Содержание
5 применений последовательного соединения ламп
Как известно, в быту повсеместно используется параллельное подключение ламп. Однако последовательная схема также может применяться и быть полезна.
Давайте рассмотрим все нюансы обеих схем, ошибки которые можно допустить при сборке и приведем примеры практической их реализации в домашних условиях.
Последовательная схема подключения
В начале рассмотрим простейшую сборку из двух последовательно подключенных лампочек накаливания.
Имеем:
- две лампы вкрученные в патроны
- два провода питания выходящие из патронов
Что нужно, чтобы подключить их последовательно? Ничего сложного здесь нет.
Просто берете любой конец провода от каждой лампы и скручивает их между собой.
На два оставшихся конца вам необходимо подать напряжение 220 Вольт (фазу и ноль).
Как будет работать такая схема? При подаче фазы на провод, она пройдя через нить накала одной лампы, через скрутку попадает на вторую лампочку. И далее встречается с нулем.
Почему такое простое соединение практически не применяется в квартирах и домах? Объясняется это тем, что лампы в этом случае будут гореть менее чем в полнакала.
При этом напряжение будет распределяться на них равномерно. К примеру, если это обычные лампочки по 100 Ватт с рабочим напряжением 220 Вольт, то на каждую из них будет приходиться плюс-минус 110 Вольт.
1 of 2
Соответственно и светить они будут менее чем в половину от своей изначальной мощности.
Грубо говоря, если вы подключите параллельно две лампы по 100Вт каждая, то в итоге получите светильник мощностью в 200Вт. А если эту же схему собрать последовательно, то общая мощность светильника будет гораздо меньше, чем мощность всего одной лампочки.
Вот результат измерения силы тока такой сборки при фактическом питающем напряжении 240В.
Исходя из формулы расчета получаем, что две лампочки светят с мощностью равной всего: P=I*U=69. 6Вт
При этом, падение яркости будет равномерным только при условии, что лампочки у вас одинаковой мощности.
Если они отличаются, допустим одна из них 60Вт, а другая 40Вт, то и напряжение на них будет распределяться уже по другому.
1 of 2
Что это дает нам в практическом смысле при реализации данных схем?
Какая лампочка будет светить ярче и почему
Лучше и ярче будет гореть лампа, у которой нить накала имеет большее сопротивление.
Возьмите к примеру лампочки, кардинально отличающиеся по мощности — 25Вт и 200Вт и соедините последовательно.
Какая из них будет светиться почти в полный накал? Та, что имеет P=25Вт.
Удельное сопротивление ее вольфрамовой нити значительно больше чем у двухсотки, а следовательно падение напряжения на ней сравнимо с напряжением в сети. При последовательном соединении ток будет одинаков в любом участке цепи.
При этом величина силы тока, способная разжечь 25-ти ваттку, никак не способна «поджечь» двухсотку. Грубо говоря, источник света с лампой 200Вт и более, будет восприниматься относительно 25Вт как обычный участок провода, через который течет ток.
Можно увеличить количество ламп и добавить в схему еще одну. Делается это опять все просто.
Два конца питающего провода третьей лампы, скручиваете с любыми концами от первых двух. А на оставшиеся опять подаете 220В.
1 of 2
Как будет светиться в этом случае данная гирлянда? Падение напряжения будет еще больше, а значит лампочки загорятся не то что в полсилы, а вообще будут еле-еле гореть.
Недостатки схемы
Помимо существенного падения напряжения, вторым отрицательным моментом такой схемы, является ее ненадежность.
Если у вас сгорит всего одна из лампочек в этой цепочке, то сразу же потухнут и все остальные.
Еще нужно сделать замечание, что такая последовательная схема будет хорошо работать на обычных лампах накаливания. На некоторых других видах, в том числе светодиодных, никакого эффекта можете и не дождаться.
У них в конструкции может быть заложена электронная схема, которой нужно питание порядка 220В. Безусловно, они могут работать и от пониженных значений в 150-160В, но 90В и менее, для них уже будет недостаточно.
Ошибки при сборке схемы и подключении выключателя
Кстати, некоторые электрики при монтаже освещения в квартире могут совершить случайную ошибку, которая как раз таки связана с последовательным подключением источников освещения.
В результате, у вас будет наблюдаться следующий эффект. При включении выключателя света будет загораться одна лампочка в комнате, а при его выключении — другая.
