Содержание
Что такое сварочный трансформатор – определение
Справочник сварочных определений и терминов — Shindaiwa
Shindaiwa в Украине, поставки сварочного оборудования из Японии
Что такое сварочный трансформатор, определение, классификация.
Сварочный трансформатор – это устройство, преобразующее переменное напряжение входной сети в переменное напряжение для электросварки. Основным его узлом является собственно трансформатор, понижающий сетевое напряжение до напряжения холостого хода, составляющего обычно 50-60 В.
Сила тока в сварочном трансформаторе может регулироваться изменением индуктивного сопротивления цепи или с помощью тиристоров (фазное регулирование).
- по количеству обслуживаемых рабочих мест,
- по фазности напряжения в сети: однофазные, трехфазные,
- по конструкции.
По конструкции устройства выделяют:
- Модели с номинальным магнитным рассеиванием. Они состоят из двух частей: трансформатора и дросселя для регулировки напряжения.
- Изделия с увеличенным магнитным рассеиванием – имеют более сложную конструкцию из нескольких подвижных обмоток, конденсатора или импульсного стабилизатора и других элементов.
- Тиристорные модели – сравнительно новый тип подобных устройств. Они состоят из силового трансформатора и тиристорного фазорегулятора. Тиристорные модели имеют меньший вес по сравнению с другими типами.
К характеристикам сварочных трансформаторов относятся:
— коэффициент мощности,
— напряжение сети (первичное напряжение),
— вторичное напряжение,
— мощность,
— пределы регулирования тока.
Коэффициент мощности – безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности равен отношению потребляемой электроприемником активной мощности к полной мощности. Активная мощность расходуется на совершение работы. Полная мощность – геометрическая сумма активной и реактивной мощностей (в случае синусоидальных тока и напряжения).
Номинальным первичным напряжением трансформатора называется такое напряжение, которое, необходимо подвести к его первичной обмотке, чтобы на зажимах разомкнутой вторичной обмотки получить вторичное номинальное напряжение, указанное в паспорте трансформатора.
Номинальным вторичным напряжением называют напряжение, которое устанавливается на зажимах вторичной обмотки при холостом ходе трансформатора (к зажимам первичной обмотки подведено напряжение, а вторичная обмотка разомкнута) и при подведении к первичной обмотке номинального первичного напряжения.
Мощность трансформатора напряжения предельная – кажущаяся мощность, которую трансформатор напряжения длительно отдает при номинальном первичном напряжении, вне классов точности, и при которой нагрев всех его частей не выходит за пределы, допустимые для класса нагревостойкости данного трансформатора.
Пределы регулирования сварочного тока указывают минимальные и максимальные значения тока, которые могут быть использованы при сварке.
Сварочные трансформаторы, применяемые в агрегатах и генераторах Shindaiwa, обеспечивают их отличные технические характеристики
Дата публикации: 09 07 2018 ✎
Дата последнего изменения: 29 05 2020
Сварочные трансформаторы
Главная \ Номенклатура \ СВАРОЧНОЕ ОБОРУДОВАНИЕ \ Сварочное оборудование ООО НПП «ПЛАЗЕР» \ Сварочные трансформаторы
Мы предлагаем различное сварочное оборудование со склада в Москве.
Выбрать качественное сварочное оборудование — задача нетривиальная. При выборе в первую очередь необходимо отталкиваться от материала, который необходимо сваривать (переменный/постоянный ток, полуавтомат, аргонно-дуговая).
Сварочные трансформаторы серии ТДМ, предназначен для питания одного сварочного поста переменным током частотой 50Гц при ручной дуговой сварке (резке или наплавке) малоуглеродистых и низколегированных сталей электродами типа МР-3С , АНО-4, АНО-6, АНО-21, МР-3 и др.
Сварочные трансформаторы ТДМ представляет собой переносную установку с естественной вентиляцией в однокорпусном исполнении.
