Содержание
Как проверить транзистор мультиметром(тестером): биполярный, npn и другие
Обновлена: 31 Октября 2022
1575
0
Поделиться с друзьями
Содержание статьи
Что такое транзистор и зачем его проверять
Транзисторы – важные элементы электрических схем и плат приборов, потребляющих ток. Эта радиоэлектронная конструкция позволяет управлять потоком электричества в сети. Технически она представляет собой полупроводниковый триод с тремя контактами. Регулирующее действие прибора основано на переходе «электрон-дырка». В зависимости от конструкции и соответствующего принципа работы различают два типа транзисторов:
Проверять транзистор лучше всякий раз перед тем, как встроить его в плату или схему. Это намного проще, удобнее и безопаснее, чем потом пытаться найти и устранить поломку в готовой, собранной электрической цепи или электронике. Прозвонить нужно и новые, только что купленные устройства, и изделия, извлеченные из оборудования или найденные среди старых запасов. Вполне реальны ситуации, когда в партии триодов, поставленной в магазин с завода электроники, имеется значительный процент брака.
Как проверить мультиметром биполярный транзистор
Биполярные транзисторы распространены больше полевых, поэтому особенно важно знать, как правильно проверить их перед эксплуатацией. Алгоритм прозвона устройств PNP-типа, представленных здесь как встречно подключенные диоды, следующий:
Аналогичным способом проверяют биполярные транзисторы NPN-типа, представленные здесь как обратно подключенные диоды. Важное отличие – только в подключении щупов. Сначала черный щуп подключают к разъему COM, а красный – к «VΩmA», черный щуп подносят к выводу «Э», а красный – к выводу «К». Затем меняют местами гнезда на мультиметре, подносят красный щуп к ножке «К», а черный – к ножке «Б». В обоих случаях об исправности триода говорит сопротивление в интервале от 0,6 до 1,3 кОм.
Как проверить мультиметром униполярный транзистор
Униполярные (полевые) транзисторы встречаются реже биполярных, но все равно полезно знать, как проверять их исправность. Для элементов, основанных на n-канале (электрон), применяют следующий алгоритм тестирования:
Этот же алгоритм используют, чтобы проверить полевые транзисторы, основанные на p-канале (дырка). Единственная разница в том, что в самом начале щупы на мультиметре нужно подключить наоборот: черный вставить в разъем «VΩmA», красный – в COM.
Часто спрашивают, как проверить мультиметром IGBT-транзистор. Это другое название смешанной модели – разновидности биполярных устройств, сочетающих элементы аналоговых и цифровых конструкций. Для них актуален алгоритм полевых моделей, нужно только учитывать, что коллектору соответствует вывод «С» (сток), а эмиттеру – вывод «И» (исток). PNP-типы тестируют по схеме для n-канала, NPN-модели – как для p-канала.
Часто задаваемые вопросы
Как проверить транзистор на плате без выпаивания?
Теоретически – по тем же алгоритмам, что и транзисторы, не включенные в схему или плату. Однако на практике без выпаивания прозвонить устройство очень трудно. Для полевых моделей такой возможности нет вообще – касаться прибора щупами вы можете, но показания будут некорректны. Биполярные транзисторы без выпаивания дают более адекватные значения, но и они нередко далеки от отражающих настоящее состояние прибора. Поэтому выпаивать транзистор, скорее всего, придется. Так что проверяйте исправность элементов до того, как вы встроите их в электрические схемы или платы.
Как проверить транзистор большой мощности?
Транзисторы большой мощности – как правило, биполярные гибридные (силовые). Их коллектор рассчитан на ток до 100 ампер, мощность таких устройств может достигать 100 ватт. Но в плане проверки исправности действует общий алгоритм для всех моделей биполярной конструкции, приведенный выше. Если вы ставите мультиметр в режим прозвонки, отличий нет никаких; если выбираете режим проверки сопротивления, следует выставить соответствующий максимальный уровень этого параметра, указанный в технической документации проверяемого транзистора.
Как проверить строчный транзистор?
Строчный транзистор (строчной развертки) – один из важнейших элементов телевизоров, обеспечивающий формирование качественного изображения на экране. Технически это, как правило, биполярные конструкции PNP-типа, поэтому для их проверки подходит соответствующий алгоритм. Основная проблема в том, что строчный элемент обычно на момент поломки уже впаян в плату. Если выпаивать его очень не хочется, попробуйте прозвонить, как есть – возможно, значения все-таки окажутся корректными. В противном случае придется выпаивать транзистор строчной развертки из платы телевизора.
Как проверить составной транзистор?
