Последовательное соединение конденсаторов: Схемы соединения конденсаторов — расчет емкости

Содержание

Соединения конденсаторов. Энергия электрического поля конденсатора.

Основные ссылки

CSS adjustments for Marinelli theme

Объединение учителей Санкт-Петербурга

Форма поиска

Поиск

Вы здесь

Главная » Соединения конденсаторов. Энергия…

Соединения конденсаторов .

Параллельное соединение конденсаторов

 

Обкладки конденсаторов соединяют попарно, т.е. в системе остается два изолированных проводника, которые и представляют собой обкладки нового конденсатора

 

Вывод: При параллельном соединении конденсаторов

  • заряды складываются,
  • напряжения одинаковые,
  • емкости складываются.

Т.о.,  общая емкость больше емкости любого из параллельно соединенных конденсаторов

Последовательное соединение конденсаторов

 

Производят только одно соединение, а две оставшиеся обкладки — одна от конденсатора С1 другая от конденсатора С2 — играют роль обкладок нового конденсатора.

 

Вывод: При последовательном соединении конденсаторов

  • напряжения складываются,
  • заряды одинаковы,
  • складываются величины, обратные емкости.

   Т.о.,  общая емкость меньше емкости любого из последовательно соединенных конденсаторов.

Энергия электрического поля конденсатора.

Под  энергией электрического поля конденсатора будем понимать энергию одной его обкладки, находящейся в поле, созданном другой  обкладкой. Тогда: 

 Формулы справедливы для любого конденсатора.

Пример: С=2мкФ; U=1000В.

t=10-6c.W=1 Дж  — опасно для жизни!

Плотность энергии.

  — плотность энергии (энергия единицы объема).

Формула справедлива для полей любых конденсаторов и, кроме того, для полей, меняющихся со временем (неэлектростатических).

Теги: 

конспект

Последовательное и параллельное соединение конденсаторов (ёмкостей)

Практически ни одно электронное устройство не обходится без конденсатора. Он может стоять на входе или выходе устройства, перед или после некоторых элементов. Применяется последовательное и параллельное соединение конденсаторов. Как и для чего их подключать тем или иным способом и будем обсуждать.

Содержание статьи

  • 1 Что такое конденсатор и его основные характеристики
  • 2 Что он из себя представляет и как работает
  • 3 Где и для чего используются
  • 4 Как подключать конденсаторы
    • 4.1 Параллельное подключение конденсаторов
      • 4.1.1 Расчёт суммарной ёмкости
      • 4.1.2 Пример расчёта
    • 4.2 Последовательное соединение
      • 4.2.1 Как определить ёмкость последовательно соединенных конденсаторов
      • 4.2.2 Пример расчёта
  • 5 Почему электролитические конденсаторы выходят из строя и что делать
    • 5.1 Как подобрать замену
    • 5.2 Что будет, если поставить конденсатор большей ёмкости?

Что такое конденсатор и его основные характеристики

Конденсатор — это радиодеталь, которая работает как накопитель электрической энергии. Чтобы понятнее было, как он работает, его можно представить как своего рода небольшой аккумулятор. Обозначается двумя параллельными чёрточками.

Обозначения различных типов конденсаторов на схемах. Чаще всего из строя выходят электролитические конденсаторы, так что стоит запомнить их обозначение

Основная характеристика конденсатора любого типа — ёмкость. Это то количество заряда, которое он в состоянии накопить. Измеряется в Фарадах (сокращенно просто буква F или Ф), а вернее, в более «мелких» единицах:

  • микрофарадах — мкФ это 10-6 фарада,
  • нанофарадах — нФ это 10-9 фарада;
  • пикофарадах — пФ это 10-12 фарада.

Вторая важная характеристика — номинальное напряжение. Это то напряжение, при котором гарантирована длительная безотказная работа. Например, 4700 мкФ 35 В, где 35 В — это номинальное напряжение 35 вольт.

У крупных по размеру конденсаторов, ёмкость и напряжение указаны на корпусе

Нельзя ставить конденсатор в цепь с более высоким напряжением чем то, которое на нём указано. В противном случае он быстро выйдет из строя.

Можно использовать конденсаторы на 50 вольт вместо конденсаторов на 25 вольт. Но это порой нецелесообразно, так как те, которые рассчитаны на более высокое напряжение, дороже, да и габариты у них больше.