- Скачать паспорт на трансформаторы ТДМ
- Скачать сертификат на трансформаторы ТДМ
Сварочный трансформатор ТДМ-205 А (220 В) AL
Напряжение питания 1х220 В
Номинальная частота сети 50 Гц
Номинальный сварочный ток 200 А
Диапазон регулирования сварочного тока 40-200 А
Продолжительность нагрузки 40 %
Напряжение холостого хода 70 В
Способ регулирования сварочного тока механический, плавный
Потребляемая мощность 12 кВА
Обмотки трансформатора AL
Габаритные размеры 340х300х460 мм Масса 32 кг
Цена 6730,00руб
Сварочный трансформатор ТДМ-205 (220 В) CU
Напряжение питания 1х220 В
Номинальная частота сети 50 Гц
Номинальный сварочный ток 200 А
Диапазон регулирования сварочного тока 40-200 А
Продолжительность нагрузки 40 %
Напряжение холостого хода 70 В
Способ регулирования сварочного тока механический, плавный
Потребляемая мощность 12 кВА
Обмотки трансформатора CU
Габаритные размеры 340х300х460 мм Масса 35 кг
Цена 10610,00руб
Сварочный трансформатор ТДМ-205 А (220/380 В) AL
Напряжение питания 1х220/2х380 В
Номинальная частота сети 50 Гц
Номинальный сварочный ток 200 А
Диапазон регулирования сварочного тока 40-200 А
Продолжительность нагрузки 40 %
Напряжение холостого хода 70 В
Способ регулирования сварочного тока механический, плавный
Потребляемая мощность 12 кВА
Обмотки трансформатора AL
Габаритные размеры 340х300х460 мм Масса 34 кг
Цена 7950,00руб
Сварочный трансформатор ТДМ-250 (220/380 В) CU
Напряжение питания 1х220/2х380 В
Номинальная частота сети 50 Гц
Номинальный сварочный ток 250 А
Диапазон регулирования сварочного тока 40-250 А
Продолжительность нагрузки 40 %
Напряжение холостого хода 70 В
Способ регулирования сварочного тока механический, плавный
Потребляемая мощность 16 кВА
Обмотки трансформатора CU
Габаритные размеры 340х300х460 мм Масса 41 кг
Цена 15200,00руб
Сварочный трансформатор ТДМ-305 А (220 В) AL
Напряжение питания 1х220 В
Номинальная частота сети 50 Гц
Номинальный сварочный ток 300 А
Диапазон регулирования сварочного тока 60-300 А
Продолжительность нагрузки 40 %
Напряжение холостого хода 70 В
Способ регулирования сварочного тока механический, плавный
Потребляемая мощность 19 кВА
Обмотки трансформатора AL
Габаритные размеры 435х410х535 мм Масса 61 кг
Цена 10250,00руб
Сварочный трансформатор ТДМ-305 (220 В) CU
Напряжение питания 1х220 В
Номинальная частота сети 50 Гц
Номинальный сварочный ток 300 А
Диапазон регулирования сварочного тока 60-300 А
Продолжительность нагрузки 40 %
Напряжение холостого хода 70 В
Способ регулирования сварочного тока механический, плавный
Потребляемая мощность 19 кВА
Обмотки трансформатора CU
Габаритные размеры 435х410х535 мм Масса 65 кг
Цена 17400,00руб
Сварочный трансформатор ТДМ-305 А (380 В) AL
Напряжение питания 2х380 В
Номинальная частота сети 50 Гц
Номинальный сварочный ток 300 А
Диапазон регулирования сварочного тока 60-300 А
Продолжительность нагрузки 40 %
Напряжение холостого хода 70 В
Способ регулирования сварочного тока механический, плавный
Потребляемая мощность 19 кВА
Обмотки трансформатора AL
Габаритные размеры 435х410х535 мм Масса 62 кг
Цена 10250,00руб
Сварочный трансформатор ТДМ-305 (380 В) CU
Напряжение питания 2х380 В
Номинальная частота сети 50 Гц
Номинальный сварочный ток 300 А
Диапазон регулирования сварочного тока 60-300 А
Продолжительность нагрузки 40 %
