Проверка полевого транзистора мультиметром видео: Страница не найдена

Содержание

Как проверить тестером полевой транзистор

При проведении ремонтных работ электронной техники, возникает вопрос проверки функционального состояния тех или иных полупроводниковых элементов. Решение этой проблемы сильно облегчает наличие специализированных приборов, однако, во многих случаях вполне можно обойтись и без них. Есть ряд способов, как проверить транзистор мультиметром без использования сложных приборов и каких-либо дополнительных электрических схем. Рассматриваются алгоритмы проверки различных типов транзисторов. Проверка trz транзистора , равно как и любого другого элемента схемы, начинается с определения его типа.







Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Как мультиметром проверить полевой транзистор (мосфет)
  • Как проверить полевой транзистор мультиметром. Часть 1. Транзистор с управляющим p-n переходом.
  • Проверка полевого транзистора с помощью мультиметра
  • Краткий курс: как проверить полевой транзистор мультиметром на исправность
  • Как проверить транзистор мультиметром без выпайки
  • Как мультиметром проверить полевой транзистор (мосфет)

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Как проверить полевой транзистор мультиметром

Как мультиметром проверить полевой транзистор (мосфет)






Любая электронная схема состоит из полупроводниковых элементов. Наиболее распространённые из них транзисторы.

Хотя в последнее время выпускаемые элементы отличаются надёжностью, но всё же нарушения в работе электронных устройств могут привести к повреждению полупроводника. Перед тем как проверить транзистор мультиметром, необязательно выпаивать его из схемы, но для получения точных результатов лучше это сделать.

Транзисторы — это полупроводниковые приборы, служащий для преобразования электрических величин. Основное их применение заключается в усилении сигнала и способность работать в режиме ключа. Они выпускаются с тремя и более выводами. Существует три вида приборов:. Бывает ещё составной транзистор. Он подразумевает электрическое объединение в одном корпусе нескольких приборов одного типа. Такие сборки называются парой Дарлингтона и Шиклаи, также имеют три вывода. Разделяются по своему типу.

Выпускаются как электронного, так и дырочного типа проводимости. В своей конструкции используют n-p или p-n переход. Дырочного типа транзисторы состоят из двух крайних областей p проводимости, и средней n проводимости. Электронного типа наоборот. Средняя зона называется базой, а примыкающие к ней области коллектором и эмиттером.

Каждая зона имеет свой вывод. Промежуток между граничащими переходами очень мал, не превышает микрометры. При этом содержание примесей в базе меньше, чем их количество в других зонах прибора. Графически биполярный прибор обозначается для PNP стрелкой внутрь, а NPN стрелкой наружу, что показывает направление тока. Перед тем как проверить биполярный транзистор мультиметром, нужно понимать, какие физические процессы происходят в приборе.

Основа работы устройства лежит в способности p-n перехода пропускать ток в одном направлении. При подаче питания на одном переходе возникает прямое напряжение, а на другом обратное.

Область перехода с прямым напряжением имеет малое сопротивление, а с обратным — большое. Принцип работы заключается в том, что прямой сигнал влияет на токи эмиттера и коллектора.

При увеличении величины прямого сигнала возрастает ток в области прямого подключения. Носители заряда перемещаются в зону базы, что приводит к увеличению тока и в обратной области подключения. Возникает объёмный заряд и электрическое поле, способствующее втягиванию в зону обратного подключения заряда другого знака. В базе происходит частичное уничтожение зарядов противоположного знака, процесс рекомбинации.

Благодаря чему и возникает ток базы. Эмиттером называется область прибора, служащая для передачи носителей заряда в базу. Коллектором называют зону, предназначенную для извлечения носителей заряда из базы. А база — это область для передачи эмиттером противоположной величины заряда.

Основной характеристикой прибора является вольт-амперная характеристика. На схеме элемент обозначается латинскими буквами VT или Q.

Полевые транзисторы были изобретены в году. Основное их достоинство в высоком входном сопротивлении по сравнению с биполярными приборами. Такие элементы часто называются униполярными или мосфетами. Разделяют их по способу управления, на транзисторы с управляющим p-n переходом и с изолированным затвором.

Полевой транзистор выпускается с тремя выводами, один из них управляющий, называемый затвор. Другой исток, соответствующий эмиттерному выводу в биполярном приборе, и третий сток, вывод с которого снимается сигнал. В каждом типе устройства есть транзисторы с n-каналом и p-каналом. Работа прибора с управляющим каналом , например, n-типа, основана на следующем принципе. Источник питания, подключённый к прибору, создаёт на его переходе обратное напряжение. Если уровень входного сигнала изменяется, то изменяется и обратное напряжение.

Это приводит к тому, что меняется площадь, через которую протекают основные носители заряда. Такая площадь называется каналом. Полевые транзисторы изготавливаются методом сплавления или диффузией. Мосфет с изолированным затвором представляет собой металлический канал, отделённый от полупроводникового слоя диэлектриком.

Основанием элемента служит пластинка из кремния с дырочной электропроводностью. В ней создаются области с электронной проводимостью, соответственно образующие исток и сток. Такой мосфет работает в режиме обеднения или обогащения. В первом случае на затвор подаётся напряжение относительно истока отрицательного значения, из канала выдавливаются электроны, и ток истока уменьшается.

Во втором режиме, наоборот, ток увеличивается из-за втягивания новых носителей заряда. Транзистор с индуцированным каналом , открывается при возникновении разности потенциалов между затвором и истоком. Для полевика с p-каналом к затвору прикладывается отрицательное напряжение, а с n-каналом положительное. Особенность мощных транзисторов состоит в том, что вывод истока соединяется с корпусом прибора.

При этом соединяется база с эмиттером. Такое соединение образует диод, который в закрытом состоянии не влияет на работу прибора. Это сложный прибор, в котором, например, полевой n-канальный транзистор управляется биполярным устройством типа PNP.

К эмиттеру биполярного транзистора подключается коллектор мосфета. Если на затвор подаётся напряжение положительной величины, то между эмиттером и базой транзистора возникает проводящий канал. Когда значение напряжения увеличивается, то пропорционально увеличивается и ток канала в базе биполярного прибора, а падение напряжения на IGBT транзисторе уменьшается. Если полевой транзистор заперт, то и ток биполярного прибора будет почти нулевым. Для того чтобы провести измерения, тестер подключается набором проводов к измеряемому элементу.

