Содержание
Трехфазный двигатель в однофазной сети: 3 схемы
Владелец гаража или частного дома часто нуждается в работе станка либо наждака с асинхронным электродвигателем для обработки металлов, древесины. А в наличии имеется только напряжение 220 вольт.
Подключение трехфазного двигателя к однофазной сети в этом случае можно выполнить несколькими способами. Здесь я буду рассматривать три доступные и распространенные схемы конденсаторного запуска.
Все они не раз опробованы на личном опыте.
Содержание статьи
Сразу предупреждаю опытных электриков, открывших эту статью: материал подготовлен для начинающих мастеров. Поэтому он объемный. Если нет желания все читать, то вот вам краткие советы:
- используйте схему треугольник, предварительно проверив исправность двигателя;
- выбирайте рабочие конденсаторы из расчета 70 микрофарад на 1 киловатт мощности, а пусковые увеличьте в 2-3 раза;
- в процессе наладки откорректируйте емкости по величине нагрузки и нагреву обмоток;
- не забывайте соблюдать меры безопасности с электрическим током и инструментом.
Все остальное рекомендую новичкам внимательно прочитать и осмыслить в той последовательности, как я излагаю.
На своем опыте не раз убеждался, что первоначальная проверка технического состояния оборудования позволяет исключить многие ошибки, экономит общее время работы, значительно предотвращает травмы и аварии.
Трехфазный асинхронный двигатель: на что обратить внимание до его подключения
За небольшим исключением асинхронник нам достается в неизвестном состоянии. Очень редко на него есть свидетельство о проверке и заверенная гарантия от электролаборатории.
Даже в этом случае я рекомендую убедиться в его исправности лично.
Механическое состояние статора и ротора: что может мешать работе двигателя
Неподвижный статор состоит из трех частей: среднего корпуса и двух боковых крышек, стянутых шпильками. Обращайте внимание на зазор между ними, усилие стягивания гайками.
Корпус должен быть плотно сжат. Внутри него на подшипниках вращается ротор. Попробуйте покрутить его от руки. Оцените приложенное усилие: как работают подшипники, нет ли биений.
Без должного опыта мелкие дефекты таким способом не выявить, но случай грубого заклинивания сразу проявится. Послушайте шумы: нет ли при вращении задевания ротором элементов статора.
После включения двигателя на холостой ход и непродолжительной работы еще раз послушайте звуки вращающихся частей.
В идеале лучше разобрать статор, оценить визуально его состояние, промыть загрязненные подшипники ротора и полностью заменить их смазку.
Электрические характеристики статорных обмоток: как проверять схему сборки
Все основные параметры электродвигателя производитель указывает на специальной табличке, прикрепленной к корпусу статора.
Этим заводским характеристикам можно верить только в том случае, если вы уверены, что после завода никто из электриков не изменил схему подключения обмоток и не сделал непроизвольных ошибок. А случаи такие мне попадались.
Да и сама табличка со временем может стереться или потеряться. Поэтому предлагаю разобраться с технологией раскрутки ротора.
Для понимания электротехнических процессов, протекающих внутри статора двигателя, удобно представить его в виде обыкновенного тороидального трансформатора, когда на кольцевом сердечнике магнитопроводе симметрично расположены три равнозначные обмотки.
Схема статора собрана внутри закрытого корпуса, из которого выведены только шесть концов обмоток.
Они маркируются и подключаются на закрытом крышкой клеммнике для сборки по схеме звезды или треугольника типовой перестановкой перемычек.
На правой части картинки показана сборка треугольника. Схему расположения перемычек для звезды публикую ниже.
Электрические методики проверки схемы сборки обмоток
Но не все так однозначно, как может показаться на первый взгляд. Существует целый ряд двигателей с отклонением от этих правил.
Например, производитель может выпускать электродвигатели не универсального использования, а для работы в конкретных условиях с подключением обмоток по схеме звезды.
В этом случае он может собрать три конца обмоток внутри корпуса статора, а наружу вывести только четыре провода для подключения к потенциалам фаз и нуля.
Монтаж этих концов обычно выполняется в районе задней крышки. Для переключения обмоток на треугольник потребуется вскрывать корпус и делать дополнительные выводы.
