Правило кирхгофа: Электричество и магнетизм

Электричество и магнетизм

На практике очень часто встречаются сложные (разветвленные) электрические цепи, для расчета которых удобно использовать правила Кирхгофа (рис. 4.22).

 

Рис. 4.22. Г. Кирхгоф (1824–1887) — немецкий физик 

Первое правило Кирхгофа является следствием закона сохранения заряда и того естественного требования, чтобы при стационарных процессах ни в одной точке проводника не накапливались и не уменьшались заряды. Это правило относится к узлам, то есть к таким точкам в разветвленной цепи, в которой сходится не менее трех проводников. 

Первое правило Кирхгофа гласит:

Алгебраическая сумма токов, сходящихся в узле, равна нулю, то есть количество зарядов, приходящих в данную точку цепи в единицу времени, равно количеству зарядов, уходящих из данной точки за то же время

(4. 43)

При этом токи, подходящие к узлу и отходящие от него, имеют противоположные знаки (рис. 4.23).  

 

Рис. 4.23. Сумма токов, сходящихся в узле равна нулю 

Второе правило Кирхгофа является обобщением закона Ома и относится к любому замкнутому контуру разветвленной цепи. 

Второе правило Кирхгофа гласит:  

В любом замкнутом контуре цепи алгебраическая сумма произведений токов на сопротивления соответствующих участков контура равна алгебраической сумме ЭДС в контуре (рис. 4.24)

(4.44)

 

 

Рис. 4.24. Пример разветвленной электрической цепи.

Цепь содержит один независимый узел (a или d) и два независимых контура (например, abcd и adef)

Правила Кирхгофа позволяют определить силу и направление тока в любой части разветвленной цепи, если известны сопротивления ее участков и включенные в них ЭДС. Число уравнений, составляемых по первому и второму правилам Кирхгофа, должно равняться числу искомых величин. Используя первое правило Кирхгофа для разветвленной цепи, содержащей m узлов и n ветвей (участков), можно написать (m – 1) независимых уравнений, а используя второе правило, (n m + 1) независимых уравнений.

Приведем пример расчета токов в разветвленной цепи (рис. 4.25).

Рис. 4.25. Пример разветвленной цепи 

Направления действия ЭДС показаны синими стрелками. В этой цепи у нас имеется два узла — точки b и d (m = 2), и три ветви — участок bаd с током I1, участок bd с током I2 и участок bcd с током I3 (n = 3). Значит, мы можем написать одно (m – 1 = 2 – 1 = 1) уравнение на основе первого правила Кирхгофа и два (nm + 1 = 3 – 2 + 1 = 2) уравнения на основе второго правила Кирхгофа. Как же это делается на практике? 

Шаг первый. Выберем направления токов, текущих в каждой из ветвей цепи. Как эти направления выбрать — совершенно неважно. Если мы угадали, в окончательном результате значение этого тока получится положительным, если нет и направление должно быть обратным — значение этого тока получится отрицательным. В нашем примере мы выбрали направления токов как показано на рисунке. Важно подчеркнуть, что направления действия ЭДС не произвольны, они определяются способом подключения полюсов источников тока (см. рис. 4.25). 

Шаг второй. Записываем первое правило Кирхгофа для всех узлов кроме одного (в последнем узле, выбор которого произволен, это правило будет выполняться автоматически). В нашем случае мы можем записать уравнение для узла b, куда входит ток I2 и выходят токи I1 и I3

(4. 45)

Шаг третий. Нам осталось написать уравнения (в нашем случае — два) для второго правила Кирхгофа. Для этого надо выбрать два независимых замкнутых контура. В рассматриваемом примере имеются три такие возможности: путь по левому контуру badb, путь по правому контуру bcdb и путь вокруг всей цепи badcb. Достаточно взять любые два из них, тогда для третьего контура второе правило Кирхгофа будет выполнено автоматически. Направление обхода контура роли не играет, но при обходе ток будет браться со знаком плюс, если он течет в направлении обхода, и со знаком минус, если ток течет в противоположном направлении. Это же относится к знакам ЭДС.