Напряжение холостого хода 70 В
Способ регулирования сварочного тока механический, плавный
Потребляемая мощность 19 кВА
Обмотки трансформатора CU
Габаритные размеры 435х410х535 мм Масса 66 кг
Цена 17400,00руб
Сварочный трансформатор ТДМ-305 А (220/380 В) AL
Напряжение питания 1х220/2х380 В
Номинальная частота сети 50 Гц
Номинальный сварочный ток 300 А
Диапазон регулирования сварочного тока 60-300 А
Продолжительность нагрузки 40 %
Напряжение холостого хода 70 В
Способ регулирования сварочного тока механический, плавный
Потребляемая мощность 19 кВА
Обмотки трансформатора AL
Габаритные размеры 435х410х535 мм Масса 63 кг
Цена 12250,00руб
Сварочный трансформатор ТДМ-305 (220/380 В) CU
Напряжение питания 1х220/2х380 В
Номинальная частота сети 50 Гц
Номинальный сварочный ток 300 А
Диапазон регулирования сварочного тока 60-300 А
Продолжительность нагрузки 40 %
Напряжение холостого хода 70 В
Способ регулирования сварочного тока механический, плавный
Потребляемая мощность 19 кВА
Обмотки трансформатора CU
Габаритные размеры 435х410х535 мм Масса 63 кг
Цена 19450,00руб
Сварочный трансформатор ТДМ-405 А (380 В) AL
Напряжение питания 2х380 В
Номинальная частота сети 50 Гц
Номинальный сварочный ток 400 А
Диапазон регулирования сварочного тока 70-400 А
Продолжительность нагрузки 40 %
Напряжение холостого хода 70 В
Способ регулирования сварочного тока механический, плавный
Потребляемая мощность 23 кВА
Обмотки трансформатора AL
Габаритные размеры 435х410х535 мм Масса 67 кг
Цена 14400,00руб
Сварочный трансформатор ТДМ-405 (380 В) CU
Напряжение питания 2х380 В
Номинальная частота сети 50 Гц
Номинальный сварочный ток 400 А
Диапазон регулирования сварочного тока 70-400 А
Продолжительность нагрузки 40 %
Напряжение холостого хода 70 В
Способ регулирования сварочного тока механический, плавный
Потребляемая мощность 23 кВА
Обмотки трансформатора CU
Габаритные размеры 435х410х535 мм Масса 73 кг
Цена 22100,00руб
Сварочный трансформатор ТДМ-505 А (380 В) AL
Напряжение питания 2х380 В
Номинальная частота сети 50 Гц
Номинальный сварочный ток 500 А
Диапазон регулирования сварочного тока 80-500 А
Продолжительность нагрузки 40 %
Напряжение холостого хода 70 В
Способ регулирования сварочного тока механический, плавный
Потребляемая мощность 33 кВА
Обмотки трансформатора AL
Габаритные размеры 435х410х535 мм Масса 70 кг
Цена 16650,00руб
Сварочный трансформатор ТДМ-505 (380 В) CU
Напряжение питания 2х380 В
Номинальная частота сети 50 Гц
Номинальный сварочный ток 500 А
Диапазон регулирования сварочного тока 80-500 А
Продолжительность нагрузки 40 %
Напряжение холостого хода 70 В
Способ регулирования сварочного тока механический, плавный
Потребляемая мощность 33 кВА
Обмотки трансформатора CU
Габаритные размеры 435х410х535 мм Масса 79 кг
Цена 23300,00руб
Время последней модификации
1438761953
Что такое сварочный трансформатор?
Трансформатор, встроенный в сварочный аппарат, используется для преобразования входного высокого напряжения или первичной энергии от настенной розетки, обычно от 208 до 600 вольт, при слабом переменном токе (АС) от 15 до 55 ампер. Это преобразуется на стороне вторичной мощности в более низкое напряжение до 80 вольт и диапазон сварочных токов до 1000 ампер переменного тока или более, в зависимости от процесса и оборудования.