Что он из себя представляет и как работает

В самом простейшем случае конденсатор состоит из двух токопроводящих пластин (обкладок), разделённых слоем диэлектрика.

Между обкладками находится слой диэлектрика — материала плохо проводящего электрический ток

На пластины подаётся постоянный или переменный ток. Вначале, пока энергия накапливается, потребление энергии конденсатором высокое. По мере «наполнения» ёмкости оно снижается. Когда заряд набран полностью, токопотребления вообще нет, источник питания как бы отключается. В это время конденсатор сам начинает отдавать накопленный заряд. То есть, он на время становится своеобразным источником питания. Поэтому его и сравнивают с аккумулятором.

Где и для чего используются

Как уже говорили, сложно найти схему без конденсаторов. Их применяют для решения самых разных задач:

Конденсаторы встречаются часто и область их применения широка. Но надо знать как правильно их подключить.

Как подключать конденсаторы

В электротехнике есть два основных вида соединения деталей — параллельное и последовательное. Конденсаторы также можно подключать по любому из указанных способов. Есть ещё особая — мостовая схема. Она имеет собственную область использования.

В схеме может быть последовательное и параллельное соединение конденсаторов

Параллельное подключение конденсаторов

При параллельном соединении все конденсаторы объединены двумя узлами. Чтобы параллельно подключить конденсаторы, скручиваем попарно их ножки, обжимаем пассатижами, потом пропаиваем. У некоторых конденсаторов большие корпуса (банки), а выводы маленькие. В таком случае используем провода (как на  рисунке ниже).

Так физически выглядит параллельное подключение конденсаторов

Если конденсаторы электролитические, следите за полярностью. На них должны стоять «+» или «-«. При их параллельном подключении соединяем одноимённые выводы — плюс к плюсу, минус — к минусу.

Расчёт суммарной ёмкости

При параллельном подключении конденсаторов их номинальная ёмкость складывается. Просто суммируете номиналы всех подключённых элементов, сколько бы их ни было. Два, три, пять, тридцать. Просто складываем. Но следите, чтобы размерность совпадала. Например, складывать будем в микрофарадах. Значит, все значения переводим в микрофарады и только после этого суммируем.

Расчёт ёмкости при параллельном подключении конденсаторов

Когда на практике применяют параллельное соединение конденсаторов? Например, тогда, когда надо заменить «пересохший» или сгоревший, а нужного номинала нет и бежать в магазин некогда или нет возможности. В таком случае подбираем из имеющихся в наличии. В сумме они должны дать требуемое значение. Все их проверяем на работоспособность и соединяем по приведенному выше принципу.

Пример расчёта

Например, включили параллельно два конденсатора — 8 мкФ и 12 мкФ. Следуя формуле, их номиналы просто складываем. Получаем 8 мкФ + 12 мкФ = 20 мкФ. Это и будет суммарная ёмкость в данном случае.

Пример расчёта конденсаторов при параллельном подключении

Последовательное соединение

Последовательным называется соединение, когда выход одного элемента соединяется со входом другого. Сравнить можно с вагонами или цепочкой из лампочек. По такому же принципу последовательно соединяют и конденсаторы.

Вот что значит последовательно соединить конденсаторы

При подключении полярных электролитических «кондеров» надо следить за соблюдением полярности. Плюс первого конденсатора подаете на минус второго и так далее. Выстраиваете цепочку.

Существуют неполярные (биполярные) электролитические конденсаторы. При их соединении нет необходимости соблюдать полярность.

Как определить ёмкость последовательно соединенных конденсаторов

При последовательном соединении конденсаторов суммарная ёмкость элементов будет меньше самого маленького номинала в цепочке. То есть, ёмкость последовательно соединённых конденсаторов уменьшается. Это также может пригодиться при ремонте техники — замена конденсатора требуется часто.

Последовательно соединённые конденсаторы

Использовать формулу расчёта приведённую выше не очень удобно, поэтому её обычно используют в преобразованном виде:

Формула расчёта ёмкости при последовательном соединении

Это формула для двух элементов. При увеличении их количества она становится значительно сложнее. Хотя, редко можно встретить больше двух последовательных конденсаторов.

Пример расчёта

Какая суммарная ёмкость будет если конденсаторы на 12 мкФ и 8 мкФ соединить последовательно? Считаем: 12*8 / (12+8) = 96 / 20 = 4,8 мкФ. То есть, такая цепочка соответствует номиналу 4,8 мкФ.