Возьмем для начала контур badb. Мы выходим из точки b и движемся против часовой стрелки. На нашем пути встретятся два тока, I1 и I2, направления которых совпадают с выбранным направлением обхода. ЭДС также действует в этом же направлении. Поэтому второе правило Кирхгофа для этого участка цепи записывается как

(4.46)

В качестве второго замкнутого пути для разнообразия выберем путь badcb вокруг всей цепи. На этом пути мы встречаем два тока I1 и I3, из которых первый войдет со знаком плюс, а второй — со знаком минус. Мы встретимся также с двумя ЭДС, из которых  войдет в уравнения со знаком плюс, а  — со знаком минус. Уравнение для этого замкнутого пути имеет вид

(4.47)

 

Шаг четвертый. Мы нашли три уравнения для трех неизвестных токов в цепи. Решение произвольной системы линейных уравнений описывается в курсе математики. Для наших целей (цепь достаточна проста) можно просто выразить I3 через I1 из уравнения (4.47)

(4.48)

I2 через I1 с помощью уравнения (4.46)

(4.49)

и подставить (4.48), (4.49) в уравнение первого правила Кирхгофа (4.45). Это уравнение содержит лишь неизвестное I1, которое находится без труда

(4.50)

Подставляя это выражение в (4. 48), (4.49), находим соответственно токи I2, I3

(4.51)

Шаг пятый. В найденные формулы подставляют численные значения, коль скоро они заданы. Подсчитаем для примера токи в нашей цепи при одинаковых сопротивлениях R1 = R2 = R3 = 10 Ом, но разных ЭДС  Имеем:

(4.52)

Последнее значение получилось отрицательным при данных численных характеристиках цепи. Значит, на самом деле направление тока обратно показанному на рисунке. Это естественно: мощный левый источник посылает ток 0,75 А, часть которого (0,45 А) ответвляется в среднюю ветвь, а остаток — 0,3 А — продолжает течь в том же направлении, чему не может воспрепятствовать маломощная правая батарея.

Примечание. Правила Кирхгофа позволяют в принципе рассчитать сколь угодно сложные цепи. Но вычисления могут быть довольно сложными. Поэтому рекомендуется сначала поискать возможную симметрию цепи. Иногда из соображений симметрии более или менее очевидно, что какие-то токи равны между собой или какие-то напряжения равны нулю (и тогда данный участок цепи можно исключить из рассмотрения). Если такое возможно, вычисления существенно упрощаются.

В нашем примере мы пренебрегли внутренним сопротивлением источников тока. При их наличии они также должны включаться в уравнения второго правила Кирхгофа.

Пример. Два одинаковых источника тока с ЭДС  и внутренним сопротивлением r соединяются в батарею. Возможны два варианта соединения — последовательное и параллельное (рис. 4.26). При каком соединении ток в нагрузке R  будет наибольшим?

 

Рис. 4.26. Последовательное (1) и параллельное (2) соединение источников тока 

Решение. Расчет особенно прост для последовательного соединения: уравнение первого правила Кирхгофа отсутствует, так как в цепи нет узлов. Единственное уравнение второго закона дает

(4.53)

Для упрощения расчета параллельного соединения примем во внимание, что из соображений симметрии токи через источники должны быть равны и совпадать по направлению. Тогда первое правило Кирхгофа дает

(4.54)

Второе правило Кирхгофа, записанное для пути через нижний источник и нагрузку, имеет вид

(4.55)

Отсюда следует, что

(4. 56)

 

Сравнивая (4.53) и (4.56), находим, что при R > r ток последовательной батареи больше (Iпосл > Iпарал) а при R < r он меньше (Iпосл < Iпарал) тока от параллельной батареи. При равенстве внутреннего сопротивления и нагрузки R = r обе батареи дают одинаковый ток.

PhysBook:Электронный учебник физики — PhysBook

Содержание


  • 1 Учебники

  • 2 Механика


    • 2.1 Кинематика

    • 2.2 Динамика

    • 2. 3 Законы сохранения

    • 2.4 Статика

    • 2.5 Механические колебания и волны

  • 3 Термодинамика и МКТ


    • 3.1 МКТ

    • 3.2 Термодинамика

  • 4 Электродинамика


    • 4.1 Электростатика

    • 4.2 Электрический ток

    • 4. 3 Магнетизм

    • 4.4 Электромагнитные колебания и волны

  • 5 Оптика. СТО


    • 5.1 Геометрическая оптика

    • 5.2 Волновая оптика

    • 5.3 Фотометрия

    • 5.4 Квантовая оптика

    • 5.5 Излучение и спектры

    • 5.6 СТО

  • 6 Атомная и ядерная


    • 6. 1 Атомная физика. Квантовая теория

    • 6.2 Ядерная физика

  • 7 Общие темы

  • 8 Новые страницы

Здесь размещена информация по школьной физике:

  1. материалы из учебников, лекций, рефератов, журналов;
  2. разработки уроков, тем;
  3. flash-анимации, фотографии, рисунки различных физических процессов;
  4. ссылки на другие сайты

и многое другое.

