обозначения стандартной грушевидной лампы, а «R» используется для обозначения отражателей.
История ламп накаливания и люминесцентных ламп
Сэр Хамфри Дэви создал первую лампу накаливания в 1802 году. . Хотя его конструкция работала, высокая стоимость платины делала невозможным ее коммерческое использование. В следующем году Frederick de Moleyns из Англии получил первый патент на лампу накаливания. Джозеф Уилсон Свон совместно с Чарльзом Стерном создали лампу с тонкими углеродными стержнями. Их изобретение не было коммерчески жизнеспособным и, следовательно, не получило дальнейшего развития. Томас Эдисон затем начал исследовать и использовать различные возможности для создания практичного продукта, который привел к тому, что мы знаем сегодня как лампу накаливания с вольфрамовой нитью.
Хотя Томасу Эдисону приписывают изобретение лампы накаливания, он был первым, кто использовал люминесцентные лампы в коммерческих целях. Несмотря на то, что он зарегистрировал на него патент, в его время он никогда не производился в коммерческих целях. В 1895 году Дэниел Мур провел эксперимент, который продемонстрировал излучение белого и розового света от ламп, наполненных углекислым газом и азотом. После этого в 1934, Артур Комптон из General Electric сообщил об успешных экспериментах, проведенных с люминесцентными лампами, которые позже были продолжены компанией. К 1951 году в Соединенных Штатах Америки люминесцентные лампы производили больше света, чем лампы накаливания.
Компоненты люминесцентных ламп и ламп накаливания
Лампа накаливания заполнена аргоном для уменьшения испарения, а внутри лампы проложена вольфрамовая нить. Через эту нить, соединенную с двумя контактными проводами и проводником, проходит электрический ток. К основанию лампы прикреплен стержень или стеклянная опора, что обеспечивает плавный поток электрического тока, который, в свою очередь, генерирует видимый свет.
Люминесцентная лампа заполнена аргоном, криптоном, неоном или ксеноном и парами ртути низкого давления. Затем внутреннюю часть трубки покрывают различными смесями солей фосфора металлов и редкоземельных элементов. Катодная трубка в колбе изготовлена из вольфрама и покрыта оксидами бария, стронция и кальция, допускается испарение органических растворителей, после чего трубку нагревают для приплавления покрытия к лампам.
Каталожные номера
- Светодиодные лампы: конец лампочки, какой мы ее знаем? — Новости Би-би-си
- Компактные люминесцентные лампы ежегодно загрязняют окружающую среду 30 000 фунтов ртути — Natural News
- Википедия: Люминесцентная лампа#Частое переключение
- Википедия: Лампа накаливания
- Вопросы и ответы по Energy Star
- Сравнение цен на лампы накаливания — Nextag
- Лампа накаливания GE CFL — Walmart
Canon : Технологии Canon | Canon Science Lab
Для работы этого сайта требуется браузер с поддержкой JavaScript.
Лампы накаливания и люминесцентные лампы
Мы не можем производить солнечный свет, но мы можем создать аналогичное освещение. Примеры включают лампы накаливания и люминесцентные лампы.
То, что излучает свет, называется источником света.
Источники света можно разделить на естественные источники света, такие как солнце, звезды, молния и биолюминесценция, и искусственные источники света, включая лампы накаливания, флуоресцентные лампы и натриевые лампы. Их также можно разделить на категории по характеристикам интенсивности света, т. е. постоянные источники света, которые излучают одинаковое количество света в течение фиксированного периода времени (например, солнце и лампы накаливания), и источники света, которые меняются во времени. Флуоресцентное освещение может казаться постоянным, но на самом деле оно меняется в зависимости от частоты источника питания. Человеческий глаз просто не способен обнаружить такие быстрые изменения.
Лампы накаливания светятся из-за тепла
Лампы накаливания выглядят желтоватыми по сравнению с флуоресцентными лампами. Это потому, что лампы накаливания производят свет от тепла. В лампе накаливания нить нагревается. Нити сделаны из двойных катушек вольфрама, типа металла. Вольфрам имеет высокое электрическое сопротивление, поэтому он светится (накаливается) при протекании электрического тока. Электрический ток из-за высокого электрического сопротивления приводит к теплу из-за трения между материалом и электронами, протекающими через материал. Вольфрам используется для нитей накаливания ламп накаливания, потому что он чрезвычайно устойчив к плавлению при высоких температурах. Он также не горит, потому что в лампы накаливания впрыскивается газ для удаления всего кислорода.
Лампа накаливания была изобретена Томасом Эдисоном в 1879 году. В то время нити накаливания представляли собой карбонизированные волокна, полученные путем удушения определенного вида бамбука, выращенного в Киото, Япония, но в наши дни для производства лампочек используются различные материалы и методы. . Существует много типов лампочек, каждая из которых имеет свое предназначение. Например, есть кварцевые колбы с частицами кварца, покрытые электростатически на их внутренней поверхности, чтобы значительно улучшить светопропускание и рассеивание, криптоновые колбы, в которые впрыскивается газ криптон (более высокий атомный вес, чем обычно используемый газ аргон) для увеличения яркости, и рефлекторные лампы, использующие сильно отражающий алюминий на их внутренней поверхности.