Пример расчета ёмкости при последовательном подключении конденсаторов

Как видите, значение меньше чем самый маленький номинал в последовательности. А если подключить таким образом два одинаковых конденсатора, то результат будет вполовину меньше номинала. Например, рассчитаем для двух ёмкостей по 12 мкФ. Получим: 12*12 / (12 + 12) = 144 / 24 = 6 мкФ. Проверим для 8 мкФ. Считаем: 8*8 / (8+8) = 64 / 16 = 4 мкФ. Закономерность подтвердилась. Это правило можно использовать при подборе номинала.

Почему электролитические конденсаторы выходят из строя и что делать

Зачастую, чтобы отремонтировать вышедшую из строя электронную технику, достаточно найти и заменить вздувшиеся конденсаторы. Дело в том, что срок жизни их небольшой — 1000-2000 тысячи рабочих часов. Потом он обычно выходит из строя и требуется его замена. И это при нормальном напряжении не выше номинального. Так происходит потому, что диэлектрик в конденсаторах, чаще всего, жидкий. Жидкость понемногу испаряется, меняются параметры и, рано или поздно, конденсатор вздувается.

Электролитические конденсаторы имеют специальные насечки на верхушке корпуса, чтобы при выходе из строя избежать взрыва

Высыхает электролит не только во время работы. Даже просто «от времени». Это конструктивная особенность электролитических конденсаторов. Поэтому не стоит ставить выпаянные из старых схем конденсаторы или те, которые несколько лет (или десятков лет) хранятся в мастерской. Лучше купить «свежий», но проверьте дату производства.

Можно ли продлить срок эксплуатации конденсаторов? Можно. Надо улучшить теплоотвод. Чем меньше греется электролит, тем медленнее высыхает. Поэтому не стоит ставить аппаратуру вблизи отопительных приборов.

Для улучшения отвода тепла ставят радиаторы

Второе — надо следить за тем, чтобы хорошо работали кулера. Третье — если рядом стоят детали, которые активно греются во время работы, надо конденсаторы каким-то образом от температуры защитить.

Как подобрать замену

Если часто приходится менять один и тот же конденсатор, его лучше заменить на более «мощный» — той же ёмкости, но на большее напряжение. Например, вместо конденсатора на 25 вольт, поставить конденсатор на 35 вольт. Только надо иметь в виду, что более мощные конденсаторы имеют большие размеры. Не всякая плата позволяет сделать такую замену.

Конденсатор той же ёмкости, но рассчитанный на большее напряжение, имеет больший размер

Можно поставить параллельно несколько конденсаторов с тем же напряжением, подобрав номиналы так, чтобы получить требуемую ёмкость. Что это даст? Лучшую переносимость пульсаций тока, меньший нагрев и, как следствие, более продолжительный срок службы.

Что будет, если поставить конденсатор большей ёмкости?

Часто приходит в голову идея поставить вместо сгоревшего или вздувшегося конденсатор большей ёмкости. Ведь он должен меньше греться. Так, во всяком случае, кажется. Ёмкость практически никак не связана со степенью нагрева корпуса. И в этом выигрыша не будет.

Устройство электролитического конденсатора

По нормативным документам отклонение номинала конденсаторов допускается в пределах 20%. Вот на эту цифру можете спокойно ставить больше/меньше. Но это может привести к изменениям в работе устройства. Так что лучше найти «родной» номинал. И учтите, что не всегда можно ставить большую ёмкость. Можно если конденсатор стоит на входе и сглаживает скачки питания. Вот тут большая ёмкость уместна, если для её установки достаточно места. Это точно нельзя делать там, где конденсатор работает как фильтр, отсекающий заданные частоты.

Можно менять на ту же ёмкость, но чуть более высокое напряжение. Это имеет смысл. Но размеры такого конденсатора будут намного больше. Не в любую плату получится его установить. И учтите, что корпус его не должен соприкасаться с другими деталями.

Конденсаторы последовательно и параллельно — Конденсаторы

Конденсаторы

Конденсаторы могут быть соединены последовательно или параллельно, чтобы получить результирующее значение, которое может быть либо
сумма отдельных значений (параллельно) или значение меньше, чем у наименьшей емкости
(последовательно).

Конденсаторы серии

Цепь, состоящая из нескольких последовательно соединенных конденсаторов, в некоторых отношениях похожа на одну.
несколько последовательно соединенных резисторов. В последовательной емкостной цепи один и тот же ток смещения
протекает через каждую часть цепи, и приложенное напряжение будет делиться на отдельные конденсаторы.
На рисунке ниже показана схема, содержащая источник и три последовательных конденсатора.