Каждый зарегистрированный пользователь сайта имеет возможность выкладывать свои материалы (см. справку), обсуждать уже созданные.

Учебники

Формулы по физике – 7 класс – 8 класс – 9 класс – 10 класс – 11 класс –

Механика

Кинематика

Основные понятия кинематики – Прямолинейное движение – Криволинейное движение – Движение в пространстве

Динамика

Законы Ньютона – Силы в механике – Движение под действием нескольких сил

Законы сохранения

Закон сохранения импульса – Закон сохранения энергии

Статика

Статика твердых тел – Динамика твердых тел – Гидростатика – Гидродинамика

Механические колебания и волны

Механические колебания – Механические волны


Термодинамика и МКТ

МКТ

Основы МКТ – Газовые законы – МКТ идеального газа

Термодинамика

Первый закон термодинамики – Второй закон термодинамики – Жидкость-газ – Поверхностное натяжение – Твердые тела – Тепловое расширение


Электродинамика

Электростатика

Электрическое поле и его параметры – Электроемкость

Электрический ток

Постоянный электрический ток – Электрический ток в металлах – Электрический ток в жидкостях – Электрический ток в газах – Электрический ток в вакууме – Электрический ток в полупроводниках

Магнетизм

Магнитное поле – Электромагнитная индукция

Электромагнитные колебания и волны

Электромагнитные колебания – Производство и передача электроэнергии – Электромагнитные волны


Оптика.

СТО

Геометрическая оптика

Прямолинейное распространение света. Отражение света – Преломление света – Линзы

Волновая оптика

Свет как электромагнитная волна – Интерференция света – Дифракция света

Фотометрия

Фотометрия

Квантовая оптика

Квантовая оптика

Излучение и спектры

Излучение и спектры

СТО

СТО


Атомная и ядерная

Атомная физика. Квантовая теория

Строение атома – Квантовая теория – Излучение атома

Ядерная физика

Атомное ядро – Радиоактивность – Ядерные реакции – Элементарные частицы


Общие темы

Измерения – Методы решения – Развитие науки- Статья- Как писать введение в реферате- Подготовка к ЕГЭ — Репетитор по физике

Новые страницы

Запрос не дал результатов.

21.3 Правила Кирхгофа – Колледж физики, главы 1-17

21 Цепи и приборы постоянного тока

Резюме

  • Проанализируйте сложную схему, используя правила Кирхгофа, используя соглашения для определения правильных знаков различных термов.

Многие сложные схемы, такие как схема на рис. 1, не могут быть проанализированы с помощью последовательно-параллельных методов, разработанных в главе 21.1 Резисторы в последовательном и параллельном соединении и главе 21.2 Электродвижущая сила: напряжение на клеммах. Однако есть два правила анализа цепей, которые можно использовать для анализа любой схемы, простой или сложной. Эти правила являются частными случаями законов сохранения заряда и сохранения энергии. Правила известны как Правила Кирхгофа , в честь их изобретателя Густава Кирхгофа (1824–1887).

Рисунок 1. Эту схему нельзя свести к комбинации последовательного и параллельного соединений. Для его анализа можно использовать правила Кирхгофа, специальные приложения законов сохранения заряда и энергии. (Примечание: буква E на рисунке обозначает электродвижущую силу, эдс.)

Правила Кирхгофа

  • Первое правило Кирхгофа — правило пересечения. Сумма всех токов, входящих в соединение, должна равняться сумме всех токов, выходящих из соединения.
  • Второе правило Кирхгофа — правило петли. Алгебраическая сумма изменений потенциала вокруг любой замкнутой цепи (петли) должна быть равна нулю.

Теперь будут даны объяснения двух правил, за которыми следуют советы по решению проблем для применения правил Кирхгофа и рабочий пример, который их использует.