Составная модель также называется транзистором Дарлингтона. Она состоит из двух элементов в общем корпусе. Мультиметром такую конструкцию проверить невозможно – вы можете касаться выводов щупами, но корректных значений вы не получите. Для прозвона составных транзисторов придется собрать простую электросхему из резистора, лампочки и самого проверяемого устройства. Если оно исправно, при подключении к базе положительного полюса лампочка загорится, если подключить отрицательный полюс – погаснет. Если что-то идет не по этому алгоритму, транзистор нуждается в замене.
Дополнительное видео по теме:
Была ли статья полезна?Да Нет Оцените статью Что вам не понравилось? Другие материалы по темеАнатолий Мельник Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент. |
Поделиться ссылкой:
|
|
Во время ремонта или сборки радиоэлектронных устройств у всех радиолюбителей возникает необходимость проверить транзистор мультиметром. И для этого есть очень простой и самый распространенный способ. В основном эта статья предназначена для начинающих радиолюбителей, поэтому я более доступно для понимания расскажу, как это сделать.
Получается, что транзистор это два встречно включенных диода с отводом от средней точки, который является базой. Но на самом деле его структура намного сложнее. Наша задача заключается в том, чтобы проверить диоды на исправность. Как проверить диод есть уже отдельная статья. Т.е. сначала проверяем диоды в одну сторону, а потом в другую сторону. Как это сделать видно на рисунках ниже. Для примера взят n-p-n транзистор кт315. Мультиметр включается в режим проверки диодов. Напомню, что при проверке диодов при прямом включении, кода плюс (+) мультиметра подсоединен к аноду, а минус (-) к катоду падение напряжения при исправном диоде будет составлять от 0,1 до 0,8 вольта. А при обратном включении, когда полярность щупов мультиметра поменяна, будет максимальным около 3 вольт, потому что сопротивление диода будет стремиться к бесконечности (т.к. не проводит ток в обратном включении). На фото обозначена полярность щупов, цоколевка транзистора и выделен режим мультиметра. Ножки транзистора я удлиннил для наглядности.
Если хотя бы один переход пропускает ток в обоих направлениях или не пропускает в обе стороны, то такой транзистор является неисправным.
Кратко весь процесс можно описать следующим образом. Сначала проверяются переходы «база-коллектор» «база-эмиттер» в одном направлении, потом в обратном. Далее проверяется переход «коллектор-эмиттер» в одном направлении и в другом. По результатам проверки делаются выводы о исправности транзистора. Вся проверка занимает не более 1 минуты. Проверив несколько десятков транзисторов, вы будете делать это уже на «автомате», и за более короткое время.
Анекдот:
Открыли супермагазин в котором есть ВСЕ:
| ||||||||||||||||||||||||||||||
Полевые транзисторы Содержимое 2 Транзисторы GBT Содержимое 3 Цифровые микросхемы Аналоговые микросхемы Содержимое 5 Конденсаторы Содержимое 7
| Устроства для начинающих Электроника для авто Устройства для дома Источники питания Устройства на микроконтроллерах Ремонт бытовой аппаратуры Содержимое 6 Разное Содержимое 7
| |||||||||||||||||||||||||||||||
Здесь может быть Ваша реклама
| ||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||
Проверка транзисторов вольтметром
Неисправный транзистор иногда можно определить по частично сгоревшему или деформированному виду, но чаще по отсутствию видимой индикации. Один из подходов к устранению неполадок заключается в замене заведомо исправным компонентом, но это дорогостоящий путь. Кроме того, это ненадежно, потому что внешний дефектный компонент может мгновенно разрушить замену без видимых признаков. Разумной альтернативой является проверка транзистора. Обычный мультиметр может быстро выполнять внутрисхемные тесты, которые не являются полностью окончательными, но обычно предоставляют приемлемую информацию о годности/негодности, используя либо режим проверки диодов, либо омический режим.
Обычная процедура тестирования заключается в использовании цифрового мультиметра в диапазоне тестирования диодов с минимальным напряжением 3,3 В в течение d.u.t. (испытываемый диод). Сначала рассмотрим процедуру тестирования полевого МОП-транзистора в расширенном режиме (т. е. когда устройство не проводит ток, а на затвор подается 0 В, работающий как переключатель). Подключите источник MOSFET к отрицательному выводу измерителя. (Держите МОП-транзистор за корпус или выступ, но не прикасайтесь к металлическим частям тестовых щупов какими-либо другими клеммами МОП-транзистора до тех пор, пока это не потребуется.) Прикоснитесь положительным выводом измерителя к затвору МОП-транзистора. Теперь переместите положительный зонд на «Слив». Вы должны получить низкое значение. Внутренняя емкость MOSFET на затворе теперь заряжена счетчиком, и устройство «включено».