Рисунок 1 показано типичное подключение сварочного аппарата к электродуговой сварке в среде защитного газа (SMAW), иллюстрирующее основной источник питания на первичной стороне и выход на электрододержатель со вторичной стороны трансформатора.
Рис. 1. Схема подключения для типичного процесса дуговой сварки в защитных газах
используйте большое количество витков проводов меньшего сечения (N1 на схеме) и меньшее количество витков больших проводов (N2 на схеме) на вторичной стороне. Это выводит низкое напряжение/более высокий ток в зависимости от соотношения витков или количества витков провода на вторичной стороне, как показано на рис. 9.0005 Рисунок 2.
Рисунок 2. Схема понижающего трансформатора
Провода обмотаны вокруг железного сердечника, который создает магнитный поток от движения электрической энергии через трансформатор. Величина выходной силы тока определяет размер трансформатора. Чем выше выходная сила тока, тем больше трансформатор, и тем тяжелее и больше становится машина. На рис. 3 показан типичный трансформатор, переменный ток высокого напряжения/малого тока входит во входной проводник, а переменный ток низкого/напряжения/высокой силы тока выходит на выходной проводник.
Рисунок 3. Фактический понижающий трансформатор
Первые сварочные аппараты работали только на переменном токе и чередовали положительный и отрицательный электроды до 60 раз в секунду согласно Рисунок 4.
Рисунок 4, Изображение сбалансированной волны переменного тока выбор полярности. Для достижения выхода постоянного тока использовался выпрямительный диод согласно 9.0005 Рисунок 5.
Рисунок 5, Типовой диод
Диод работает, пропуская переменный ток через диод, но не позволяя переменному току течь обратно, таким образом создавая постоянный ток (DC). который используется на большинстве сварочных аппаратов сегодня. Эти трансформаторные выпрямители будут использовать ряд диодов в мостовой схеме для генерации постоянного тока на выходе, как показано на рис. 6 . Линейная мощность переменного тока будет проходить через сварочный трансформатор и выходить через ряд выпрямительных диодов в мосту и преобразовываться в плавный выходной постоянный ток.
Рисунок 6. Технология трансформатор-выпрямитель
Сварочный трансформатор для типичных процессов сварки переменным/постоянным током был очень большим и тяжелым, и было сделано много усовершенствований, чтобы уменьшить размер трансформатора. В конце 1970-х годов начали появляться первые сварочные инверторы. Эта инверторная технология была внедрена с рядом преимуществ. Одним из них был способ преобразования входного сигнала высокого напряжения/низкого тока в выходной сигнал низкого напряжения/высокого тока, что позволило бы уменьшить размер и вес сварочного трансформатора. На рис. 7 показано, как технология инвертора работает внутри источника питания.
Рисунок 7. Схема инверторной технологии
Инверсионная технология противоположна выпрямлению, процесс инверсии преобразует постоянный ток в переменный ток высокой частоты с использованием импульсного типа регулирования, состоящего в основном из транзисторных устройств.
Переключение токов выполняется на высоковольтной первичной входной стороне трансформатора, а не на более традиционной вторичной выходной стороне, как описано выше. На рисунке 7 показано, как высокое переменное напряжение поступает и преобразуется в постоянное, переключается на высокочастотный пульсирующий прямоугольный переменный ток, а затем «преобразуется» в низковольтный и сильноточный выпрямленный постоянный ток на выходе. Именно так многие сварочные аппараты сегодня используют эту инверторную технологию, которая снижает потребность в очень больших и тяжелых сварочных трансформаторах и, таким образом, значительно уменьшает размер и вес оборудования.
Эта технология также снижает количество энергии (электроэнергии), используемой инверторной технологией, по сравнению со старыми трансформаторно-выпрямительными машинами.
Билл Экклс, вице-президент PPC and Associates
Сварочный трансформатор Принцип работы и применение | Технические книги Pdf
Сейчас у нас есть много блоков питания переменного тока. Таким образом, использование сварочного трансформатора играет значительную роль в сварке по сравнению с мотор-генераторной установкой. Когда нам нужно использовать мотор-генератор для сварки, нам нужно, чтобы он работал непрерывно, что создает много шума. С помощью сварочного трансформатора сварка производится с меньшим шумом. Теперь давайте подробно рассмотрим сварочный трансформатор.