Первое правило Кирхгофа (правило соединения ) представляет собой применение закона сохранения заряда к соединению; это показано на рис. 2. Ток — это поток заряда, а заряд сохраняется; таким образом, любой заряд, втекающий в соединение, должен вытекать наружу. Первое правило Кирхгофа требует, чтобы [латекс]\boldsymbol{I_1 = I_2 + I_3}[/латекс] (см. рисунок). Подобные уравнения могут и будут использоваться для анализа схем и решения схемных задач.

Установление соединений: законы сохранения

Правила Кирхгофа для анализа цепей представляют собой применение законов сохранения к цепям. Первое правило — применение закона сохранения заряда, а второе правило — применение закона сохранения энергии. Законы сохранения, даже используемые в конкретных приложениях, таких как анализ цепей, настолько просты, что составляют основу этого приложения.

Рисунок 2. Правило соединения. На диаграмме показан пример первого правила Кирхгофа, в котором сумма токов, поступающих в соединение, равна сумме токов, выходящих из соединения. В этом случае ток, входящий в переход, разделяется и выходит в виде двух токов, так что I 1 = I 2 + I 3 . Здесь I 1 должно быть 11 А, так как I 2 равно 7 А, а I 3 4 равно 9 А.

Второе правило Кирхгофа ( петлевое правило ) является применением закона сохранения энергии. Правило цикла сформулировано с точки зрения потенциала, [латекс]\boldsymbol{V}[/латекс], а не потенциальной энергии, но они связаны, поскольку [латекс]\boldsymbol{\textbf{PE}_{\textbf{ elec}} = qV}[/latex]. Напомним, что ЭДС — это разность потенциалов источника при отсутствии тока. В замкнутом контуре любая энергия, поставляемая ЭДС, должна быть переведена в другие формы устройствами в контуре, поскольку нет других способов передачи энергии в контур или из него. На рис. 3 показаны изменения потенциала в простой последовательной цепи.

Второе правило Кирхгофа требует [латекс]\жирныйсимвол{\текстбф{ЭДС} — Ir — IR_1 — IR_2 = 0}[/латекс]. В перестановке это [латекс]\boldsymbol{\textbf{ЭДС} = Ir + IR_1 + IR_2}[/latex], что означает, что ЭДС равна сумме [латекс]\boldsymbol{IR}[/латекс] (напряжение ) попадает в петлю.

Рисунок 3. Правило цикла. Пример второго правила Кирхгофа, согласно которому сумма изменений потенциала вокруг замкнутого контура должна быть равна нулю. (a) На этой стандартной схеме простой последовательной цепи ЭДС подает напряжение 18 В, которое сводится к нулю сопротивлениями, с 1 В на внутреннем сопротивлении и 12 В и 5 В на двух сопротивлениях нагрузки, для всего 18 В. (b) Этот вид в перспективе представляет потенциал как что-то вроде американских горок, где потенциал повышается за счет ЭДС и снижается за счет сопротивления. (Обратите внимание, что буква E означает emf.)

Применяя правила Кирхгофа, мы получаем уравнения, позволяющие находить неизвестные в цепях. Неизвестными могут быть токи, ЭДС или сопротивления. Каждый раз, когда применяется правило, создается уравнение. Если независимых уравнений столько же, сколько неизвестных, то задача решаема. При применении правил Кирхгофа вы должны принять два решения. Эти решения определяют знаки различных величин в уравнениях, которые вы получаете, применяя правила.

  1. Применяя первое правило Кирхгофа, правило соединения, вы должны пометить ток в каждой ветви и решить, в каком направлении он течет. Например, на рис. 1, рис. 2 и рис. 3 токи помечены [латекс]\boldsymbol{I_1}[/латекс], [латекс]\boldsymbol{I_2}[/латекс], [латекс]\boldsymbol{I_3 }[/latex] и [latex]\boldsymbol{I}[/latex], а стрелки указывают их направления. Здесь нет никакого риска, потому что, если вы выберете неправильное направление, ток будет правильной величины, но отрицательным.
  2. Применяя второе правило Кирхгофа, правило петли, вы должны определить замкнутую петлю и решить, в каком направлении ее обойти, по часовой или против часовой стрелки. Например, на рис. 3 петля была пройдена в том же направлении, что и ток (по часовой стрелке). Опять же, нет никакого риска; Обход цепи в противоположном направлении меняет знак каждого члена в уравнении, что похоже на умножение обеих частей уравнения на -1.

