Синхронный двигатель: Синхронный электродвигатель с обмоткой возбуждения

Содержание

Синхронный электродвигатель с обмоткой возбуждения

Дмитрий Левкин

  • Конструкция
  • Принцип работы
  • Синхронная скорость
  • Прямой запуск
  • Выход из синхронизма
  • Синхронный компенсатор

Синхронный электродвигатель с обмоткой возбуждения, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть. Статор обычно имеет стандартную трехфазную обмотку, а ротор выполнен с обмоткой возбуждения. Обмотка возбуждения соединена с контактными кольцами к которым через щетки подходит питание.

Синхронный электродвигатель с обмоткой возбуждения (щетки не показаны)

Постоянная скорость вращения синхронного электродвигателя достигается за счет взаимодействия между постоянным и вращающимся магнитным полем. Ротор синхронного электродвигателя создает постоянное магнитное поле, а статор – вращающееся магнитное поле.

Работа синхронного электродвигателя основана на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора

Статор: вращающееся магнитное поле

На обмотки катушек статора подается трехфазное переменное напряжение. В результате создается вращающееся магнитное поле, которое вращается со скоростью пропорциональной частоте питающего напряжения. Подробнее о том, как посредством трехфазного напряжения питания образуется вращающееся магнитное поле можно прочитать в статье «Трехфазный асинхронный электродвигатель».

Взаимодействие между вращающимся (у статора) и постоянным (у ротора) магнитными полями

Ротор: постоянное магнитное поле

Обмотка ротора возбуждается источником постоянного тока через контактные кольца. Магнитное поле создаваемое вокруг ротора возбуждаемое постоянным током показано ниже. Очевидно, что ротор ведет себя как постоянный магнит, так как имеет такое же магнитное поле (в качестве альтернативы можно представить, что ротор сделан из постоянных магнитов). Рассмотрим взаимодействие ротора и вращающегося магнитного поля. Предположим вы придали ротору начальное вращение в том же направлении как у вращающегося магнитного поля. Противоположные полюса вращающегося магнитного поля и ротора будут притягиваться друг к другу и они будут сцепляться с помощью магнитных сил. Это значит, что ротор будет вращаться с той же скоростью, что и вращающееся магнитное поле, то есть ротор будет вращаться с синхронной скоростью.

Магнитные поля ротора и статора сцепленные друг с другом

Скорость с которой вращается магнитное поле может быть вычислена по следующему уравнению:

,

  • где Ns – частота вращения магнитного поля, об/мин,
  • f – частота тока статора, Гц,
  • p – количество пар полюсов.

Это значит, что скорость синхронного электродвигателя может очень точно контролироваться изменением частоты питающего тока. Таким образом эти электродвигатели подходят для высокоточных приложений.

Почему синхронные электродвигатели не запускаются от электрической сети?

Если ротор не имеет начального вращения, ситуация отличается от описанной выше. Северный полюс магнитного поля ротора будет притягиваться к южному полюсу вращающегося магнитного поля, и начнет двигаться в том же направлении. Но так как ротор имеет определенный момент инерции, его стартовая скорость будет очень низкой. За это время южный полюс вращающегося магнитного поля будет замещен северным полюсом. Таким образом появятся отталкивающие силы. В результате чего ротор начнет вращаться в обратную сторону. Таким образом ротор не сможет запуститься.

Демпферная обмотка — прямой запуск синхронного двигателя от электрической сети

Чтобы реализовать самозапуск синхронного электродвигателя без системы управления между наконечниками ротора размещается «беличья клетка», которая также называется демпферной обмоткой. При запуске электродвигателя катушки ротора не возбуждаются. Под действием вращающегося магнитного поля, индуцируется ток в витках «беличьей клетки» и ротор начинает вращаться подобно тому, как запускаются асинхронные двигатели.