Конструкция сварочного трансформатора:
1. Сварочный трансформатор представляет собой понижающий трансформатор.
2. Магнитопровод с тонкой первичной обмоткой имеет большое количество витков на одном плече.
3. Вторичная обмотка с меньшим числом витков и большей площадью поперечного сечения на другом плече.
4. Благодаря этому типу обмоток в первичной и вторичной обмотках он ведет себя как понижающий трансформатор.
5. Так мы получаем меньшее напряжение и большой ток с выхода вторичной обмотки. это Конструкция сварочного трансформатора переменного тока.
6. Сварочный трансформатор постоянного тока также имеет такой же тип обмотки, единственное отличие состоит в том, что мы подключаем выпрямитель (который преобразует переменный ток в постоянный) на вторичной обмотке для получения постоянного тока на выходе.
7.Также подключаем дроссель или фильтр для сглаживания постоянного тока. Это будет конструкция сварочного трансформатора постоянного тока. Схемы показаны ниже.
Рис. 1. Сварочный трансформатор постоянного тока
Рис. 2. Сварочный трансформатор переменного тока
Примечание:
Многие люди сомневаются, какая обмотка первичная, а какая вторичная. Обмотка, к которой подключен источник питания, называется первичной обмоткой, а обмотка, к которой подключена нагрузка, называется вторичной обмоткой.
Работа сварочного трансформатора:
1. Поскольку это понижающий трансформатор, у нас меньшее напряжение на вторичной обмотке, которое составляет от 15 до 45 вольт, и высокие значения тока, которые составляют от 200 до 600 А, а также могут быть выше, чем это значение.
2. Для регулировки напряжения на вторичной обмотке имеются отводы на вторичной обмотке, с помощью которых можно получить требуемую величину вторичного тока для сварки.
3. Эти ответвления соединены с несколькими сильноточными выключателями.
4. Теперь один конец вторичной обмотки соединяется со сварочным электродом, а другой конец соединяется со сварочными деталями, как показано на рис. 2. к контактному сопротивлению между свариваемыми деталями и электродом.
6. Из-за высокой температуры кончик электрода плавится и заполняет зазор между свариваемыми деталями.
Это , как работает сварочный трансформатор.
Вольт-амперные характеристики сварочного трансформатора:
На приведенном ниже рисунке показаны вольт-амперные характеристики сварочного трансформатора.
Контроль дуги сварочного трансформатора:
Полное сопротивление сварочного трансформатора должно быть выше, чем у обычного трансформатора для управления дугой, а также для контроля тока.
Мы можем использовать разные реакторы для управления дугой. Они
1.Реактор с резьбой.
2. Реактор с подвижной спиралью.
3. Магнитный шунтирующий реактор.
4. Бесступенчатый реактор.
5. Реактор насыщения.
Теперь давайте подробно рассмотрим каждый из этих методов управления дугой сварочного трансформатора .
1. Дроссель с отводом:
Ниже приведена схема контроля дуги с помощью дросселя с отводом.
С помощью кранов контролируем ток. Имеет ограниченный контроль тока.
2. Дроссель с подвижной катушкой:
Ниже приведена схема управления дугой с использованием реактора с подвижной катушкой.
Расстояние между первичной и вторичной обмотками определяет силу тока. Если расстояние между первичной и вторичной обмотками велико, то ток меньше.
3. Магнитный шунтирующий реактор:
Ниже приведена схема управления дугой с использованием магнитного шунтирующего реактора.
Путем регулировки центрального магнитного шунта изменяется поток. Изменяя поток, можно изменить ток.
4. Бесступенчатый дроссель:
Ниже приведена схема управления дугой с помощью бесступенчатого дросселя.
Изменение высоты ввода активной зоны реактора. Если вставка сердечника больше, реактивное сопротивление выше, поэтому выходной ток будет меньше.