Рисунок 4 и следующие пункты помогут вам правильно расставить знаки «плюс» или «минус» при применении правила цикла. Обратите внимание, что резисторы и ЭДС пересекаются при переходе от a к b. Во многих схемах будет необходимо построить более одного контура. При обходе каждой петли необходимо следить за знаком изменения потенциала. (См. пример 1.)

Рисунок 4. Каждый из этих резисторов и источников напряжения проходит от a до b. Возможные изменения показаны под каждым элементом и пояснены в тексте. (Обратите внимание, что буква E означает ЭДС.)

  • Когда резистор перемещается в том же направлении, что и ток, изменение потенциала составляет [латекс]\жирный символ{-IR}[/латекс]. (См. рис. 4.)
  • Когда резистор перемещается в направлении, противоположном току, изменение потенциала составляет [латекс]\boldsymbol{+IR}[/латекс]. (См. рис. 4.)
  • Когда ЭДС перемещается от – к + (в том же направлении, что и положительный заряд), изменение потенциала составляет +ЭДС. (См. рис. 4.)
  • Когда ЭДС перемещается от + к – (противоположно направлению движения положительного заряда), изменение потенциала равно −ЭДС. (См. рис. 4.)

Пример 1. Расчет тока: использование правил Кирхгофа

Найдите токи, протекающие в цепи на рисунке 5.

Рисунок 5. Эта цепь аналогична схеме на рисунке 1, но указаны сопротивления и ЭДС. (Каждая ЭДС обозначена буквой E.) Токи в каждой ветви помечены и предполагается, что они движутся в показанных направлениях. В этом примере для нахождения токов используются правила Кирхгофа.

Стратегия

Эта схема настолько сложна, что токи нельзя найти с помощью закона Ома и последовательно-параллельных методов — необходимо использовать правила Кирхгофа. На рисунке токи обозначены как [латекс]\boldsymbol{I_1}[/latex], [латекс]\boldsymbol{I_2}[/latex] и [латекс]\boldsymbol{I_3}[/latex]. сделал о своих направлениях. Места на схеме обозначены буквами от a до h. В решении мы будем применять правила соединения и петли, ища три независимых уравнения, которые позволят нам найти три неизвестных тока.

Решение

Начнем с применения первого правила Кирхгофа или правила соединения в точке а. Это дает

[латекс]\boldsymbol{I_1 = I_2 + I_3} ,[/latex]

, так как [латекс]\boldsymbol{I_1}[/latex] впадает в соединение, а [латекс]\boldsymbol{I_2} [/latex] и [latex]\boldsymbol{I_3}[/latex] вытекают наружу. Применение правила соединения в точке e дает точно такое же уравнение, так что никакой новой информации не получается. Это одно уравнение с тремя неизвестными — нужны три независимых уравнения, поэтому необходимо применить правило цикла.

Теперь рассмотрим цикл abcdea. Переходя от a к b, мы пересекаем [латекс]\boldsymbol{R_2}[/латекс] в том же (предполагаемом) направлении, что и текущий [латекс]\boldsymbol{I_2}[/латекс], поэтому изменение потенциала равно [латекс]\boldsymbol{-I_2R_2}[/латекс]. Затем, переходя от b к c, мы переходим от – к +, так что изменение потенциала составляет [латекс]\boldsymbol{+ \textbf{emf}_1}[/латекс]. Перемещение внутреннего сопротивления [латекс]\boldsymbol{r_1}[/латекс] от c к d дает [латекс]\boldsymbol{-I_2r_1}[/латекс]. Завершение цикла путем перехода от d к a снова пересекает резистор в том же направлении, что и его ток, что дает изменение потенциала [latex]\boldsymbol{-I_1R_1}[/latex].

Правило цикла гласит, что сумма изменений потенциала равна нулю. Таким образом,

[латекс]\boldsymbol{-I_2R_2 + \textbf{emf}_1 — I_2r_1 — I_1R_1 = -I_2(R_2 + r_1) + \textbf{emf}_1 — I_1R_1 = 0}. [/latex]

Подстановка значений сопротивления и ЭДС из принципиальной схемы и отмена единиц измерения ампер дает

[latex]\boldsymbol{-3I_2 + 18 -6I_1 = 0}.[/latex]

Теперь применим правило цикла к aefgha ( мы могли бы выбрать и abcdefgha) аналогично дает