Когда ротор достигает своей максимальной скорости, подается питание на обмотку возбуждения ротора. В результате, как говорилось ранее, полюса ротора сцепляются с полюсами вращающегося магнитного поля и ротор начинает вращаться с синхронной скоростью. При вращении ротора с синхронной скоростью, относительное движение между белечьей клеткой и вращающимся магнитным полем равно нулю. Это значит, что отсутствует ток в короткозамкнутых витках, а следовательно «беличья клетка» не оказывает воздействия на синхронную работу электродвигателя.

Синхронные электродвигатели имеют постоянную скорость независящую от нагрузки (при условии что нагрузка не превышает макимально допустимую). Если момент нагрузки больше, чем момент создаваемый самим электродвигателем, то он выйдет из синхронизма и остановиться. Низкое напряжение питания и низкое напряжение возбуждения также могут быть причинами выхода двигателя из синхронизма.

Синхронные электродвигатели могут также использоваться для улучшения коэффициента мощности системы. Когда единственной целью использования синхронных электродвигателей является улучшение коэффициента мощности их называют синхронными компенсаторами. В таком случае вал электродвигателя не соединяется с механической нагрузкой и вращается свободно.

Отличие синхронного от асинхронного двигателя.

Основная задача электродвигателя — преобразовывать электрическую энергию в механическую. Сегодня электродвигатели изготавливаются как постоянного, так и переменного тока. Среди двигателей переменного тока лидируют асинхронные и синхронные двигатели. Асинхронные двигатели малой и средней мощности относятся к группе наиболее часто используемых электродвигателей. Они широко используются как в промышленности, так и в бытовой технике.

В промышленности чаще всего используются асинхронные двигатели трехфазные. Они используются, например, в энергетике — в качестве приводов для собственных нужд электростанций, в строительстве, на транспорте, в коммунальном хозяйстве — в качестве приводов насосов водоснабжения и т. д. 

Отличие асинхронного электродвигателя от синхронного

С виду внешне они похожи, порой даже специалист не отличит по внешним признакам синхронный электродвигатель от асинхронного. У обоих электродвигателей есть неподвижный статор, состоящий из обмоток (катушек), которые уложены в пазы сердечника, набранного из пластин, выполненных из электротехнической стали, и подвижный ротор. Кроме того, функция этих типов электродвигателей одна и та же — создание вращающегося магнитного поля статора.

Ротор синхронного двигателя имеет обмотку возбуждения с независимым питанием. Статоры синхронного и асинхронного двигателя устроены одинаково, функция в каждом случае одна и та же — создание вращающегося магнитного поля статора.

Обороты асинхронного двигателя под нагрузкой всегда на величину скольжения отстают от вращения магнитного поля статора, в то время как обороты синхронного двигателя равны по частоте «оборотам» магнитного поля статора. И поэтому у асинхронного двигателя есть такой параметр — как СКОЛЬЖЕНИЕ — разность скоростей вращения ротора и вращающегося магнитного поля в статоре. У синхронного электродвигателя частота вращения ротора всегда равна частоте вращения электромагнитного поля.

У этих двух типов двигателей разные области применения: синхронные электродвигатели отличаются гораздо большей мощностью и полезной нагрузкой, но они дороже и сложней. И поэтому асинхронные двигатели востребованы там, где достаточно их характеристик, ведь они дешевле и проще в изготовлении.

Недостатки и преимущества двигателей

Синхронные двигатели

Синхронные двигатели имеют довольно сложную конструкцию, обусловленную наличием щеточного узла. Кроме того, для их работы требуется дополнительный источник постоянного тока. Еще одним недостатком является невозможность их эксплуатации в условиях частых пусков и остановов. Однако все это компенсируется большой мощностью, высоким КПД, устойчивостью к перепадам напряжения в питающей сети и стабильной частотой вращения вала, вне зависимости от величины нагрузки на него.

Синхронные электрические машины рентабельны при мощностях свыше 100 кВт и основное применение находят для вращения мощных вентиляторов, на различных металлургических производствах, для привода насосов, которые обладают не только значительной мощностью, но и долгим режимом функционирования  т. д.