1 of 2
При этом невозможно будет добиться того, чтобы потухли обе сразу. Как такое возможно?
Ошибка кроется в том, что электрик просто перепутал место присоединения одного из проводов выключателя и воткнул его в разрыв между двух ламп разной мощности. Вот наглядная схема такой неправильной сборки.
Как видно из нее, при включении напряжения, через контакты одноклавишника на второй источник освещения подается напряжение 220V, и он как положено загорается.
При этом первый источник остается без питания, т.к. с обоих сторон к нему подведена «одноименка».
А когда вы разрываете цепь, здесь уже образуется та самая последовательная схема и лампа меньшей мощности будет светиться.
В то время как большей, практически потухнет. Все как и было описано выше.
Применение в быту
Где же можно в быту, применить такую казалось бы не практичную схему?
Самое широко известное использование подобных конструкций — это елочные новогодние гирлянды.
Также можно сделать последовательную подсветку в длинном проходном коридоре и без особых затрат получить освещение в стиле лофт.
Постоянно горят лампочки в подъезде или дома из-за большого напряжения? Самый дешевый выход — включить последовательно еще одну.
Вместо одной 60Вт, включаете две сотки и пользуетесь ими практически «вечно». Из-за пониженного напряжения в 110В, вероятность выхода их из строя снижается в сотни раз.
Еще одно оригинальное применение, которым я все таки не рекомендую пользоваться, но отдельные электрики в безвыходных ситуациях к нему прибегают. Это так называемая фазировка трехфазных цепей.
Как выполнить фазировку вводов лампочками накаливания
Допустим, вам нужно подключить параллельно между собой два трехфазных (380В) ввода, от одного источника питания. Вольтметра, мультиметра или тестера у вас под рукой нет. Что делать?
Ведь если перепутать фазы, то запросто можно создать междуфазное КЗ! И здесь вам опять поможет последовательная сборка всего из двух лампочек.
Собираете их по самой первой приведенной схеме и подсоединив один конец провода питания на фазу ввода №1, другим концом поочередно касаетесь жил ввода №2.
При одноименных фазах, лампочки светиться не будут (например фА ввод№1 — фА ввод№2).
А при разных (фА ввод№1 — фВ ввод№2) — они загорятся.
Такой эксперимент только с одной лампой, вам бы никогда не удался, так как она бы моментально взорвалась от повышенного для нее напряжения в 380В. А в последовательной сборке с двумя изделиями одинаковой мощности, к ним будет приложено напряжение в пределах нормы.
Но самое лучшее и практичное применение — это использовать данную схему вовсе не для освещения, а для обогрева. То есть, ваши источники света в первую очередь будут работать не как светильники, а как обогреватели.
Как сделать такую простую и незамысловатую инфракрасную печку, читайте в статье по ссылке ниже.
Что-то подобное зачастую применяется в инкубаторах.
Схема параллельного подключения
Теперь давайте рассмотрим параллельную схему соединения.
При параллельном включении концы питающих проводов двух лампочек, просто скручиваются между собой. Далее, на них подается напряжение 220V.
1 of 2
Таким образом можно подключить любое количество светильников. Самое главное, чтобы сечение питающих проводников было рассчитано на такую нагрузку.
В этом случае все светиться и гореть у вас будет ровно с такой яркостью, на которую изначально и были рассчитаны светильники.
На практике, конечно в одну кучу все провода не скручиваются, а поступают несколько иначе. Пускают один общий протяженный кабель, а уже к нему, в виде отпаек, подсоединяются отдельные лампочки.
Пи этом схема может быть как шлейфная, так и лучевая. Но обе они являются параллельными.
Данная схема применяется повсеместно — в многорожковых люстрах, в уличных светильниках, в домашних декоративных светильниках и т.д.
И если при этом перегорит любая лампочка, остальные как ни в чем ни бывало продолжат светиться.
Напряжение на них подается одновременно и всегда составляет номинальные 220В.
Но все таки при монтаже освещения у себя дома, используя параллельное подключение, не забывайте и о последовательном.
Как было указано выше, оно тоже имеет свои преимущества в определенных ситуациях и может здорово помочь с решением множества задач (декоративная подсветка, светильники-обогреватели, «вечная» лампочка и т.д).