Конденсаторы последовательно.

Сумма напряжений на конденсаторе должна равняться напряжению источника (закон напряжения Кирхгофа).

Заряды на всех конденсаторах должны быть одинаковыми, так как конденсаторы соединены последовательно и любые
движение заряда в одной части цепи должно происходить во всех частях последовательной цепи.
Решение уравнения C = Q / V для напряжения через емкость и заряд
( В = Ом / C ), для каждой из серий получены следующие результаты
конденсаторы и общая емкость ( C t )

Подставив эти результаты в приведенное выше уравнение закона Кирхгофа для напряжения

Разделив обе части приведенного выше уравнения на общий множитель Q

Взяв обратную величину обеих сторон и предполагая любое количество конденсаторов

Это уравнение является общим уравнением, используемым для расчета общей емкости конденсаторов.
соединены последовательно. Обратите внимание на сходство между этим уравнением и тем, которое использовалось для нахождения эквивалента.
сопротивление параллельных резисторов. Если в цепи всего два конденсатора, произведение превышает
можно использовать формулу суммы

Из приведенных выше формул должно быть видно, что суммарная емкость конденсаторов
при последовательном соединении меньше емкости любого из отдельных конденсаторов.

Пример:
Определите общую емкость последовательной цепи, содержащей три конденсатора, номиналы которых
составляют 10 нФ, 0,25 мкФ и 50 нФ соответственно.

Решение:

Общая емкость 8 нФ немного меньше самого маленького конденсатора (10 нФ).

Параллельные конденсаторы

При параллельном соединении конденсаторов (см. рисунок ниже) одна пластина каждого конденсатора подключается напрямую.
к одной клемме источника, а другая пластина каждого конденсатора подключена к
другой терминал источника. На рисунке ниже все отрицательные пластины конденсаторов
соединены вместе, и все положительные пластины соединены вместе.
Суммарная (эквивалентная) емкость Кл t , следовательно, выступает как емкость с пластиной
площадь равна сумме площадей всех отдельных пластин. Как упоминалось ранее,
емкость напрямую зависит от площади пластины. Эффективное параллельное соединение конденсаторов
увеличивает площадь пластины и тем самым увеличивает общую емкость.

Параллельные конденсаторы.

Полную емкость можно рассчитать математически. Применяя уравнение C = Q / V
на каждый конденсатор и на общую емкость

Общий заряд Q t есть сумма зарядов на каждом конденсаторе

Из уравнения C = Q / V следует, что Q = C V , а если заряд
записывается в этой форме и подставляется в приведенное выше уравнение, это уравнение приводит к

Разделив обе части приведенного выше уравнения на общий множитель В и приняв любое количество конденсаторов

Это уравнение математически утверждает, что общая емкость ряда конденсаторов
параллельно сумма отдельных емкостей.

Пример:
Определите общую емкость в параллельной емкостной цепи, содержащей три конденсатора.
значения которых составляют 30 нФ, 2 мкФ и 0,25 мкФ соответственно.

Решение:

4.2 Конденсаторы, включенные последовательно и параллельно. Введение в электричество, магнетизм и электрические цепи

ЦЕЛИ ОБУЧЕНИЯ


К концу этого раздела вы сможете:

  • Объясните, как определить эквивалентную емкость конденсаторов при последовательном и параллельном соединении
  • Вычислите разность потенциалов на пластинах и заряд на пластинах для конденсатора в сети и определите чистую емкость сети конденсаторов

Несколько конденсаторов можно соединить вместе для использования в различных приложениях. Несколько соединений конденсаторов ведут себя как один эквивалентный конденсатор. Общая емкость этого эквивалентного одиночного конденсатора зависит как от отдельных конденсаторов, так и от того, как они соединены. Конденсаторы могут быть расположены в двух простых и распространенных типах соединений, известных как ряд и параллельно , для которых мы можем легко рассчитать общую емкость. Эти две основные комбинации, последовательная и параллельная, также могут использоваться как часть более сложных соединений.