Асинхронный двигатель

Асинхронный двигатель в отличие от синхронных машин более чувствителен к колебаниям напряжения и не может сохранять номинальную скорость вращения, при увеличении нагрузки. В большинстве случаев недостатки компенсируются путем применения преобразователей частоты и других устройств пуска. Но простота конструкции, длительный срок эксплуатации, универсальность применения, способность работать в режиме частых включений и остановок делают эти машины наиболее распространенными в промышленном и бытовом секторе. 

 

Синхронный двигатель против асинхронного двигателя —

Электродвигатели — это оборудование, используемое для преобразования электричества в механическую энергию. Они используют электромагнетизм для работы, что облегчает взаимодействие между электрическим током и магнитным полем двигателя. Это взаимодействие создает крутящий момент в проволочной обмотке, который заставляет вал двигателя вращаться. Электродвигатели часто используются в таких приложениях, как электроинструменты, бытовая техника, вентиляторы, гибридные или электрические транспортные средства и многие другие.

В этом сообщении блога мы рассмотрим, как работают электродвигатели переменного тока (AC), а также различные различия между синхронными и асинхронными двигателями.

Как работает электродвигатель переменного тока?

Двигатель переменного тока специально преобразует переменный ток в механическую энергию за счет использования процесса электромагнитной индукции. В этих двигателях используется статор и ротор для работы с переменным током, при этом статор остается неподвижным, а ротор вращается.

В зависимости от применения могут использоваться однофазные или трехфазные двигатели переменного тока. Трехфазные двигатели переменного тока идеально подходят для применений, требующих большого преобразования мощности, в то время как приложения, требующие преобразования малой мощности, как правило, используют однофазные двигатели переменного тока. Например, однофазные двигатели переменного тока широко используются в жилых и коммерческих устройствах.

Существуют две основные категории двигателей переменного тока: синхронные и асинхронные. Эти типы отличаются скоростью вращения ротора по сравнению со скоростью статора.

Синхронный двигатель и асинхронный двигатель

Принципиальное отличие этих двух двигателей состоит в том, что скорость вращения ротора относительно скорости статора у синхронных двигателей одинакова, а скорость вращения ротора у асинхронных двигателей меньше его синхронной скорости . Вот почему асинхронные двигатели также известны как асинхронные двигатели.

Асинхронный характер асинхронных двигателей создает скольжение — разницу между скоростью вращения вала и скоростью магнитного поля двигателя — что позволяет увеличить крутящий момент. Эти двигатели питаются от статора, а ротор индуцирует ток — отсюда и название «асинхронный» двигатель. Синхронные двигатели не имеют скольжения, потому что статор и ротор синхронизированы и требуют внешнего источника питания переменного тока.

Синхронные двигатели имеют два электрических входа, что делает их машинами с двойным возбуждением. В трехфазных синхронных двигателях обычно трехфазный переменный ток или другой вход обеспечивает питание обмотки статора, необходимой для создания крутящего момента. В качестве источника питания ротора часто используется постоянный ток, который либо запускает, либо возбуждает ротор. Когда поля статора и ротора замыкаются вместе, двигатель становится синхронным. Эти двигатели используются в таких приложениях, как электростанции, производственные предприятия и регулирование напряжения в линиях электропередачи.

В отличие от синхронных двигателей, асинхронные двигатели могут запускаться при подаче питания на статор, что устраняет необходимость в источнике питания для возбуждения или запуска ротора. Эти двигатели также имеют конструкцию с короткозамкнутым ротором или обмоткой, что привело к разработке таких типов двигателей, как асинхронные двигатели с пусковым конденсатором, асинхронные двигатели с короткозамкнутым ротором и двигатели с двойным короткозамкнутым ротором. Асинхронные двигатели используются в центробежных вентиляторах и компрессорах, конвейерах, токарных станках и лифтах.

Позвольте компании TLC помочь вам найти электродвигатель для вашего применения

Электрические двигатели используются в самых разных областях: от питания предприятий до небольших индивидуальных приложений, таких как бытовая техника. OEM-производителям и поставщикам электродвигателей нужны партнеры, которым они могут доверять для производства надежных деталей.
Thomson Lamination предлагает высококачественные штампованные компоненты для ламинирования электродвигателей. Мы можем производить большие объемы ламинирования ротора и статора с использованием металлов с высокой проводимостью для синхронных или асинхронных двигателей. Чтобы получить более подробную информацию о наших возможностях, свяжитесь с нами сегодня.