Пока положительный провод счетчика все еще подключен к стоку, закоротите исток и вентиль. Затвор разряжается, и показания счетчика должны стать высокими, указывая на непроводящее устройство.
МОП-транзисторы, которые выходят из строя, часто вызывают короткое замыкание сток-затвор. Это может вернуть напряжение стока обратно на затвор, где оно подается (через резисторы затвора) в схему привода, что может привести к тому, что уровни напряжения и тока превысят пределы компонентов в этой секции. Перегрузка также повлияет на любые другие запараллеленные затворы MOSFET. Таким образом, лучше всего проверить цепи управления мертвых МОП-транзисторов. Чтобы избежать перегрузок, некоторые разработчики добавляют стабилитрон между истоком и затвором — стабилитроны выходят из строя, чтобы ограничить ущерб в случае отказа полевого МОП-транзистора. Другая тактика заключается в добавлении сверхминиатюрных резисторов затвора. Они имеют тенденцию открываться (как предохранитель) при перегрузке, отключая затвор MOSFET.
Другим частым отказом полевого транзистора является короткое замыкание сток-исток. Проверка омметром может подтвердить проблему. Подключите ворота устройства к терминалу источника. Если путь сток-исток исправен, приложение щупов омметра в одном направлении должно показать короткое замыкание. Другое направление должно измерять бесконечное сопротивление — или, по крайней мере, несколько мегаом. Измеряемый диодный переход представляет собой диод в корпусе полевого транзистора. Внутренний диод покажет катод на стоке для N-канального устройства и на истоке для P-канального устройства.
К сожалению, современные мультиметры используют низкое возбуждение для измерения сопротивления (1–2 В), чтобы гарантировать, что простое активное тестирование элементов цепи не повредит их. Проблема в том, что тестирование полевого транзистора с помощью одного только современного мультиметра становится проблематичным. Причина в том, что для включения большинства мощных полевых транзисторов требуется смещение напряжения затвор-исток не менее 4–5 В. Полевые транзисторы логического уровня могут включаться при напряжении от 0,3 до 1,5 В.
Простая схема, показанная здесь для N-канального полевого транзистора, помогает определить, правильно ли работает устройство в качестве переключателя. Мультиметр должен показывать достаточно низкое напряжение между точками 2 и 4. Измерение R 9 прибора0019 dsON начинается с удаления связи между точками 1 и 2, затем измерения между точками 2 и 4, чтобы получить приблизительное значение сопротивления на мультиметре.
Соединив точки 1 и 2 вместе, измерьте напряжение между точкой 2 и точкой 4, затем замкните точку 3 на точку 4. Вы должны увидеть изменение напряжения от низкого в первом тесте до фактического напряжения приложенной батареи (обычно 9 В). .
Вы можете определить наличие остаточной утечки между стоком и истоком, замкнув точки 3 и 4, а затем измерив напряжение на резисторе 100 кОм, питающем точку 1 от батареи. Тогда ток утечки в миллиамперах приблизительно равен (показания мультиметра в милливольтах)/(10 4 ). Чтобы измерить номинальное пороговое значение V gs (напряжение включения) полевого транзистора, закоротите точки 2 и 3, а затем измерьте напряжение между точками 2 и 4, как и раньше.
При проверке полевых МОП-транзисторов с p-каналом в расширенном режиме просто поменяйте полярность батареи и используйте ту же схему. Все полярности щупов мультиметра будут изменены на противоположные, но применяется та же процедура.
Теперь рассмотрим JFET. Проверка JFET в качестве диода (переход затвор-канал) с помощью омметра должна показать низкое сопротивление между затвором и истоком при одной полярности и высокое сопротивление между затвором и истоком при обратной полярности измерителя. Если измеритель показывает высокое сопротивление для обеих полярностей, затвор открыт. С другой стороны, если омметр показывает низкое сопротивление при обеих полярностях, переход затвора закорочен.
Теперь попробуйте проверить целостность канала сток-исток. Если вы знаете, какие клеммы на устройстве являются затвором, истоком и стоком, лучше всего соединить перемычкой между затвором и истоком, чтобы устранить накопленный заряд на емкости PN-перехода затвор-канал, который может удерживать полевой транзистор в замкнутом состоянии. в закрытом состоянии без подачи внешнего напряжения. Без этого шага любое показание измерителя целостности канала будет непредсказуемым, потому что заряд может накапливаться или не накапливаться соединением затвор-канал.