На одном конце каждого из проводов находится штекер, предназначенный для установки в гнездо измерителя, а на другом — контактный щуп. Порядок измерения электронным мультиметром в общем виде можно представить в виде следующих действий:. Кроме метода прозвонки, если позволяет тестер, можно провести измерения полупроводникового элемента установив переключатель в положение hFE. В таком случае провода и щупы не понадобятся. Но этот метод подходит только для биполярных приборов. Проверку прибора можно осуществить двумя способами.

Для этого в тестере используется режим прозвонки или специально предназначенный режим проверки биполярных транзисторов. На начальном этапе выясняется тип проводимости элемента.

Для этого можно воспользоваться справочником или вычислить путём прозвонки. База вычисляется методом перебора. Щуп с общего вывода тестера подключается к одному из выводов транзистора, а щуп со второго вывода по очереди прикасается к двум оставшимся ножкам радиоэлемента. При этом смотрится какую величину сопротивления показывает тестер.

Необходимо найти такое положение, чтоб величина значения сопротивления между выводами составляла бесконечность. На цифровом тестере в режиме прозвонки будет гореть единица. Если такое положение не найдено, следует зафиксировать щуп второго вывода, а щупом с общего выхода осуществлять перебор. Когда требуемая комбинация будет достигнута, то вывод, по отношению которого измеряется сопротивление , будет базой. Для вычисления выводов коллектора и эмиттера понадобится: в случае pnp транзистора на вывод базы — подать отрицательное напряжение, а для npn — положительное.

Сопротивление перехода эмиттер — база будет немного больше, чем база-коллектор. Например, исследуя биполярный низкочастотный транзистор NPN типа MJE, который имеет последовательность выводов база, коллектор, эмиттер, понадобится:. Если во время проверки все пункты выполняются верно, то транзистор исправен. В ином случае, при возникновении короткого замыкания между любыми переходами, или обрыва в обратном включении, делается вывод о неисправности транзистора.

Проверка прибора обратной проводимости проводится аналогичным образом, лишь меняется полярность приложенных щупов. Таким способом можно проверить транзистор мультиметром, не выпаивая его, так и сняв с платы. Второй способ измерения при использовании современного мультиметра, позволит не только проверить исправность полупроводникового прибора, но и определить коэффициент усиления h В зависимости от типа и вида, ножки транзистора совмещаются с соответствующими надписями на гнезде, обозначенном также hFE.

При включении прибора на экране появится цифра, обозначающая коэффициент усиления транзистора. Если цифра определяется равной нулю, то такой транзистор работать не будет, или же неправильно определена его проводимость.

Такой тип электронного прибора не получится проверить без выпайки из схемы. Способ проверки как для n-канального, так и для p-канального, а также IGBT вида, одинакова. Разница лишь в полярности, прикладываемой к выводам. Например, исправность F3NK80Z n-канального прибора выясняется по следующему алгоритму:. Для проверки p-типа проводимости последовательность операций остаётся такой же, за исключением полярности щупов, которая меняется на обратную.

Для мощных полевых приборов может случиться так, что напряжения тестера не хватит для его открытия.

Как проверить полевой транзистор мультиметром. Часть 1. Транзистор с управляющим p-n переходом.

Оглавление: Как проверить полевой транзистор мультиметром? Отличительной конструктивной особенностью полевых транзисторов является изолированный затвор вывод, аналогичный базе у биполярных транзисторов , также у MOSFET имеются выводы сток и исток, аналоги коллектора и эмиттера у биполярных. Существует и ещё более современный тип IGBT, в русской транскрипции БТИЗ биполярный транзистор с изолированным затвором , гибридный тип, где МОП МДП транзистор с переходом n-типа управляет базой биполярного, и это позволяет использовать преимущества обоих типов : быстродействие, почти как у полевых, и большой электрический ток через биполярный при очень малом падении напряжения на нём при открытом затворе, при очень большом напряжении пробоя и большом входном сопротивлении. Полевики находят широкое применение в современной жизни, а если говорить о чисто бытовом уровне, то это всевозможные блоки питания и регуляторы напряжения от компьютерного железа и всевозможных электронных гаджетов до других, более простых, бытовых приборов — стиральных , посудомоечных машин , миксеров, кофемолок, пылесосов, различных осветителей и другого вспомогательного оборудования. Само собой, что-то из всего этого разнообразия иногда выходит из строя и появляется необходимость выявления конкретной неисправности. Сама распространённость этого вида деталей ставит вопрос:.

Советы мастеру: как проверить полевой транзистор мультиметром не выпаивая, различные методы проверки и прозвона транзистора.

Проверка полевого транзистора с помощью мультиметра

Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие. Сайт для электриков и домашних мастеров, а также для всех, кто интересуется электротехникой, электроникой и автоматикой. Как проверить транзистор. Проверку транзисторов приходится делать достаточно часто. Даже если у Вас в руках заведомо новый, не паяный ни разу транзистор , то перед установкой в схему лучше все-таки его проверить.

Краткий курс: как проверить полевой транзистор мультиметром на исправность

Несмотря на свою надёжность, они нередко выходят из строя, что связано с нарушениями режима в их работе. При этом поиск неисправного элемента в связи со спецификой устройства полевого транзистора вызывает определённые трудности. Но зная принцип работы радиодетали, проверить мосфет мультиметром не так уж и сложно. Отличие полевого транзистора от классического биполярного состоит в том, что его работа зависит от приложенного напряжения, а не тока. В литературе часто такой радиоэлемент называют МОП-транзистор метал-оксид-полупроводник или МДП-транзистор метал-диэлектрик-полупроводник.

Любая электронная схема состоит из полупроводниковых элементов. Наиболее распространённые из них транзисторы.

Как проверить транзистор мультиметром без выпайки

В радиоэлектронике и технике активно применяются полевые транзисторы. Их отличие от биполярных моделей заключается в том, что управление выходным сигналом осуществляется через электрическое поле. Очень часто применяются транзисторы с изолированным затвором. Для долгой и качественной работы устройства необходима проверка полевого транзистора мультиметром. К n-областям подсоединяются выводы. Ток протекает из истока в сток по транзистору благодаря источнику питания.