Основы синхронных двигателей

Майк Свитцер, менеджер по продуктовой линейке двигателей

Компания Southwest Electric ежедневно работает с синхронными двигателями в наших магазинах. Эти двигатели отличаются тем, что они предотвращают магнитное скольжение и отлично подходят для приложений, где требуется постоянная и точная скорость. В этой статье объясняются некоторые основы работы синхронных двигателей.

Магнитное скольжение

В отличие от синхронных двигателей переменного тока, асинхронные двигатели переменного тока имеют магнитное скольжение, что означает, что относительная скорость между вращающимся магнитным потоком статора и ротором будет магнитно отставать. Чтобы предотвратить это скольжение, синхронные роторы имеют катушки возбуждения с неподвижным магнитным полюсом на каждом из последующих полюсов, что определяется конструкцией/скоростью, с которой он был изготовлен. Эта установка заставляет каждый магнитный полюс ротора оставаться «синхронизированным» с вращающимся магнитным полем, создаваемым обмотками статора. Старые синхронные двигатели были разработаны с контактными кольцами и индуцировались внешним источником, обычно бортовым генератором постоянного тока, подающим постоянное напряжение непосредственно на контактные кольца для возбуждения катушек вращающегося поля на синхронном роторе. Сегодня большинство синхронных двигателей оснащены диодным колесом, которое преобразует постоянное напряжение от бортового генератора переменного тока, размещенного на главном валу ротора, который может быть самовозбуждающимся или бесщеточным. Техника пуска реализуется с помощью электронных пусковых компонентов, внешних по отношению к двигателю, и синхронизируется для запуска двигателя в его приложении.

Коэффициент мощности и

Амортизирующие обмотки

Важно знать, что синхронные двигатели могут работать с отстающим или опережающим коэффициентом мощности. Недовозбуждение вращающегося поля вызовет отстающий коэффициент мощности. Поток воздушного зазора в этой точке недостаточен. И наоборот, слишком сильное возбуждение может привести к опережающему коэффициенту мощности. В этом случае поток в воздушном зазоре превышает нормальное возбуждение, необходимое для поддержания двигателя в пределах коэффициента мощности.

Ротор синхронного двигателя имеет амортизирующие обмотки (AW), которые помогают гасить переходные колебания, вызванные колебаниями нагрузки. Эти типы обмоток вставляются в верхнюю внешнюю кромку катушки возбуждения. Амортизирующие обмотки также помогают ротору во время запуска, когда двигатель не нагружен, например, в компрессоре. При подаче питания на обмотки статора AW действует как индукционная обмотка на роторе, помогая вращать ротор и разгонять его до скорости, прежде чем основные катушки возбуждения будут запитаны постоянным напряжением для синхронизации скорости с обмотками статора. После синхронизации к двигателю может быть приложена нагрузка. Когда двигатель достигает синхронной скорости, AW не будет проводить ток, так как нет проскальзывания. Однако любое отклонение от синхронной скорости создаст проскальзывание и вызовет ток в AW и ослабит крутящий момент. Это уменьшит величину переходных колебаний при вращении ротора.

Применение

Синхронные двигатели являются отличным вариантом, когда требуется постоянная и точная скорость. Общие области применения включают шаровые мельницы, компрессоры, вентиляторы и многое другое.

Ремонт и техническое обслуживание

Southwest Electric Co предлагает ремонт и техническое обслуживание практически любого типа промышленных двигателей, включая синхронные двигатели, с возможностью обслуживания двигателей до 100 тонн. Мы гордимся высоким качеством и надежностью нашего ремонта, и мы выполняем все работы под своей крышей — никаких контрактов с другими поставщиками.

Когда вашему двигателю требуется техническое обслуживание, восстановление или ремонт, подумайте о Southwest Electric Co.