Хорошей стратегией является вставка выводов JFET в антистатическую пену перед тестированием. Проводимость пены создает резистивное соединение между всеми терминалами JFET. Это соединение гарантирует, что весь остаточный заряд, накопленный на PN-переходе затвор-канал, рассеивается, тем самым открывая канал для точной проверки непрерывности исток-сток.
Поскольку канал JFET представляет собой единый непрерывный кусок полупроводникового материала, обычно нет разницы между выводами истока и стока. Проверка сопротивления от истока к стоку должна дать то же значение, что и проверка от стока к истоку. Это сопротивление должно быть относительно низким (менее нескольких сотен Ом), когда напряжение PN-перехода затвор-исток равно нулю. Применение напряжения обратного смещения между затвором и истоком должно перекрыть канал и привести к более высоким показаниям сопротивления на измерителе.
Это подводит нас к биполярным транзисторам. Полезно помнить, что биполярный транзистор можно смоделировать как два диода, соединенных последовательно. Плавающие выводы обеспечивают две контрольные точки, а подключенные выводы представляют собой третью контрольную точку с отводом от центра. Эти два диода не будут работать как настоящий транзистор, потому что соединение с центральным отводом не является полупроводниковым переходом, а модель с двумя диодами не имеет трех отдельных кремниевых слоев, как в транзисторе. Тем не менее, подключение демонстрирует основную концепцию, связанную с тестированием транзисторов и идентификацией выводов.
Для проверки транзистора с помощью мультиметра в режиме проверки диодов вставьте черный щуп в «Общий», а красный щуп в «Проверка диодов» или «Ом». Большинство производителей подключают красный цвет к положительной клемме внутренней батареи, но это может варьироваться, поэтому лучше всего проверить полярность с помощью второго мультиметра в режиме постоянного напряжения. Обычное испытательное напряжение составляет 3 В.
Естественно предположить, что центральный вывод на корпусе транзистора соединяется с базой, но это соглашение не является универсальным. Подсоедините черный щуп к базе. Кратковременно прикоснитесь красным щупом к эмиттеру и отметьте напряжение. Затем переключите красный щуп на излучатель. Если показания совпадают, пока все хорошо. Сняв черный щуп с основания и заменив его красным щупом, на короткое время прикоснитесь черным щупом к эмиттеру и коллектору.
Если предыдущие показания были высокими, а эти низкими, транзистор проходит статическое испытание. Если предыдущие показания были низкими, а эти высокие, транзистор также проходит статическую проверку. Если показания двух красных щупов не совпадают или показания двух черных щупов не совпадают при перепутывании щупов, транзистор неисправен.
Если база, эмиттер и коллектор неизвестны, подсоедините черный щуп к одному из выводов транзистора. По очереди кратковременно прикоснитесь красным щупом к каждому из оставшихся отведений. Если оба вывода показывают высокий уровень, черный щуп подключен к базе, транзистор NPN, и он исправен. Если показания двух других отведений отличаются, переместите черный щуп к другому отведению и прикоснитесь красным щупом к оставшимся отведениям. Повторяя тест с черным щупом, касающимся каждого из трех выводов по очереди, вы должны иметь высокое сопротивление, а транзистор либо плохой, либо PNP.
Удалите черный щуп и подключите красный щуп к одному из проводов. Затем прикоснитесь черным щупом по очереди к каждому из оставшихся выводов. Когда к каждому из проводов прикасаются и сопротивление становится высоким, красный провод подключается к базе, а транзистор является хорошим PNP-устройством.
Если вы получили два разных показания для двух отведений, переместите красный щуп к другому отведению и повторите тест. Подключите красный щуп по очереди к каждому из трех проводов. Если два других вывода не дают таких же показаний при прикосновении к черному щупу, транзистор PNP неисправен.
Тесты мультиметра определяют, перегорел ли транзистор (открыт или закорочен), и дают приблизительную оценку способности транзистора к усилению. Но они не сообщают о реальных рабочих параметрах. Чтобы получить больше информации, следующим шагом является тестер транзисторов сервисного типа. Этот прибор выполняет три измерения для биполярных транзисторов: прямой ток (бета), ток утечки база-коллектор с открытым эмиттером и короткое замыкание между коллектором-эмиттером и базой. Измеряется H fe , и транзистор считается исправным, если этот показатель превышает определенный уровень. Однако тест отклонит некоторые функциональные, но низкоуровневые H9.Транзисторы 0019fe .
Некоторые тестеры транзисторов сервисного типа могут проверять компоненты как в цепи, так и вне ее, и они способны идентифицировать неизвестные клеммы транзистора. Поскольку H fe зависит от устройства, сервисные тестеры транзисторов могут давать ошибочные показания и не являются безошибочными.