Как мультиметром проверить полевой транзистор (мосфет)

Продолжаем рубрику проверки электрорадиоэлементов, и сегодня я представляю первую статью по проверке полевых транзисторов тестером или как сейчас принято говорить — мультиметром. Из этого рисунку видно, что полевые транзисторы подразделяются на транзисторы с управляющим p-n переходом и полевые транзисторы с изолированным затвором. Сегодня я вам расскажу, как проверить полевой транзистор с управляющим p-n переходом , а в следующем выпуске журнал перейдем к проверке MOSFET транзистора, так что не забываем подписываться на журнал. Форма подписки после статьи. Полевые транзисторы бывают n-канальные и p-канальные.

Как проверить транзистор мультиметром без выпайки биполярные;; полевые;; биполярные транзисторы с изолированным затвором. Бывает ещё.

Управление мощной нагрузкой постоянного тока с помощью полевого транзистора. Определение начал и концов обмоток электродвигателя методом Петрова. Меры предосторожности при работе с полевыми транзисторами. Чтобы предотвратить выход из строя транзистора во время проверки, очень важно соблюдать правила безопасности.

Для диагностики полевых транзисторов N-канального вида ставим мультиметр на проверку диодов обычно он пищит на этом положении , черный щуп слева на подложку D — сток , красный на дальний от себя вывод справа S — исток , тестер показывает Ома — полевой транзистор закрыт Рис. Далее, не снимая черного щупа, касаемся Рис. Если сейчас черным щупом коснуться нижней G — затвор ножки, не отпуская красного щупа Рис. В чем мы можем убедится, опять проверив. Кстати есть еще одна тонкость — если мы откроем транзистор и измерим сопротивление сток-исток, но только не сразу, а через некоторое время, то тестер будет показывать сопротивление отличное от нуля.

Давайте займемся теорией, повремените убегать.

Для того, чтобы проверить полевой транзистор с управляющим P-N переходом, достаточно вспомнить его внутреннее строение. Теперь давайте вспомним, какой радиоэлемент у нас состоит из P-N перехода? Все верно, это диод. Получается что Затвор и Исток образуют один диод, а Затвор и Сток — другой диод. Сам канал обладает каким-то сопротивлением, а это есть нечто иное как резистор. У нас в гостях уже знакомый вам из прошлой статьи N-канальный полевой транзистор с P-N переходом 2N

Электрика и электроника — науки, построенные на точном измерении всех параметров цепей, поиске взаимосвязи между ними и степени влияния друг на друга. Поэтому так важно уметь пользоваться универсальными измерительными приборами — мультиметрами. Они сочетают в себе более простые специализированные устройства: амперметр, вольтметр, омметр и другие.






Навигатор по выбору RLC измерителя. Топ лучших транзистор тестеров от Суперайс



На практике часто нужно определить тип или параметры резисторов, конденсаторов, катушек индуктивности. Радиодетали несовершенны, как всё в нашем мире, зачастую из-за отсутствия или повреждения маркировки, износа или старения радиокомпонентов, определение номинала становится сложной задачей.


Чтобы определить сопротивление, емкость или индуктивность применяют измерители RLC, ESR. В статье разберем на примерах как провести замеры и подскажем, как выбрать оптимальное техническое решение для ваших прикладных задач.




Время чтения: 20 минут

Автор статьи — Андрей Кириченко

Что такое измеритель импеданса и тестер полупроводников


Так уж сложилось, что чаще всего радиолюбители пользуются тремя основными приборами — вольтметром, амперметром, омметром, но иногда возникают ситуации, когда для работы необходим более сложный, редкий прибор — измеритель RLC иммитанса или LCR-метр.


При этом конечно подобные измерительные устройства также бывают как профессиональные, так и «любительские», но для начала о том, что это вообще такое.


Как уже следует из названия, прибор позволяет измерять три основных величины:


      L — Индуктивность;

      C — Ёмкость;

      R — Сопротивление;


    Важное в статье:

    • Для проведения каких измерений предназначены LCR-метры
    • Как пользоваться измерителем для анализа электронных компонентов
      • Почему рядового мультиметра недостаточно для тестирования низкоомных резисторов
      • Как определить номинал и проверить резистор
      • Как проверить полевой транзистор на работоспособность и оригинальность
      • Что такое ESR электролитических конденсаторов
      • Как определить емкость конденсатора, проверить и измерить ESR конденсатора
      • Как измерить индуктивность катушки и проверить дроссель
    • На что нужно обращать внимание при выборе LCR измерителя
    • Виды и сравнение возможностей RLC метров
      • Транзисторы тестеры Маркуса
      • Измерители LC для тестирования компонентов поверхностного монтажа
      • Приборы для измерения комплексной проводимости
      • Hantek 1832C с выбором частоты измерения
    • ТОП-5 лучших измерителей: основные достоинства и недостатки


    Конечно емкость и сопротивление могут замерять большинство современных мультиметров, но LCR-метры это делают обычно точнее, в большем диапазоне. Также RLC метры позволяют проводить дополнительные измерения, например добротности, коэффициента потерь, ESR (эквивалентного последовательного сопротивления, сокращенно ЭПС) и делать это на разных частотах.


    Подобный функционал необходим там, где уже не хватает обычных мультиметров, например при диагностике неисправностей импульсных блоков питания, преобразователей напряжения, радиочастотных цепей.

    Типовые примеры использования LCR-метра и транзистор тестера для проверки радиодеталей

    Резисторы – самый распространенный вид радиокомпонентов

    Проволочные резисторы отличающиеся по номинальной мощности



    Если с распространенными номиналами проблем не возникает, то измерение низкоомных резисторов может добавить сложностей. Обычный мультиметр часто может измерить нормально сопротивление порядка 1-2 Ома и выше, если ниже, то начинает сильно влиять сопротивление проводов, щупов и низкое разрешение. Даже довольно точный UNI-T UT61E имеет дискретность измерения в таком режиме всего 10 мОм, при том что даже у недорого LCR-метра минимальная дискрета 0,1 мОм.



    Цифровой мультиметр UNI-T UT61E


    высокой точности с возможностью подключения к ПК для снятия логов


    Соответственно если при помощи мультиметра можно относительно точно измерить резисторы с сопротивлением от 0,05-0,1 Ома, то при измерении 10 мОм он фактически ничего уже измерять не будет, для сравнения ниже измерение двух резисторов номиналом 1 и 2,2 мОм.

    Разница между показаниями мультиметра и RLC-тестера при измерение низкоомных резисторов


    Часто измерение малых сопротивлений необходимо при проверке, подборе или изготовлении токоизмерительных шунтов. Альтернативный вариант измерения по падению напряжения, но необходим регулируемый блок питания, амперметр, вольтметр.