схема, смешанное подключение, плюсы и минусы
При размещении сетевых осветительных приборов (ламп или светодиодных лент) сомнений в том, как подключать их между собой, как правило, не возникает. Если они рассчитаны на напряжение 220 Вольт, традиционно применяемый способ включения – соединение в параллель. Последовательное подключение лампочек используется лишь в редких случаях, когда на их основе делаются гирлянды, например. Другая распространенная причина применения этого способа – желание повысить срок эксплуатации осветительных изделий, используя их на неполную рабочую мощность.
Содержание
- Последовательное соединение
- Параллельное включение
- Законы смешанного соединения
- Типы ламп и схемы подключения
- Люминесцентные лампы
- Галогенные источники и светодиодные лампы
Последовательное соединение
Последовательная схема подключения
Нетиповое последовательное подключение лампочек к сети 220 Вольт отличается следующими характеристиками:
- через все включенные в цепь осветительные элементы течет одинаковый ток;
- распределение падений напряжений на них будет пропорционально внутренним сопротивлениям;
- соответственно этому распределяется мощность, расходуемая на каждом осветителе.
При последовательном соединении лампочек в схеме с общим выключателем рассчитанные на 220 Вольт осветители будут гореть не в полную силу.
При установке в цепочку двух лампочек накаливания с различной мощностью P ярче горит та из них, что обладает большим сопротивлением, то есть менее энергоемкая. Объясняется это очень просто: из-за большего внутреннего сопротивления напряжение на ней будет более значительным по величине. Поскольку в формулу для P этот параметр входит в квадрате P=U2/R – то при фиксированном сопротивлении на ней рассеивается большая мощность (она горит ярче).
Преимуществом последовательного включения ламп является более щадящий режим работы из-за меньшей мощности, потребляемой на каждой из них. Во всех остальных отношениях такой способ подсоединения нежелателен, поскольку его отличают следующие характерные недостатки:
- при выходе из строя одной лампы обесточивается вся цепь, так что осветительная линия полностью перестает работать;
- при установке различных по мощности лампочек они дают разное свечение;
- невозможность использования последовательной схемы при соединении энергосберегающих ламп (для них нужно полное напряжение 220 Вольт).
Последовательный вариант оптимально подойдет для создания «мягкого света» в светильниках-бра или при изготовлении гирлянд из низковольтных светодиодных элементов.
Параллельное включение
Параллельное соединение лампочек
Классическое параллельное подключение ламп отличается от последовательного способа тем, что в этом случае ко всем осветителям прикладывается полное сетевое напряжение.
При параллельном подключении лампочек через каждое из ответвлений протекает «свой» ток, зависящий от сопротивления данной цепочки.
Проводники, подводимые к цоколям и патронам ламп, подсоединяются к одному проводу в виде параллельной сборки. К бесспорным преимуществам этого метода относят следующие его особенности:
- при перегорании одной из лампочек остальные продолжают работать;
- в каждой из ветвей они горят в полную мощность, поскольку ко всем одновременно приложено полное напряжение;
- допускается использовать энергосберегающие лампочки;
- для подключения к сети достаточно вывести из комнатной люстры нужное количество фазных проводников и оформить их в виде коммутируемой группы.
Недостатков у этого метода практически нет, за исключением большого расхода проводников при сильно разветвленных цепях. Без проблем можно подключить несколько лампочек к одному проводу за счет использования принципа разводки. Типовая схема параллельного соединения лампочек с выключателем ничем особым не отличается от обычного включения. В этом случае в нее дополнительно вводится клавишный переключатель.
Законы смешанного соединения
Смешанное соединение
Смешанное включение осветителей описывается следующим образом:
- В его основе лежит параллельное соединение нескольких электрических ветвей.
- В некоторых из ответвлений нагрузки включаются последовательно в виде ряда лампочек, располагающихся одна за другой.
В отдельные параллельные ветви допускается подключать различные типы потребителей, включая лампы накаливания, а также галогенные или светодиодные источники.
При рассмотрении особенностей смешанного соединения обязательно учитываются следующие закономерности:
- Через каждый из последовательно включенных участков цепи протекает один и тот же ток.
- При прохождении через звено с параллельно включенными потребителями он разветвляется, а на выходе снова становится однолинейным.
- С увеличением количества элементов в рабочей цепи абсолютная величина тока в ней уменьшается.
- Напряжение на одном звене равно произведению токовой составляющей на общее сопротивление ветви (закон Ома).
- При росте числа элементов в цепи напряжение на каждом из них соответственно уменьшается.