Серийная комбинация конденсаторов

На рисунке 4.2.1 показана последовательная комбинация трех конденсаторов, расположенных в ряд внутри цепи. Как и для любого конденсатора, емкость комбинации связана с зарядом и напряжением с помощью уравнения 4.1.1. При подключении этой последовательной комбинации к аккумулятору с напряжением В каждый из конденсаторов приобретает одинаковый заряд. Чтобы объяснить, сначала обратите внимание, что заряд на пластине, подключенной к положительной клемме батареи, равен  , а заряд на пластине, подключенной к отрицательной клемме, равен . Затем заряды индуцируются на других пластинах, так что сумма зарядов на всех пластинах и сумма зарядов на любой паре пластин конденсатора равна нулю. Однако падение потенциала на одном конденсаторе может отличаться от падения потенциала на другом конденсаторе, поскольку, как правило, конденсаторы могут иметь разную емкость. Последовательное соединение двух или трех конденсаторов напоминает один конденсатор с меньшей емкостью. Как правило, любое количество последовательно соединенных конденсаторов эквивалентно одному конденсатору, емкость которого (называемая эквивалентная емкость ) меньше, чем наименьшая из емкостей в последовательной комбинации. Заряд этого эквивалентного конденсатора такой же, как заряд любого конденсатора в последовательном соединении: То есть все конденсаторы в последовательном соединении имеют одинаковый заряд . Это происходит из-за сохранения заряда в цепи. Когда заряд в последовательной цепи снимается с пластины первого конденсатора (обозначается как ), он должен быть помещен на пластину второго конденсатора (обозначается как ) и так далее.

(рис. 4.2.1)  

Рисунок 4. 2.1  (a) Три конденсатора соединены последовательно. Величина заряда на каждой пластине равна . (b) Цепочка конденсаторов в (а) эквивалентна одному конденсатору, который имеет меньшую емкость, чем любая из отдельных емкостей в (а), а заряд на его пластинах равен .

Мы можем найти выражение для полной (эквивалентной) емкости, рассматривая напряжения на отдельных конденсаторах. Потенциалы на конденсаторах , , и равны соответственно , , и,. Эти потенциалы должны суммироваться с напряжением батареи, что дает следующий баланс потенциалов:

   

Потенциал измеряется на эквивалентном конденсаторе, который удерживает заряд и имеет эквивалентную емкость. Вводя выражения для , и , получаем

   

Отменяя заряд , получаем выражение, содержащее эквивалентную емкость, , трех последовательно соединенных конденсаторов:

   

Это выражение можно обобщить для любого количества конденсаторов в последовательной сети.

СЕРИЯ

КОМБИНАЦИЯ


Для конденсаторов, соединенных в комбинацию серии , обратная величина эквивалентной емкости представляет собой сумму обратных величин отдельных емкостей:

(4. 2.1)  

ПРИМЕР 4.2.1


Эквивалентная емкость последовательной сети

Найдите общую емкость трех последовательно соединенных конденсаторов, если их индивидуальные емкости равны , , и .

Стратегия

Поскольку в этой сети всего три конденсатора, мы можем найти эквивалентную емкость, используя уравнение 4.2.1 с тремя членами.

Решение

Вводим заданные емкости в уравнение 4.2.1:

   

Теперь инвертируем этот результат и получаем .

Значение

Обратите внимание, что в последовательной сети конденсаторов эквивалентная емкость всегда меньше, чем наименьшая отдельная емкость в сети.

Параллельная комбинация конденсаторов

Параллельная комбинация трех конденсаторов, в которой одна пластина каждого конденсатора подключена к одной стороне цепи, а другая пластина подключена к другой стороне, показана на рисунке 4.2.2 (a). Поскольку конденсаторы соединены параллельно, все они имеют одинаковое напряжение на пластинах . Однако каждый конденсатор в параллельной сети может хранить различный заряд. Чтобы найти эквивалентную емкость параллельной сети, заметим, что общий заряд, хранящийся в сети, представляет собой сумму всех отдельных зарядов:

.

   

В левой части этого уравнения мы используем соотношение , которое справедливо для всей сети. В правой части уравнения мы используем отношения , и  для трех конденсаторов в сети. Таким образом, мы получаем

   

Это уравнение в упрощенном виде представляет собой выражение для эквивалентной емкости параллельной сети из трех конденсаторов:

   

Это выражение легко обобщается на любое количество конденсаторов, соединенных параллельно в сети.