    Токовый шунт представляет собой резистор с малым сопротивлением, то есть, низкоомный резистор


    Возможность измерения малых сопротивлений также полезна для выявления таких проблем как неправильная маркировка, особенно низкоомных резисторов.


    Слева резистор промаркированный как 0,1 Ома, справа как 0,22 Ома, но реально у них почти одно и то же сопротивление. Такие ошибки могут стоить иногда очень дорого.

    Перед тем как установить или впаять резистор в схему, проверьте его сопротивление. Убедитесь в том, что номинальное и фактическое значения сопротивления резистора совпадают

    Транзисторы


    Измерение малых сопротивлений поможет в оценке оригинальности полевых транзисторов. Сейчас на рынок все чаще поступают поддельные, перемаркированные транзисторы. Хотя простое измерение сопротивления в открытом состоянии не дает полной информации, оно позволяет быстро понять что перед вами.


    Для теста кроме измерителя надо иметь только батарейку на 9 вольт. Зачастую данные в даташитах приводятся к напряжению на затворе в 10 вольт, но в данном случае это не существенно. Кроме того корректно измерять сопротивление сток-исток под током, обычно он указан в документации, но это требует наличия как минимум лабораторного блока питания.


    Чтобы проверить транзистор: подключаем тестовые щупы к выводам сток и исток (обычно средний и правый), подаем 9 вольт на крайние выводы. Постоянно подавать напряжение не требуется, достаточно зарядить затворную емкость, но надо быть внимательным, не подключите случайно батарейку к щупам тестера. Можно даже сначала «зарядить» транзистор, а только потом подключить щупы.

    Проверка полевого MOSFET транзистора тестером

    Конденсаторы


    Конденсаторы используются немного реже, но имеют свои особенности. Например в отличие от резисторов они гораздо больше подвержены старению, особенно если речь идет об электролитических конденсаторах установленных в импульсных блоках питания, преобразователях материнских плат, т. п.

    Пленочные, керамические, электролитические конденсаторы


    Особое значение имеет ESR конденсаторов. Когда конденсатор высыхает почти не теряя при этом емкость, у него значительно увеличивается внутреннее сопротивление.


    Обычным мультиметром такое не диагностируется, можно менять всё подряд, но это не всегда удобно, часто сложно или дорого. Кроме того часто RLC измерители позволяет проводить измерения без выпаивания компонента, хотя, конечно это зависит от схемы включения.


    1. Большинство мультиметров измеряет конденсатор как идеальный, т.е. без учета его особенностей, иногда этого достаточно, иногда нет.
    2. Более сложные приборы умеют отделять конденсатор от его внутреннего сопротивления, а также измерять эти параметры отдельно.
    3. Эквивалентная схема конденсатора выглядит гораздо сложнее — все эти параметрыможно измерить, но это совсем другой класс приборов, который обычно не требуется обычным радиолюбителям.

    Серия-эквивалентная схема, где R – электрическое сопротивление изоляции конденсатора, отвечающее за ток утечки и эквивалентное последовательное сопротивление; L – эквивалентная последовательная индуктивность; С – ёмкость конденсатора


    Для примера сравнение двух конденсаторов, дешевого китайского и фирменного. Хоть точный, но обычный мультиметр считает их почти одинаковыми, показывая только небольшую разницу в емкости. Но если подключить конденсаторы к LCR-метру, то видно что отличие во внутреннем сопротивлении у них почти в 5 раз! Если планируете применять конденсаторы в импульсных блоках питания, то именно эта разница в сопротивлении скажется на нагреве, а соответственно и на сроке службы, характеристиках блока питания. Конденсаторы с большим внутренним сопротивлением не могут эффективно гасить выбросы.

    Измерение емкости и ESR электролитических конденсаторов

    Дроссели и катушки индуктивности


    Дроссели, трансформаторы и вообще моточные узлы, в отличие от конденсаторов и резисторов проверяются еще сложнее, и редко какой мультиметр вообще способен измерять индуктивность.

    Главная характеристика дросселя – индуктивность, т.е. коэффициент, определяющий зависимость скорости изменения электрического тока от напряжения на катушке


    Измеритель иммитанса облегчает производство моточных узлов, а также поиск межвиткового КЗ. Путем сравнения с исправным компонентом или известным значением можно понять, что трансформатор или дроссель неисправен, так как у него сильно изменится индуктивность.

    Электрическая проверка катушек индуктивности включает обнаружение короткозамкнутых витков (межвиткового замыкания обмотки). Если в исследуемой обмотке имеется межвитковое замыкание – ее индуктивность резко снизится.


    Вообще для поиска короткозамкнутых витков существуют индикаторы, но измеритель иммитанса также определит эту проблему. Например слева исправный трансформатор, справа он же, но с одним накоротко замкнутым витком. Видно, что индуктивность обмотки стала существенно меньше, также виток повлиял и на результат измерения активного сопротивления обмотки.

    Сравнение индуктивности исправного трансформатора и трансформатора с короткозамкнутым витком

    Как итог, несколько рекомендаций перед выбором RLC измерителя:

    1. Определите круг ваших задач, изучите технические возможности, параметры основных доступных измерителей.
    2. Решите, какую сумму вы готовы потратить на покупку прибора.
    3. Если необходимо измерять малые значения емкости или индуктивности, проверьте, есть ли в выбранных приборах функция выбора частоты, на которой проводится измерение. Чем на большей частоте RLC тестер допускает работу, тем лучше.

    Обзор особенностей, основных технических характеристик и возможностей измерителей LCR-параметров


    Сравним несколько измерителей разной цены, оценим их преимущества, недостатки.

    Транзистор тестер Маркуса с AVR микроконтроллером




    Для начала конечно знаменитый транзистор тестер Маркуса. Он существует в различных вариантах: в корпусе и без, со встроенным частотомером, с проверкой стабилитронов, самодельный или фабричный. Иногда его ошибочно называют ESR-метром – это не совсем корректно, так как изначально это именно тестер транзисторов, а замер ESR – только одна из его функций, которая была добавлена значительно позже.


    Кроме того, устройство имеет очень большое комьюнити на известном сайте vrtp.ru, где можно узнать как прошить транзистор тестер.