Смешанный способ подключения имеет ряд преимуществ, определяемых достоинствами каждой из двух основных схем соединения. От последовательного он «унаследовал» его экономичность, а от параллельного – возможность работать даже при выходе из строя элемента в одной из комбинированных цепочек.
Рекомендуется при использовании смешанной схемы группировать в последовательные цепи лампы одинаковой мощности, а в параллельные ветви ставить осветители с различным энергопотреблением.
Типы ламп и схемы подключения
Перед монтажом различных видов осветительных приборов желательно ознакомиться с принципом работы и их внутренним устройством, а также с особенностями схемы включения в питающую сеть. Также важно знать, что каждая из разновидностей способна работать длительное время лишь при строгом соблюдении правил эксплуатации.
Люминесцентные лампы
Люминесцентные лампы часто устанавливают в служебных помещениях
Помимо традиционных ламп накаливания для освещения служебных и частично бытовых пространств нередко применяются их люминесцентные трубчатые аналоги. Они чаще всего устанавливаются на следующих объектах:
- в цехах и на конвейерных линиях промышленных производств;
- в административных зданиях и в различных боксах;
- в гаражах, торговых залах и подобных им местах общественного пользования.
Значительно реже они используются в домашних условиях – иногда ставят на кухне для организации подсветки рабочей зоны.
Особенностью люминесцентных осветителей является невозможность прямого подключения к сети 220 Вольт, так как для пробоя газового столба требуется высокое напряжение. Для их включения используется особая электронная схема, в состав которой входят такие элементы запуска как дроссель, стартер и высоковольтный конденсатор (в некоторых случаях он не обязателен).
В последние годы неэкономичные и сильно гудящие во время работы дроссельные преобразователи заменяются так называемым «электронным балластом». Порядок его подключения обычно указывается в виде схемы, изображенной на корпусе прибора.
При использовании электронного адаптера подключается одна газоразрядная лампа, либо устанавливается сразу две штуки, соединенные последовательно.
Галогенные источники и светодиодные лампы
При монтаже подвесных потолков традиционно устанавливают галогенные лампы
Осветители первого типа традиционно устанавливаются при монтаже подвесных и натяжных потолков. Они также идеально подходят при необходимости освещения зон с повышенной влажностью, так как выпускаются в нескольких модификациях. Одно из них рассчитано на работу от 12-ти Вольт. Для их получения в районе потолочных перекрытий устанавливается преобразователь, рассчитанный на соответствующее выходное напряжение.
Для светодиодных ламп характерно наличие встроенного драйвера, позволяющего получать нужное напряжение питания (12 или 24 Вольта). Образцы светодиодных осветителей, рассчитанные на работу от 220 Вольт, включаются подобно лампам накаливания. Но в отличие от обычных осветителей включать их в виде последовательной цепочки не рекомендуется.
Важно правильно подбирать тип ламп для определения нужного порядка их подключения. Не допускается соединять в последовательную цепочку энергосберегающие осветители, при монтаже люминесцентных и галогенных светильников руководствуются схемами их включения. При пониженном сетевом напряжении энергосберегающие лампы быстро выходят из строя, а люминесцентные осветители могут совсем не загореться.
Как подключить лампы последовательно? Базовый монтаж электропроводки
В сегодняшнем учебном пособии по установке электропроводки мы покажем , как подключить точки освещения в . Хотя мы знаем, что последовательное соединение для бытовой проводки, такой как вентиляторы, выключатели, лампочки и т. д., не является предпочтительным способом вместо параллельного или последовательно-параллельного соединения. Но в некоторых случаях нам необходимо последовательно подключать и подключать электроприборы, исходя из системных требований. Одной из наиболее распространенных конфигураций последовательно соединенных огней является цепочка рождественских огней, в которой светодиоды и маленькие лампочки в основном соединены последовательно.
Как подключить лампы последовательно?
На приведенном выше рисунке все три световые точки соединены последовательно. Каждая лампа подключена к следующей, т.е. L (линия, также известная как фаза) подключена к первой лампе, а другие лампы подключены через средний провод, а последний провод как N (нейтральный) подключен к напряжение питания тогда.
Согласно аналогии с последовательной цепью, протекающий ток одинаков во всех этих лампах накаливания / лампах, но напряжение отличается, в отличие от параллельной цепи, где напряжение одинаково в каждой точке, где ток разный.