Для высоконадежного, интуитивно понятного и удобного тестирования компонентов можно использовать осциллограф в сочетании со встроенным генератором сигналов осциллографа или с внешним автономным AFG. Конденсаторы, катушки индуктивности, биполярные транзисторы и кабели можно легко проверить и определить их номиналы. Сигнал от AFG подается на исследуемый компонент, и отклик отображается на осциллографе. Обычно выходной импеданс 50 Ом от AFG подается через Т-образное соединение на тестируемое устройство и на аналоговый вход осциллографа. Кроме того, выход AFG OUT подключен к входу Trigger IN осциллографа.
Лучшие тестеры транзисторов — это приборы лабораторного класса. Связанный инструмент — полупроводниковый индикатор кривой. Он содержит упрощенный осциллограф в дополнение к источникам напряжения и тока, которые пользователь применяет к тестируемому устройству. На вход тестируемого транзистора подается качающееся напряжение, а его выходной ток измеряется и отображается в виде графика на экране прибора. Пользователь может регулировать приложенное напряжение, его полярность и последовательное сопротивление. Когда на диод воздействует изменяющееся напряжение, отображаются различные параметры, такие как прямое напряжение, обратный ток утечки и обратное напряжение пробоя.
К входной цепи полевого транзистора можно приложить ступенчатое напряжение или к биполярному транзистору можно приложить ступенчатый ток. Результат позволяет определить коэффициент усиления транзистора или напряжения срабатывания тиристора. Чтобы оценить производительность транзистора, представленный ему импеданс («вытягивание нагрузки») можно систематически изменять. Вытягивание нагрузки применимо, когда изменение импеданса нагрузки вызывает отклонение центральной частоты колебаний от ее номинального значения.
Проверка транзисторов в цепях с помощью мультиметров, омметров и кривых
by Michal
Транзистор — это небольшой полупроводниковый прибор, который может быть поврежден при неправильном подключении. Транзистор также может выйти из строя, если на вход подать более высокий ток или напряжение. Предлагается проверить транзистор. Эффект горения транзистора можно наблюдать, взглянув на схему. Проверка транзисторов в цепях с помощью мультиметров является хорошей идеей, если на печатной плате не видно визуального эффекта.
В зависимости от функциональности цифрового мультиметра можно проверить работоспособность транзистора в виде прохождения и отказа. Другие мультиметры также могут проверять усиление транзистора, установив его в режим hFE.
- Расчет кВА трансформатора: калькулятор кВА трансформатора
- Классификация трансформаторов тока на основе четырех параметров
Транзистор также можно проверить с помощью омметра и анализатора характеристик. Омметр проверяет подключение двух клемм. Где трассировщик кривой использует разные точки тока и напряжения для построения характеристик VI транзистора.
Проверка транзисторов в цепи с помощью мультиметра
Этапы проверки транзисторов в цепи с помощью мультиметра
Выполните следующие шаги для проверки транзистора в цепи с помощью мультиметра.
Disconnect
Отключите транзистор, который вы хотите проверить, от печатной платы. В противном случае мультиметр может выйти из строя, и правильный результат не будет отображаться.
Установка транзистора
Если ваш цифровой мультиметр имеет порт для проверки транзисторов, используйте его. И вставьте транзистор в выделенный порт тестирования транзисторов. Вставьте транзистор в соответствии с обозначениями NPN или PNP. Если порта для транзистора нет, вместо этого проверьте транзистор с помощью омметра.
Вставка транзистора в порт для тестирования транзисторов
Установка режима
Теперь поверните ручку, чтобы правильно установить режим для тестирования транзистора. Используйте символ hFE, чтобы получить коэффициент усиления транзистора.
Чтение
На этом этапе цифровой мультиметр покажет коэффициент усиления транзистора. Если показания не отображаются, измените конфигурацию транзистора с конфигурации E-B-C на B-C-E.
Различные конфигурации портов NPN и PNP
Проверка транзисторов с помощью омметра
Проверка транзистора с помощью омметра — это старый способ проверки транзистора. Омметр для проверки транзистора имеет два PN перехода база-эмиттер и база-коллектор. Обработка этих двух переходов как отдельных диодов может помочь в определении работы транзистора.
- Как работают микроволновые печи
- Типы энкодеров на основе движения, технологии обнаружения и каналов
Этапы проверки транзистора с помощью омметра
Прежде всего, обязательно удалите транзистор из схемы.
Шаг 1. Проверка база-эмиттер
Для NPN-транзистора подключите положительный вывод к базе, а отрицательный — к эмиттеру транзистора. Хороший транзистор должен показывать связность.