[латекс]\boldsymbol{+I_1R_1 + I_3R_3 + I_3r_2 — \textbf{emf}_2 = +I_1R_1 + I_3(R_3+r_2) — \textbf{emf}_2 = 0} .[/latex]

Обратите внимание, что знаки меняются местами по сравнению с другим циклом, потому что элементы проходятся в противоположном направлении. С введенными значениями это становится

[латекс]\boldsymbol{+6I_1 + 2I_3 — 45 = 0}.[/латекс]

Этих трех уравнений достаточно, чтобы решить для трех неизвестных токов. Сначала решим второе уравнение для [латекс]\boldsymbol{I_2}[/латекс]:

[латекс]\boldsymbol{I_2 = 6 — 2I_1}.[/latex]

Теперь решите третье уравнение для [латекс]\boldsymbol{I_3}[/латекс]:

[латекс]\boldsymbol{I_3 = 22.5 — 3I_1}.[/latex]

Подстановка этих двух новых уравнений в первое позволяет нам найти значение для [latex]\boldsymbol{I_1}[/latex]:

[latex]\boldsymbol{I_1 = I_2 + I_3 = (6 — 2I_1) + (22,5 — 3I_1) = 28,5 — 5I_1}. [/latex]

Объединение терминов дает

[latex]\boldsymbol{6I_1 = 28,5}[/latex] и

[латекс]\boldsymbol{I_1 = 4,75 \;\textbf{A}}.[/latex]

Подстановка этого значения вместо [латекс]\boldsymbol{I_1}[/латекс] обратно в четвертое уравнение дает

[латекс]\boldsymbol{I_2 = 6 — 2I_1 = 6 — 9,50}[/латекс]

[латекс]\boldsymbol{I_2 = -3,50 \;\textbf{A}}.[/latex]

Знак минус означает, что [латекс]\boldsymbol{I_2}[/латекс] течет в направлении, противоположном предполагаемому на рисунке 5.

Наконец, подстановка значения для [латекс]\жирныйсимвол{I_1}[/латекс] в пятое уравнение дает

[латекс]\boldsymbol{I_3 = 22,5 — 3I_1 = 22,5 — 14,25}[/latex]

[латекс]\boldsymbol{I_3 = 8,25 \;\textbf{A}}.[/latex]

Обсуждение

Просто для проверки отметим, что действительно [латекс]\boldsymbol{I_1 = I_2 + I_3}[/latex]. Результаты также можно проверить, введя все значения в уравнение для цикла abcdefgha.

Стратегии решения задач по правилам Кирхгофа

  1. Убедитесь, что имеется четкая принципиальная схема, на которой вы можете отметить все известные и неизвестные сопротивления, ЭДС и токи. Если ток неизвестен, вы должны присвоить ему направление. Это необходимо для определения признаков потенциальных изменений. Если вы зададите направление неправильно, то обнаружится, что ток имеет отрицательное значение — никакого вреда не будет.
  2. Примените правило соединения к любому соединению в цепи. Каждый раз, когда применяется правило соединения, вы должны получать уравнение с током, которого не было в предыдущем приложении — если нет, то уравнение избыточно.
  3. Примените правило цикла к такому количеству циклов, которое необходимо для поиска неизвестных в задаче. (Независимых уравнений должно быть столько же, сколько и неизвестных.) Чтобы применить правило цикла, вы должны выбрать направление обхода цикла. Затем тщательно и последовательно определите знаки потенциальных изменений для каждого элемента, используя четыре маркированных пункта, рассмотренных выше в сочетании с рис. 4.9.0010
  4. Решите уравнения для неизвестных. Это может включать в себя множество алгебраических шагов, требующих тщательной проверки и перепроверки.
  5. Проверьте, разумны ли и последовательны ли ответы. Числа должны быть правильного порядка, ни чрезмерно большими, ни исчезающе малыми. Признаки должны быть разумными — например, отсутствие сопротивления не должно быть отрицательным. Убедитесь, что полученные значения удовлетворяют различным уравнениям, полученным в результате применения правил. Например, токи должны удовлетворять правилу соединения.

Теоретически материал в этом разделе верен. Мы должны быть в состоянии проверить это, произведя измерения тока и напряжения. На самом деле, некоторые из устройств, используемых для проведения таких измерений, представляют собой прямое применение принципов, рассмотренных до сих пор, и рассматриваются в следующих модулях. Как мы увидим, отсюда вытекает очень простой, даже глубокий факт: проведение измерения изменяет измеряемую величину.