Одним из основных недостатков последовательной цепи освещения является то, что добавление или удаление одной лампы из цепи повлияет на всю цепь, т. е. другие лампы будут светиться тусклее, а другие подключенные устройства и приборы не получат достаточного или требуемого рабочего напряжения, потому что напряжение в последовательной цепи разное в каждой точке, но протекающий ток одинаков.
В цепь такого типа можно добавить любое количество точек освещения или нагрузки (в соответствии с расчетом нагрузки цепи или подцепи), просто удлинив L и N провода к другим лампам, но они не будут светиться в соответствии с номинальной выходной эффективностью. Короче говоря, добавление большего количества лампочек в последовательную цепь приведет к затемнению остальных световых точек.
Другим серьезным дефектом последовательной цепи освещения является то, что, поскольку все лампы или лампочки подключены между линией L и нейтралью N соответственно, если одна из лампочек выйдет из строя, остальная часть цепи не будет работать, поскольку цепь будет разомкнута, как показано на рис. ниже. Здесь вы можете видеть обрыв линейного провода, подключенного к лампе 3, поэтому лампа выключена, а остальная цепь работает правильно, т. Е. Лампы светятся.
Светильники, соединенные последовательно
Недостатки последовательной цепи освещения.
- Обрыв провода, выход из строя или удаление любой отдельной лампы приведет к разрыву цепи и прекращению работы всех остальных, поскольку в цепи протекает только один путь тока.
- Если в последовательную цепь освещения добавить больше ламп, их яркость будет снижена. потому что напряжение распределяется в последовательной цепи. Если мы добавим больше нагрузок в последовательную цепь, падение перенапряжения увеличится, что не является хорошим признаком для защиты электроприборов.
- представляет собой проводку типа «ВСЕ или НИ ОДИН», что означает, что все устройства будут работать одновременно или все они отключатся, если возникнет неисправность в любом из подключенных устройств в последовательной цепи.
- Высокое напряжение питания необходимо, если нам нужно добавить дополнительную нагрузку (лампочки, электронагреватели, кондиционер и т. д.) в последовательной цепи. Например, если пять ламп на 220 В должны быть соединены последовательно, то напряжение питания должно быть: 5 x 220 В = 1,1 кВ.
- Общее сопротивление последовательной цепи увеличивается (и ток уменьшается) при увеличении нагрузки в цепи.
- В соответствии с будущими потребностями в последовательную цепь тока следует добавлять только те электроприборы, если они имеют такой же номинальный ток, как и ток, одинаковый в каждой точке последовательной цепи. Однако мы знаем, что электрические приборы и устройства, такие как лампочки, вентиляторы, обогреватели, кондиционеры и т. д., имеют разный номинальный ток, поэтому их нельзя включать в последовательную цепь для бесперебойной и эффективной работы.
Проводка серии
Преимущества :
- При последовательном подключении требуется меньший размер кабеля.
- Мы используем для защиты цепи соединения предохранителей и автоматических выключателей последовательно с другими приборами.
- не вызывает накладных расходов из-за высокого сопротивления, когда в цепь добавляется дополнительная нагрузка.
- Срок службы батареи при последовательном включении больше, чем при параллельном.
- Это самый простой способ подключения электропроводки, и неисправность можно легко обнаружить и устранить по сравнению с параллельным или последовательно-параллельным подключением.
Цепь серии
Недостатки последовательной цепи освещения
Полезно знать:
- Выключатели и предохранители должны быть подключены через линию (под напряжением) провод.
- Параллельное соединение электрических устройств и устройств, таких как вентиляторы, розетки, лампочки и т. д., является предпочтительным способом вместо последовательного соединения.
- Метод параллельного или последовательно-параллельного подключения более надежен, чем последовательное подключение.
Предупреждение:
- Электричество — наш враг, если вы дадите ему шанс убить вас, помните, он его никогда не упустит. Пожалуйста, ознакомьтесь со всеми предостережениями и инструкциями, выполняя этот урок на практике.
- Отключите источник питания перед обслуживанием, ремонтом или установкой электрооборудования.
- Никогда не пытайтесь работать с электричеством без надлежащего руководства и осторожности.
- Работать с электричеством только в присутствии лиц, имеющих хорошие знания и практическую работу и опыт, умеющих обращаться с электричеством.
- Прочтите все инструкции и предупреждения и строго следуйте им.