Это не сложная работа. Но она требует бережного обращения с лаковым покрытием медного провода. При изгибах проволоки возможно его повреждение, что повлечет нарушение изоляции и создаст межвитковое замыкание.
После перемонтажа схемы рекомендую дополнительно покрывать внешние слои обмоток лаком, а затем хорошо просушить их до окончательной сборки теплым воздухом.
Что делать, если маркировка выводов отсутствует
На старом асинхронном двигателе провода могут быть сняты с клемм, а заводская маркировка утеряна. Попадались и такие экземпляры, когда из корпуса просто торчали наружу шесть концов. Их необходимо вызвонить и промаркировать.
Работу выполняем в два этапа:
- Проверяем принадлежность концов обмоткам.
- Определяем и маркируем каждый вывод.
На первом этапе работаем мультиметром или тестером в режиме омметра. Ставим первый щуп произвольно на один вывод, а вторым — ищем из пяти оставшихся проводов тот, где прибор покажет закороченную цепь. Помечаем оба конца, как принадлежащие к одной обмотке.
С оставшимися четырьмя выводами поступаем аналогично. В итоге мы получаем три пары проводов от каждой обмотки.
Как найти конец и начало обмотки: 2 способа
Можно вести поиск с помощью вольтметра:
- и батарейки;
- или источника пониженного переменного напряжения.
Первый метод основан на том, что импульс тока, поданный на одну из трех обмоток, трансформируется в двух остальных.
Для этого на произвольно выбранный конец К1 подключают минус батарейки, а плюсовым контактом кратковременно касаются второго вывода. По цепи проходит импульсный бросок тока и наводит ЭДС в двух других обмотках.
С помощью вольтметра постоянного тока по отклонению стрелки проверяется полярность наведенного напряжения в каждой обмотке. Началом помечается тот вывод, который соответствует положительному потенциалу (стрелка прибора движется вправо при замыкании и влево при размыкании цепи батарейкой).
После маркировки концов рекомендую сделать контрольную проверку правильности их нанесения подачей импульса на другую обмотку.
Второй способ основан на использовании источника переменного напряжения безопасной величины 12-36 вольт.
Концы двух любых обмоток замыкают в параллель и на них подключают вольтметр. На оставшуюся третью обмотку подают переменное напряжение и смотрят на показание прибора.
Если наведенная ЭДС соответствует поданному напряжению, то эти две обмотки включены в одной полярности. Одинаково помечают их начала и концы. При нулевом показании вольтметра концы одной из обмоток необходимо вывернуть и сделать повторный замер.
Затем одну из промаркированных обмоток, например №3, соединяют с первой и подключают к ним вольтметр. На освободившуюся №2 снова подают переменное напряжение. По величине ЭДС на вольтметре судят о полярности выводов.
После окончания маркировки делают контрольный замер для проверки выполненной работы.
Когда нет под рукой понижающего трансформатора или безопасного блока питания, то опытный электрик с правом самостоятельной работы под напряжением, может воспользоваться обыкновенной лампой накаливания ватт на 60.
Ее используют в качестве делителя напряжения, подключая последовательно к одной обмотке электродвигателя. На собранную цепочку подают 220 вольт, а на двух других измеряют напряжение вольтметром.
Такая проверка опасна. Ею не стоит заниматься необученным людям: можно легко получить электрическую травму.
Как оценить состояние изоляции обмоток
Отдельная часть блогеров умалчивает о необходимости этой проверки. Они считают, что без нее можно обойтись в большинстве случаев.
Однако до включения двигателя под напряжение я рекомендую:
- взять мегаомметр с выходным напряжением на 1000 вольт;
- проверить им изоляцию между каждой отдельной обмоткой и корпусом, а также между всеми обмотками;
- если она выше 0,5 Мом, то считать стартер исправным. В противном случае придется его ремонтировать. Довольно часто помогает просушка сухим и теплым воздухом.
Проверку изоляции электродвигателя мегаомметром необходимо обязательно проводить до его подключения под нагрузку. Однако она не способна выявить повреждения диэлектрического слоя, вызывающие межвитковые замыкания обмотки.
При сборке двигателя каждая катушка статора мотается медным проводом одной длины и сечения. Поэтому все они имеют строго одинаковое резистивное сопротивление.