    Транзистор тестер TC1

    Транзистор тестер LCR-T4

    Популярные транзистор тестеры EZM Electronics MK-168 и M8


    Пожалуй, для новичка – это действительно выход: такой тестер умеет измерять очень много различных компонентов. Особенно удобно проверять транзисторы, например облегчить такую задачу как найти базу эмиттер коллектор транзистора. Он также вполне нормально проверяет конденсаторы с резисторами.

    Тестирование компонентов на GM328


    Но более важно то, что этот тестер умеет измерять емкость и индуктивность, причем проводить комплексное измерение. То есть, например, у дросселя показать не только индуктивность, а активное сопротивление обмотки, также у конденсаторов, не только емкость, но и внутреннее сопротивление.


    Есть конечно недостатки, из-за простой схемотехники и двухпроводного подключения компонента ему сложно работать с малыми сопротивлениями.

    Тестирование компонентов на GM328 — продолжение

    LC метры


    Следующим шагом идут устройства на шаг выше – LCR-метры. Они не умеют проверять параметры транзисторов, но индуктивность или малое сопротивление измерят лучше чем универсальный тестер. Типичный представитель — LC100-A компании Juntek.


    В отличие от предыдущего прибора прошивка ESR тестера закрыта, потому возможность обновления отсутствует.

    LC метр, измеритель индуктивности и электрической ёмкости LC100-A


    У таких измерителей, остался недостаток универсального прибора — двухпроводное подключение. Поэтому на результат измерений может сильно влиять качество контакта с компонентом и длина проводов. Калибровка ESR тестера, конечно решает проблему длины проводов, но лучше использовать провода минимальной длины и большого сечения.

    LCR+ESR метры


    Для более опытных есть прибор, который относят если не к профессиональным, то уж точно близким к ним — это XJW01. Кроме стандартных замеров, он позволяет проводить комплексные, а также измерять добротность, диэлектрические потери. Тестер имеет четырехпроводное подключение.


    XJW01 позволяет проводить измерения на трех частотах: 100 Гц, 1 и 7.8кГц. Продается XJW01 в виде конструктора для сборки, или собранным устройством.

    Q-метр XJW01 для измерения добротности, коэффициента потерь


    Тестер может работать как в автоматическом режиме выбора измеряемой величины, так и в ручном. Лучше использовать с ручным режимом, так как автоматика иногда неверно определяет тип компонента.

    XJW01 используется для тестирования любых пассивных компонентов


    Наличие четырехпроводного подключения сразу ставит XJW01 на голову выше многих других любительских приборов: такое подключение позволяет разделить цепи генератора тока и измерительной части, за счет чего длина проводов и сопротивление контакта перестает влиять на результаты замеров.


    Такой тип подключения применяется в профессиональных приборах: даже там где компонент подключается прямо в клеммы прибора, также используется специальная контактная группа, состоящая из четырех контактов.

    Измерители параметров иммитанса радиокомпонентов компании HIOKI


    Для подключения радиодеталей используются зажимы, пинцеты или выносные контактные группы, а так как они также используют разъемы BNC для подключения, то даже фирменные устройства совместимы с показанным выше XJW01.

    Тестовое приспособление и 4-х проводной тестовый пробник


    Фактически все то же самое есть у фирменных, но относительно бюджетных LCR-метров от фирм UNI-T и Hantek. Они также имеют четырехпроводное подключение, измерение емкости, индуктивности и сопротивления включая ESR и комплексные измерения.


    Особенно выделяется новая модель измерителя Hantek 1832C, с которой можно проводить измерения на семи вариантах частоты с верхним пределом в 40 кГц. Базовая погрешность до 0,3%, есть автоматический режим измерения, режимы комплексных измерений.


    В этой серии есть старшая модель – Hantek 1833C, отличающаяся расширенным диапазоном частот, но имеющая большую цену.


    Hantek 1832C имеет большой экран, на который выводится одновременно все результаты тестирования. Подключение тестируемого компонента двух и четырех проводное (трех и пяти с учетом защитного контакта).


    Размах тестового сигнала составляет 0,6 вольта, из-за чего можно проводить замеры многих пассивных радиокомпонентов без выпаивания из платы.


    Заявленные диапазоны измеряемых параметров:

    • Индуктивность – до 20 Гн;
    • Ёмкость – до 20000 мкФ;
    • Сопротивление – до 20 Мом;

    Портативный RLC-метр Hantek 1832C с передовыми характеристиками современного прибора, позволяет производить измерения параметров компонентов максимально точно, быстро и удобно


    При этом часто современные устройства могут измерять на частотах до 100 кГц (например Hantek 1833C), что позволяет тестировать компоненты на более высоком уровне. Особенно это помогает при отборе конденсаторов для работы в импульсных блоках питания, частота работы которых находится на сопоставимом значении.


    Но нужно быть внимательным: у многих измерителей LCR часто декларируется диапазон частот до 100 кГц. Однако если внимательно прочитать инструкцию, то станет ясно, что в режиме измерения на такой частоте максимальная измеряемая емкость существенно ниже.

    Для примера инструкция от CEM DT9935, на частоте 10 кГц он может измерять до 200 мкФ, а на 100 кГц всего до 2 мкФ

    Сравнение и рейтинг измерителей импеданса: лучшие измерители RLC 2020 года — основные достоинства и недостатки


    Чтобы выбрать оптимальный с точки зрения мастера по ремонту формат или тип прибора для измерения ESR проведем сравнение 3-х основных категорий:







    Лучшие LCR-метры профессионального уровня


    Цифровой измеритель LCR Hantek 1832C

    Основные плюсы:
    точность измерения, частота до 40 кГц, прибор уже готов к использованию.
    Минусы: цена


    Высокоточный RLC метр XJW01

    Основные плюсы:
    точность измерения, измерение индуктивности до 1000 Гн, цена.
    Минусы: только три тестовые частоты с максимальной в 7,8 кГц, упрощенная индикация, необходимость доработки для автономного питания.

    Лучший LCR-метр среднего класса


    Измеритель LC100-A с щупами для SMD

    Основные плюсы:
    простая конструкция, компактность, большой диапазон измерения, низкая цена.
    Минусы: невысокая точность измерения, двухпроводная схема подключения компонента.

    Лучшие бюджетные транзистор тестеры базового уровня


    Тестер компонентов LCR-T4

    Основные плюсы:
    очень высокая функциональность, кроме измерения LCR можно тестировать транзисторы, диоды, тиристоры и пр. , возможность обновления прошивки, цена.
    Минусы: не очень высокая точность измерение малых сопротивлений и ESR, двухпроводное подключение компонента, измерение на низкой частоте, невозможность измерения без выпаивания компонента.