  • Правила Кирхгофа можно использовать для анализа любой схемы, простой или сложной.
  • Первое правило Кирхгофа — правило соединения: сумма всех токов, входящих в соединение, должна равняться сумме всех токов, выходящих из соединения.
  • Второе правило Кирхгофа — правило петли: алгебраическая сумма изменений потенциала вокруг любого замкнутого контура (петли) должна быть равна нулю.
  • Два правила основаны соответственно на законах сохранения заряда и энергии.
  • При расчете потенциала и тока по правилам Кирхгофа необходимо соблюдать ряд правил для определения правильных знаков различных членов.
  • Простые ряды и параллельные правила являются частными случаями правил Кирхгофа.
Правила Кирхгофа
набор из двух правил, основанных на сохранении заряда и энергии, регулирующих ток и изменения потенциала в электрической цепи
соединительная линейка
первое правило Кирхгофа, применяющее закон сохранения заряда к соединению; ток — это поток заряда; таким образом, любой заряд, втекающий в соединение, должен вытекать наружу; правило может быть сформулировано [латекс]\boldsymbol{I_1 = I_2 + I_3}[/latex]
правило цикла
Второе правило Кирхгофа, которое гласит, что в замкнутом контуре любая энергия, поставляемая ЭДС, должна быть переведена в другие формы устройствами в контуре, поскольку нет других способов передачи энергии в контур или из него. Таким образом, ЭДС равна сумме [latex]\boldsymbol{IR}[/latex] (напряжения) падений в контуре и может быть сформулирована следующим образом: [latex]\boldsymbol{\textbf{ЭДС} = Ir + IR_1 + IR_2 }[/латекс]
законы сохранения
требуют сохранения энергии и заряда в системе

 

Главная > Формулы > Формулы по физике > Формула правила петли Кирхгофа

Формула правила цикла Кирхгофа

В любом «контуре» замкнутой цепи может быть любое количество элементов цепи, таких как батареи и резисторы. Сумма разностей напряжений на всех этих элементах схемы должна быть равна нулю. Это известно как правило петли Кирхгофа. Разность напряжений измеряется в вольтах (В). Когда текущий I в контуре дается в Амперах (А), а сопротивление элементов цепи дается в Омах (Ом), разность напряжений на резисторе можно найти по формуле .

В = разность напряжений, (В, В)

Формула правила цикла Кирхгофа Вопросы:

1) Контур на рисунке ниже состоит из трех резисторов и источника напряжения (батареи). Ток в контуре I = +4,00 А по часовой стрелке. Аккумулятор подает напряжение v b = 100,0 В. Значения сопротивления двух из трех резисторов приведены на рисунке. Какой номинал резистора R 3 ?

Ответ: Правило Кирхгофа о контуре гласит, что сумма разностей напряжений на контуре должна быть равна нулю. Чтобы найти сумму, нужно выбрать направление движения. Направление положительного тока указано по часовой стрелке, поэтому проще всего использовать его как направление движения для нахождения суммы. Источник напряжения или батарея слева на рисунке имеет положительное значение напряжения в направлении по часовой стрелке. Три резистора вызывают падение напряжения в этом направлении. Величина падения напряжения равна сопротивлению, умноженному на ток в петле. Сумма разностей напряжений составляет:

Значение третьего резистора можно найти путем перестройки формулы выше:

  • (Ом).

    2) Контур цепи на рисунке ниже состоит из трех резисторов и источника напряжения (батареи). Ток в петле I = +10,0 мА (миллиампер), против часовой стрелки. Значения трех резисторов приведены на рисунке в килоомах (значение резистора R 3 есть). Какое напряжение (V b ) должно обеспечивать аккумулятор?

    Ответ: Правило Кирхгофа о контуре гласит, что сумма разностей напряжений на контуре должна быть равна нулю. Чтобы найти сумму, нужно выбрать направление движения. Направление положительного тока указано против часовой стрелки, поэтому проще всего использовать его как направление движения для нахождения суммы. Источник напряжения или батарея слева на рисунке имеет положительное значение напряжения в направлении против часовой стрелки. Три резистора вызывают падение напряжения в этом направлении. Величина падений напряжения равна сопротивлению, умноженному на ток в контуре, поэтому их сумма должна быть той же величины, что и напряжение от батареи.