ПАРАЛЛЕЛЬНАЯ КОМБИНАЦИЯ


Для конденсаторов, соединенных в параллельную комбинацию , эквивалентная (чистая) емкость представляет собой сумму всех отдельных емкостей в сети,

(4.2.2)  

(рис. 4.2.2)  

Рисунок 4. 2.2  (a) Три конденсатора соединены параллельно. Каждый конденсатор подключен непосредственно к аккумулятору. б) Заряд эквивалентного конденсатора равен сумме зарядов отдельных конденсаторов.

ПРИМЕР 4.2.2


Эквивалентная емкость параллельной сети

Найдите общую емкость трех параллельно соединенных конденсаторов, зная, что их отдельные емкости равны , , и .

Стратегия

Поскольку в этой сети всего три конденсатора, мы можем найти эквивалентную емкость, используя уравнение 4.2.2 с тремя членами.

Решение

Ввод заданных емкостей в уравнение 4.2.2 дает

   

Значение

Обратите внимание, что в параллельной сети конденсаторов эквивалентная емкость всегда больше, чем любая из отдельных емкостей в сети.

Конденсаторные сети

обычно представляют собой некоторую комбинацию последовательных и параллельных соединений, как показано на Рисунке 4.2.3. Чтобы найти чистую емкость таких комбинаций, мы идентифицируем части, которые содержат только последовательные или только параллельные соединения, и находим их эквивалентные емкости. Мы повторяем этот процесс, пока не сможем определить эквивалентную емкость всей сети. Следующий пример иллюстрирует этот процесс.

(рис. 4.2.3)  

Рисунок 4.2.3  (a) Эта схема содержит как последовательное, так и параллельное соединение конденсаторов. б) и расположены последовательно; их эквивалентная емкость . (c) Эквивалентная емкость подключена параллельно к . Таким образом, эквивалентная емкость всей сети представляет собой сумму  и .

ПРИМЕР 4.2.3


Эквивалентная емкость сети

Найдите общую емкость комбинации конденсаторов, показанной на рисунке 4.2.3. Предположим, что емкости известны с точностью до трех знаков после запятой (, , ). Округлите ответ до трех знаков после запятой.

Стратегия

Сначала мы определяем, какие конденсаторы включены последовательно, а какие — параллельно. Конденсаторы  и  соединены последовательно. Их комбинация, обозначенная , параллельна .

Решение

Поскольку и  соединены последовательно, их эквивалентная емкость получается с помощью уравнения 4. 2.1:

   

Емкость

подключена параллельно с третьей емкостью, поэтому мы используем уравнение 4.2.2, чтобы найти эквивалентную емкость всей сети:

   

ПРИМЕР 4.2.4


Сеть конденсаторов

Определите чистую емкость комбинации конденсаторов, показанной на рисунке 4.2.4, когда емкости равны , , . Когда на комбинации сохраняется разность потенциалов, найти заряд и напряжение на каждом конденсаторе.

(рис. 4.2.4)  

Рисунок 4.2.4  (a) Комбинация конденсаторов. (b) Эквивалентная комбинация из двух конденсаторов.

Стратегия

Сначала мы вычисляем чистую емкость параллельного соединения и . Тогда  является чистой емкостью последовательного соединения  и . Мы используем соотношение , чтобы найти заряды , , и , и напряжения , , и , на конденсаторах , , и , соответственно.

Решение

Эквивалентная емкость для  и  составляет

   

Вся комбинация из трех конденсаторов эквивалентна двум последовательно включенным конденсаторам,

   

Рассмотрим эквивалентную комбинацию из двух конденсаторов на рис. 4.2.4(b). Так как конденсаторы соединены последовательно, заряд у них одинаковый. Кроме того, конденсаторы имеют общую разность потенциалов, поэтому

   

Теперь разность потенциалов на конденсаторе равна

.

   

Поскольку конденсаторы и соединены параллельно, они имеют одинаковую разность потенциалов:

   

Следовательно, заряды на этих двух конденсаторах соответственно равны

   

   

Значение

Как и ожидалось, чистая плата за параллельную комбинацию  и  составляет .

ПРОВЕРЬТЕ ВАШЕ ПОНИМАНИЕ 4.5


Определите чистую емкость каждой сети конденсаторов, показанной ниже. Предположить, что , , , . Найдите заряд каждого конденсатора, предполагая, что в каждой сети есть разность потенциалов.

Цитаты Кандела

Контент под лицензией CC, конкретное указание авторства

  • Загрузите бесплатно по адресу http://cnx.org/contents/7a0f9770-1c44-4acd-9920-1cd9a99f2a1e@8.