    Многофункциональный тестер элементов GM328 ESR


    Дальше идут уже приборы профессионального класса, которые обычному пользователю будут слишком дороги. Большей частью они похожи на те, что показаны выше. Часто применяется тот же принцип измерения, но элементная база, функциональные возможности, подключение к компьютеру и, особенно, возможность поверки — относят их к совсем другому классу. Конечно они выходят за рамки этой статьи, но и совсем забыть про них было бы некорректным. Например на фото LCR-метр Rohde & Schwarz HM8118, заявленная погрешность 0,05-0,5% (в сравнении, у XJW01 заявляется 0,3-0,5%), цена около $3000.


    Из особенностей — измерение на частотах до 200 кГц, до 12 измерений в секунду, напряжение смещения внешнего конденсатора до 40 В.

    LCR-метр HM8118 — измеритель лабораторного типа с погрешностью не более 0,5%


    Резюмируя все вышесказанное подчеркнем, что для начинающего радиолюбителя более чем достаточно обычного транзистор тестера, который перекроет 90% его задач. Опытным скорее всего потребуется измеритель посложнее, и здесь можно смотреть либо на готовые приборы от брендов среднего уровня, либо на конструкторы типа XJW01.


    Тем, кто работает в организациях на которые распространяется сфера государственного регулирования обеспечения единства измерений, будут нужны приборы, числящиеся в госреестре, к которым можно заказать метрологическую поверку. Это также отличие профессиональных приборов от любительских, хотя и качественных.

    Мультиметр

    Цифровой мультиметр

    Мультиметр или мультитестер , также известный как вольт/омметр или ВОМ , представляет собой электронный измерительный прибор, который сочетает в себе несколько функций измерения в одном устройстве. Типичный мультиметр может включать в себя такие функции, как возможность измерения напряжения, тока и сопротивления. Мультиметры могут использовать аналоговые или цифровые схемы — аналоговые мультиметры , цифровые мультиметры и (часто сокращенно DMM или DVOM ). Аналоговые приборы обычно основаны на микроамперметре, стрелка которого перемещается по шкале калибровки для всех различных измерений, которые можно выполнить; цифровые приборы обычно отображают цифры, но могут отображать полосу, длина которой пропорциональна измеряемой величине.

    Мультиметр может быть ручным устройством, полезным для базовой диагностики неисправностей и работы в полевых условиях, или настольным прибором, который может выполнять измерения с очень высокой степенью точности. Их можно использовать для устранения неполадок с электричеством в широком спектре промышленных и бытовых устройств, таких как электронное оборудование, средства управления двигателем, бытовая техника, источники питания и системы электропроводки.

    Contents

    • 1 Quantities measured
    • 2 Resolution
      • 2.1 Digital
      • 2.2 Analog
    • 3 Accuracy
    • 4 Sensitivity and input impedance
    • 4 Burden voltage
    • 5 Alternating current датчик
    • 6 См. также
    • 7 Каталожные номера

    Измеряемые величины

    Современные мультиметры могут измерять множество величин. Общие:

    • Напряжение, переменное и постоянное, в вольтах.
    • Ток переменный и постоянный, в амперах.
      Должен быть указан диапазон частот, для которого измерения переменного тока являются точными.
    • Сопротивление в омах.

    Кроме того, некоторые мультиметры измеряют:

    • Емкость в фарадах.
    • Электропроводность в сименсах.
    • Децибел.
    • Рабочий цикл в процентах.
    • Частота в герцах.
    • Индуктивность в генри.
    • Температура в градусах Цельсия или Фаренгейта с помощью соответствующего датчика температуры, часто термопары.

    Цифровые мультиметры могут также включать цепи для:

    • Непрерывности цепи; подает звуковой сигнал, когда цепь работает.
    • Диоды (измерение прямого падения диодных переходов, т. е. диодов и транзисторных переходов) и транзисторы (измерение коэффициента усиления по току и других параметров).
    • Проверка аккумуляторов для простых 1,5-вольтовых и 9-вольтовых аккумуляторов. Это шкала напряжения с токовой нагрузкой. Проверка батареи (без учета внутреннего сопротивления, которое увеличивается по мере разрядки батареи) менее точна при использовании шкалы напряжения постоянного тока.

    Разрешение

    Цифровой

    Разрешение мультиметра часто указывается в «цифрах» разрешения. Например, термин 5½ цифр относится к количеству цифр, отображаемых на дисплее мультиметра.

    По соглашению половина цифры может отображать либо ноль, либо единицу, а цифра в три четверти может отображать число больше единицы, но не девять. Обычно цифра в три четверти относится к максимальному значению 3 или 5. Дробная цифра всегда является старшей цифрой в отображаемом значении. 5½-разрядный мультиметр будет иметь пять полных разрядов, которые отображают значения от 0 до 9, и один полуразряд, который может отображать только 0 или 1. [3] Такой измеритель может показывать положительные или отрицательные значения от 0 до 19.9999. Трехразрядный счетчик может отображать количество от 0 до 3999 или 5999, в зависимости от производителя.

    В то время как точность цифрового дисплея можно легко увеличить, дополнительные цифры не имеют значения, если не сопровождаются тщательным проектированием и калибровкой аналоговых частей мультиметра. Значимые измерения с высоким разрешением требуют хорошего понимания технических характеристик прибора, хорошего контроля условий измерения и прослеживаемости калибровки прибора.

    Указание «счетчика отображения» — еще один способ указать разрешение. Отсчеты дисплея дают наибольшее число или наибольшее число плюс один (чтобы число счета выглядело лучше), которое может отображать дисплей мультиметра, игнорируя десятичный разделитель. Например, 5½-разрядный мультиметр также может быть указан как мультиметр с 199999 отсчетами или 200000 отсчетов. Часто отображаемый счетчик просто называется счетчиком в спецификациях мультиметра.

    Аналоговый

    Разрешение аналоговых мультиметров ограничено шириной стрелки шкалы, вибрацией стрелки, точностью печати шкал, калибровкой нуля, количеством диапазонов и ошибками из-за негоризонтального использования механического дисплея . Точность полученных показаний также часто снижается из-за неправильного подсчета делений, ошибок в ментальной арифметике, ошибок наблюдения за параллаксом и далеко не идеального зрения. Зеркальные шкалы и большие перемещения измерителя используются для улучшения разрешения; обычно используется эквивалентное разрешение от двух с половиной до трех цифр (и обычно его достаточно для ограниченной точности, необходимой для большинства измерений).