- Самостоятельное выполнение электромонтажных работ опасно, а в некоторых регионах является незаконным. Свяжитесь с лицензированным электриком или поставщиком электроэнергии, прежде чем выполнять какие-либо изменения в подключении электропроводки.
- Автор не несет ответственности за какие-либо убытки, травмы или ущерб в результате отображения или использования этой информации или в случае попытки использования какой-либо схемы в неправильном формате. Поэтому, пожалуйста! Будьте осторожны, потому что все дело в электричестве, а электричество слишком опасно.
Связанные основные руководства по установке домашней электропроводки:
- Как подключить лампы параллельно?
- Как подключить переключатели последовательно?
- Как подключить переключатели параллельно?
- Как управлять лампой с помощью одностороннего или одностороннего переключателя?
- Введение в последовательное, параллельное и последовательно-параллельное соединения
- , параллельное и последовательно-параллельное соединение батарей
- Разница между последовательной и параллельной схемой — сравнение
Серия
Показать полную статью
Связанные статьи
Кнопка «Вернуться к началу»
Что такое последовательные и параллельные цепи?
Светильники могут быть соединены последовательно или параллельно. Лампы, соединенные последовательно, используют одну и ту же цепь, в то время как лампы, соединенные параллельно, имеют свою собственную цепь.
Краткий обзор самой важной информации:
- 9Цепь серии 0034: все лампы подключены к одной цепи
- тандемная последовательная цепь: тип последовательной цепи, в которой два светильника подключены к одному балласту
- параллельная цепь: у каждого фонаря своя цепь
- двойная параллельная цепь: тип параллельной цепи, в которой два источника света соединены параллельно (один индуктивный и один емкостной)
.
Вверху: последовательная цепь с двумя резисторами;
Внизу: параллельная цепь с двумя резисторами
Saure — собственная работа, CC0, ссылка
Что такое последовательная цепь?
В последовательной цепи все компоненты подключены к одной и той же одиночной цепи. Это означает, что через все подключенные компоненты протекает один и тот же ток, и они разделяют ток. Вы можете подключить столько компонентов, сколько позволяет блок питания.
Очень распространенным примером последовательной цепи является цепочка огней. Например, если вы подключите цепочку из десяти ламп к розетке 230 В, каждая лампа получит 23 В. Напряжение равномерно распределяется между всеми компонентами. Если один свет перегорит, вся цепочка огней не загорится.
Серийная цепь для газоразрядных ламп
Если газоразрядные лампы имеют одинаковую номинальную цепь, их можно соединить последовательно. Убедитесь, что используется правильный балласт, чтобы не превышалось ограничение по току.
Серийная цепь для ламп накаливания
Номинальная цепь для ламп накаливания также должна быть идентична для их последовательного соединения.
Что такое тандемный контур?
Тандемная цепь — это тип последовательной цепи. Два источника света, например люминесцентные лампы, подключаются к одному балласту. Однако для каждой трубки по-прежнему нужен свой стартер. Стартер должен подходить для использования в тандемной схеме. Подходящие стартеры содержат в названии изделия обозначение «серия» или аббревиатуру SER.
Некоторые из имеющихся у нас пускателей, которые подходят для последовательных/тандемных цепей, включают:
Стартер Osram 4-22W
Osram 4-22W Безопасность
Philips S2 4-22 Вт
Philips S2E 18–22 Вт
Одиночные пускатели не подходят для использования с последовательными/тандемными цепями, поскольку они не работают с общим напряжением сети.
Тандемная схема для светодиодов
Если вы хотите переключиться с люминесцентных ламп на светодиодные лампы с тандемными цепями, потребуется повторная проводка. Пожалуйста, проконсультируйтесь с экспертом для этого.
Что такое параллельная цепь?
Параллельная цепь соединяет два или более биполярных компонента. Важно соединять только одинаковые полюса друг с другом.
Каждый свет в параллельной цепи имеет собственную цепь. Отдельные токи складываются в общий ток. Напряжение для каждой лампы одинаковое. В отличие от последовательной цепи, если одна лампочка выходит из строя в параллельной цепи, другие лампочки продолжают гореть.
Параллельная цепь для газоразрядных ламп
Газоразрядные лампы могут быть подключены параллельно только косвенно. Необходимый балласт можно подключить последовательно. Лампу и балласт вместе можно соединить параллельно.
Что такое двойная цепь?
Двойной контур соединяет две ветви люминесцентных ламп. Одна ветвь индуктивная и состоит из обычного балласта и трубки.