Флуоресцентные лампы сложнее, чем кажется
Флуоресцентные лампы, распространенный вид освещения в офисах, имеют более сложный механизм излучения света, чем лампы накаливания. Ультрафиолетовые лучи, создаваемые люминесцентными лампами, преобразуются в видимый свет, который мы можем видеть. Важную роль здесь играют явления электрического разряда, «возбужденное состояние» и «основное состояние» электронов. Давайте начнем с рассмотрения базовой структуры люминесцентной лампы. Люминесцентные лампы представляют собой тонкие стеклянные трубки, покрытые люминесцентным веществом на внутренней поверхности.
Внутрь вводят пары ртути, к обоим концам прикрепляют электроды. Когда подается напряжение, по электродам течет электрический ток, в результате чего нити на обоих концах нагреваются и начинают испускать электроны. Далее выключается небольшая газоразрядная лампа внутри люминесцентной лампы; Электроны испускаются электродом и начинают течь к положительному электроду. Именно эти электроны производят ультрафиолетовое излучение.
Столкновение электронов и атомов в люминесцентных лампах
Давайте подробнее рассмотрим механизм испускания ультрафиолетовых лучей флуоресцентным светом. Электроны, испускаемые электродом, сталкиваются с атомами ртути, составляющими пар внутри стеклянной трубки. Это приводит к тому, что атомы ртути переходят в возбужденное состояние, в котором электроны на самой внешней орбите атомов и молекул получают энергию, заставляя их переходить на более высокую орбиту.
Возбужденные атомы ртути постоянно пытаются вернуться в свое прежнее низкоэнергетическое состояние (основное состояние), потому что они настолько нестабильны. Когда это происходит, разница энергий между двумя орбитальными уровнями высвобождается в виде света в форме ультрафиолетовых волн. Однако, поскольку ультрафиолетовые лучи не видны человеческому глазу, внутренняя часть стеклянной трубки покрыта флуоресцентным материалом, преобразующим ультрафиолетовые лучи в видимый свет. Именно это покрытие заставляет люминесцентные лампы светиться белым светом. Люминесцентные лампы не всегда прямые. Они бывают и других форм, таких как кольца и лампочки. Некоторые типы люминесцентных ламп претерпели оригинальные модификации, такие как лампы, в которых используется металлическая линия на внешней поверхности трубки (тип быстрого пуска), что устраняет необходимость в газоразрядной лампе внутри.
Белые светодиоды, используемые в освещении
Светодиоды (светоизлучающие диоды), используемые в освещении, излучают белый свет, подобный солнечному. Белый свет создается, когда присутствуют три основных цвета света — RGB (красный, зеленый и синий). Сначала были только красные и зеленые светодиоды, но разработка синих светодиодов привела к разработке белых светодиодов для использования в освещении.
Есть два способа создания белых светодиодов. Первый — это «многочиповый метод», в котором объединены все три светодиода основного цвета, а второй — «одночиповый метод», в котором сочетаются люминофор и синий светодиод. Многочиповый метод с использованием трех цветов требует баланса между яркостью и цветом для реализации равномерного освещения и требует, чтобы каждый из трех цветных чипов был оснащен цепью питания.
Это послужило причиной разработки одночипового метода, который излучает почти белый (квазибелый) цвет с использованием одного синего светодиода и желтого люминофора. Это связано с тем, что синий свет и желтый свет, смешанные вместе, кажутся человеческому глазу почти белыми.
С использованием одночипового метода были разработаны белые светодиоды, в которых используется синий светодиод в сочетании с желтым + красным люминофором или зеленым + красным люминофором для достижения более естественного белого света на основе светодиодов. Кроме того, недавно были разработаны светодиоды, излучающие ближний ультрафиолетовый свет (светодиоды ближнего ультрафиолетового света: длина волны 380–420 нм), которые, будучи использованы в качестве источника возбуждающего света, позволили создать белые светодиоды, способные излучать весь видимый диапазон света.
Источники света имеют «цветовую температуру»
В нашей повседневной жизни мы часто замечаем, что цвет одежды, видимый при свете флуоресцентных ламп в помещении, выглядит иначе при солнечном свете на улице и что одна и та же пища кажется более аппетитной при свете ламп накаливания, чем при люминесцентное освещение. Вы когда-нибудь задумывались, что вызывает такие различия? Мы видим цвет объекта, когда свет падает на него и отражается обратно в наши глаза. Короче говоря, цвета, которые мы воспринимаем, изменяются в соответствии с длиной волны источника света, освещающего объекты, которые мы видим. Это приводит к вышеупомянутым различиям, которые мы видим в освещении одежды и пищи.