    Измерения сопротивления, в частности, имеют низкую точность из-за типичной схемы измерения сопротивления, которая сильно сжимает шкалу при более высоких значениях сопротивления. Недорогие аналоговые измерители могут иметь только одну шкалу сопротивления, что серьезно ограничивает диапазон точных измерений. Как правило, аналоговый измеритель имеет панель регулировки для установки нулевой калибровки измерителя, чтобы компенсировать изменяющееся напряжение батареи измерителя.

    Точность

    Цифровые мультиметры обычно выполняют измерения с большей точностью, чем их аналоговые аналоги. Стандартные аналоговые мультиметры обычно измеряют с точностью до трех процентов, [4] , хотя производятся приборы с более высокой точностью. Стандартные портативные цифровые мультиметры имеют точность 0,5% в диапазоне постоянного напряжения. Стандартные настольные мультиметры доступны с заявленной точностью лучше ±0,01%. Приборы лабораторного класса могут иметь точность в несколько частей на миллион. [5]

    Значения точности следует интерпретировать с осторожностью. Точность аналогового прибора обычно относится к полному отклонению; измерение 10 В на шкале 100 В 3%-го измерителя подвержено погрешности 3 В, 30% показания. Цифровые счетчики обычно определяют точность как процент от показаний плюс процент от значения полной шкалы, иногда выражаемый в единицах, а не в процентах.

    Указанная погрешность соответствует нижнему диапазону постоянного тока в милливольтах (мВ) и известна как «базовая погрешность измерения постоянного напряжения». Более высокие диапазоны напряжения постоянного тока, тока, сопротивления, переменного тока и другие диапазоны обычно имеют более низкую точность, чем базовое значение напряжения постоянного тока. Измерения переменного тока соответствуют указанной точности только в указанном диапазоне частот.

    Производители могут предоставлять услуги по калибровке, чтобы новые счетчики можно было приобрести с сертификатом калибровки, указывающим, что счетчик был отрегулирован в соответствии со стандартами, прослеживаемыми, например, Национальным институтом стандартов и технологий США (NIST) или другой национальной лабораторией стандартов .

    Испытательное оборудование имеет тенденцию к отклонению от калибровки с течением времени, и нельзя бесконечно полагаться на заданную точность. Для более дорогого оборудования производители и третьи стороны предоставляют услуги по калибровке, чтобы старое оборудование можно было повторно откалибровать и повторно сертифицировать. Стоимость таких услуг несоизмерима с недорогим оборудованием; однако для большинства рутинных испытаний не требуется предельной точности. Мультиметры, используемые для важных измерений, могут быть частью программы метрологии для обеспечения калибровки.

    Чувствительность и входное сопротивление

    При использовании для измерения напряжения входное сопротивление мультиметра должно быть очень высоким по сравнению с сопротивлением измеряемой цепи; в противном случае работа схемы может быть изменена, и показания также будут неточными.

    Счетчики с электронными усилителями (все цифровые мультиметры и некоторые аналоговые счетчики) имеют фиксированное входное сопротивление, достаточно высокое, чтобы не мешать большинству цепей. Часто это либо один, либо десять МОм; стандартизация входного сопротивления позволяет использовать внешние высокоомные щупы, образующие делитель напряжения с входным сопротивлением, что позволяет расширить диапазон напряжений до десятков тысяч вольт.

    Большинство аналоговых мультиметров с подвижной стрелкой не имеют буфера и потребляют ток из тестируемой цепи для отклонения стрелки измерителя. Импеданс измерителя варьируется в зависимости от базовой чувствительности движения измерителя и выбранного диапазона. Например, счетчик с типичной чувствительностью 20 000 Ом/вольт будет иметь входное сопротивление в два миллиона Ом в диапазоне 100 вольт (100 В * 20 000 Ом/вольт = 2 000 000 Ом). На каждом диапазоне, при полном напряжении диапазона, полный ток, необходимый для отклонения движения счетчика, снимается с тестируемой цепи. Движения измерителя с более низкой чувствительностью допустимы для тестирования в цепях, где полное сопротивление источника низкое по сравнению с полным сопротивлением измерителя, например, в силовых цепях; эти счетчики более прочны механически. Некоторые измерения в сигнальных цепях требуют перемещения с большей чувствительностью, чтобы не нагружать тестируемую цепь полным сопротивлением измерителя. [6]

    Иногда чувствительность путают с разрешающей способностью измерителя, которая определяется как наименьшее изменение напряжения, тока или сопротивления, которое может изменить наблюдаемое показание.

    Для цифровых мультиметров общего назначения самый низкий диапазон напряжения обычно составляет несколько сотен милливольт переменного или постоянного тока, а самый низкий диапазон тока может составлять несколько сотен миллиампер, хотя доступны приборы с большей чувствительностью к току. Измерение низкого сопротивления требует вычитания сопротивления выводов (измеряемого касанием испытательных щупов) для достижения наибольшей точности.

    Верхний предел диапазона измерений мультиметра значительно различается; измерения свыше 600 вольт, 10 ампер или 100 МОм могут потребовать специального измерительного прибора.

    Нагрузочное напряжение

    Любой амперметр, включая мультиметр в диапазоне токов, имеет определенное сопротивление. Большинство мультиметров по своей сути измеряют напряжение и пропускают измеряемый ток через шунтирующее сопротивление, измеряя возникающее на нем напряжение. Падение напряжения известно как напряжение нагрузки, выраженное в вольтах на ампер. Значение может меняться в зависимости от диапазона, выбранного измерителем, поскольку в разных диапазонах обычно используются разные шунтирующие резисторы. [7] [8]

    Напряжение нагрузки может быть значительным в низковольтных цепях. Для проверки его влияния на точность и работу внешней цепи счетчик можно переключать на разные диапазоны; показание тока должно быть таким же, и работа схемы не должна сказываться, если напряжение нагрузки не является проблемой. Если это напряжение является значительным, его можно уменьшить (что также снижает присущую точность и прецизионность измерения) за счет использования более высокого диапазона тока.

    Измерение переменного тока

    Поскольку базовая система индикаторов в аналоговом или цифровом измерителе реагирует только на постоянный ток, мультиметр включает в себя схему преобразования переменного тока в постоянный для измерения переменного тока. В базовых измерителях используется схема выпрямителя для измерения среднего или пикового абсолютного значения напряжения, но они откалиброваны для отображения рассчитанного среднеквадратичного значения (RMS) для синусоидальной формы волны; это даст правильные показания переменного тока, используемого в распределении электроэнергии. В руководствах пользователя для некоторых таких измерителей приведены поправочные коэффициенты для некоторых простых несинусоидальных сигналов, чтобы можно было вычислить правильное среднеквадратичное (RMS) эквивалентное значение. Более дорогие мультиметры включают в себя преобразователь переменного тока в постоянный, который измеряет истинное среднеквадратичное значение формы волны в определенных пределах; в руководстве пользователя измерителя могут быть указаны пределы амплитуды и частоты, для которых действительна калибровка измерителя. Измерение среднеквадратичного значения необходимо для измерений несинусоидальных периодических сигналов, таких как аудиосигналы и частотно-регулируемые приводы. 9 «Точный адаптер тока для мультиметров с объяснением напряжения нагрузки (журнал Silicon Chip, апрель 2009 г.)». alterzone.com . http://www.alternatezone.com/electronics/ucurrent. Проверено 22 сентября 2009 г. .

тестер полевых ламп-Changzhou Jinko Electronic Technology Co., Ltd.0003

9610A может измерять три параметра:

A: напряжение пробоя VDSS напряжение включения VGS Gfs крутизна

B: три параметра — только один элемент

9612 может измерять три параметра:

A: напряжение холостого хода VGS Gfs on сопротивление состояния Ron межэлектродная емкость Cir четыре параметра вместе

B: эффективный

C: с сигналом сортировки, подходит для больших объемов входного контроля , Чанчжоу JK9Тестер трубки с полевым эффектом 610A。

One、Summary

Тестер трубки с полевым эффектом типа JK9610A. Полезная модель представляет собой новое устройство для тестирования параметров трубки с полевым эффектом с полным цифровым дисплеем. Может использоваться для номинального тока около 2-85 А, Тест основных параметров N-траншейного силового МОП-транзистора мощностью менее 300 Вт. Он может точно измерять напряжение пробоя VDSS, напряжение включения затвора VGS (th) и параметр характеристики усиления крутизны Gfs. В частности, испытательный ток крутизны Gfs может достигать 50 А, испытание импульсного тока, оно не приведет к повреждению устройства даже при испытании тока, его можно использовать для проверки согласованности полевого транзистора (спаривания) в условиях большой ток. Прибор можно использовать для измерения параметров IGBT того же уровня тока. Прибор также обладает превосходными характеристиками устройства для проверки давления электронных компонентов. При проверке тока утечки напряжения 1 мА, 250 мкА, 25 мкА можно выбрать три блока. Прибор в основном используется для проверки качества силовых MOSFET и IGBT, согласования параметров и испытания под давлением других электронных компонентов. Прибор делится на два типа: тестер направляющей N-канала и тестер направляющей P-канала. Прибор имеет преимущества красивого внешнего вида, стабильной работы, точных измерений, простоты в эксплуатации, безопасного и удобного использования.

 

Два, основные технические характеристики

1, диапазон измерения напряжения пробоя VDSS: 0 — 1999 В, точность: менее 2,5%.

2, IDSS можно разделить на три варианта: 1 мА, 250 мкА, 25 мкА.

3, диапазон измерения напряжения открытой сети ВГС(й): 0 — 10В. Точность: менее 5%.

4, Испытательный ток крутизны Gfs Idm: не менее 1 — 50 А плавно регулируемая точность: менее 10%.

5, диапазон испытаний на крутизну Gfs: 1–100.

 

Три, основная тестовая функция

1. Испытано напряжение пробоя VDSS, VGS (th) и Gfs MOSFET

2, напряжение пробоя V IGBT (BR) ces, VGE (th), тест ГФС.

3, силовой полевой транзистор и IGBT в 50A при любом тесте на согласованность текущего состояния, могут использоваться для согласования.

4, для других полевых транзисторов с более высоким током и мощностью и теста IGBT: (см. ниже)

5, различные кварцевые триоды, диоды, регулятор напряжения, тест напряжения пробоя.

6, проверка напряжения варистора и т. д.

 

Четыре, тестовая коробка и тестовая линия

1, использование тестовой коробки можно легко протестировать TO-126, TO-220, TOP-3 и другие подобные упаковки мощности МОП-транзистор и IGBT.

2, the use of the test line can be measured other metal, module and other forms of packaging power MOSFET and IGBT

 

Test case

49

49

. 0003

9003

0334

2.5-5V

.0060

Model

JK9610A

Breakdown Voltage

Vdss

Turn-on Voltage

Vgs (th)

TransconductanceS

Gfs

Test  current

Nominal current

ID

Nominal power

PD

Корпус

IRF640

Базовый параметр

0334

2-4V

≥6. 8

11A

18A

150W

TO-220

actual measurement parameter

225V

3.0V

12

11A

IRF1010

Basic parameter

60V

2-4V

≥69

50A

84A

200W

TO-220

actual measurement parameter

66V

3. 2V

67

50A

IRF3205

Basic parameter

55V

2-4V

≥44

62A

110A

200 Вт

TO-220

Фактический параметр измерения

60V

2,9.V

68

60A

FQP70N08

Basic parameter

80V

2-4V

41

35A

70A

155W

TO-220

86V

3.2V

46

35A

75NF75

Basic parameter

75V

2-4V

20

40a

80a

300W

до 250334

Вт

до 2500003 9000 9.0056

actual measurement parameter

81V

3.6V

52

40A

IRFP064

Базовый параметр. 0334

110A

200W

TO-3P

actual measurement parameter

67V

2.5V

57

60A

2SK1120

Основной параметр

1000V

1000V

1000v

1000V 9006

4

4A

8A

150W

TO-3P

actual measurement parameter

1086V

2. 3V

5

4A

G160N60

Basic parameter

600V

3.5-6.5V

*

80A

160A

250W

TO-247

Фактический параметр измерения

626V

3,9 В

35

60A

9004

60A

966

60A 69

60A

9

60.

9

60.

9

6033469

60334 9

h50T120

Basic parameter

1200V

5-6.5V

21

40A

75A

270Вт

ТО-247

фактический параметр измерения0004 5.7V

20

40A

60N170D

Basic parameter

1700V

3.

Top