Если в обмотке возникло межвитковое замыкание, то его, как правило, можно определить замером мультиметра в режиме омметра. Для этого внимательно анализируйте и сравнивайте активные сопротивления каждой цепочки.
Как проверяют магнитное поле статора на заводе
При подаче напряжения на исправный электродвигатель создается вращающееся магнитное поле. Его визуально оценивают с помощью металлического шарика, который повторяет вращение.
Я не призываю вас повторять такой опыт. Пример этот призван помочь понять, что работа асинхронного двигателя основана на взаимодействии магнитных полей статора и ротора.
Только правильное подключение обмоток обеспечивает вращение шарика или ротора.
Мощность электродвигателя и диаметр провода обмотки
Это две взаимосвязанных величины потому, что поперечное сечение проводника выбирается по способности противостоять нагреву от протекающего по нему току.
Чем толще провод, тем большую мощность можно передавать по нему с допустимым нагревом.
Если на двигателе отсутствует табличка, то о его мощности можно судить по двум признакам:
- Диаметру провода обмотки.
- Габаритам сердечника магнитопровода.
После вскрытия крышки статора проанализируйте их визуально.
Подключение трехфазного двигателя к однофазной сети по схеме звезды
Начну с предупреждения: даже опытные электрики во время работы допускают ошибки, которые называются «человеческий фактор». Что уж говорить про домашних мастеров…
Поэтому рекомендую в обязательном порядке подачу напряжения на собранную схему выполнять только через отдельный автоматический выключатель SF, правильно подобранный по нагрузке. Он спасет жизнь и здоровье.
Схема подключения звезды показана на картинке.
Концы обмоток собраны в одну точку горизонтальными перемычками внутри клеммной коробки. На нее никакие внешние провода не подключены.
Фаза (через автоматический выключатель) и ноль бытовой проводки подаются на две разные клеммы начал обмоток. К свободной клемме (на рисунке Н2) подключена параллельная цепочка из двух конденсаторов: Cp — рабочий, Сп — пусковой.
Рабочий конденсатор соединен второй обкладкой жестко с фазным проводом, а пусковой — через дополнительный выключатель SA.
При запуске электродвигателя ротор необходимо раскрутить из состояния покоя. Он преодолевает усилия трения подшипников, противодействия среды. На этот период требуется повысить величину магнитного потока статора.
Делается это за счет увеличения тока через дополнительную цепочку пускового конденсатора. После выхода ротора на рабочий режим его нужно отключить. Иначе пусковой ток перегреет обмотку двигателя.
Выполнять отключение цепочки пуска простым переключателем не всегда удобно. Для автоматизации этого процесса используют схемы с реле или пускателями, работающими по времени.
Среди мастеров самодельщиков пользуется популярностью кнопка пуска от советских стиральных машин активаторного типа. У нее встроено два контакта, один из которых после включения отключается автоматически с задержкой: то, что надо в нашем случае.
Если приглядитесь внимательно на принцип подачи однофазного напряжения, то увидите, что 220 вольт приложены к двум последовательно подключенным обмоткам. Их общее электрическое сопротивление складывается, ослабляя величину протекающего тока.
Подключение трехфазного двигателя к однофазной сети по схеме звезды используется для маломощных устройств, отличается повышенными потерями энергии до 50% от трехфазной системы питания.
Схема треугольник: преимущества и недостатки
Подключение электродвигателя по этому способу предполагает использование той же внешней цепочки, что и у звезды. Фаза, ноль и средняя точка нижних обкладок конденсаторов монтируются последовательно на три перемычки клеммной коробки.
За счет переключения выводов обмоток по схеме треугольника подводимое напряжение 220 создает больший ток в каждой обмотке, чем у звезды. Здесь меньшие потери энергии, выше КПД.
Подключение двигателя по схеме треугольника в однофазной сети позволяет полезно использовать до 70-80% потребляемой мощности.
Для формирования фазосдвигающей цепочки здесь требуется использовать меньшую емкость рабочих и пусковых конденсаторов.
При включении двигатель он может начать вращение не в ту сторону, которая требуется. Нужно сделать ему реверс.
Для этого достаточно в обеих схемах (звезды или треугольника) поменять местами приходящие от сети провода на клеммной колодке. Ток потечет по обмотке в противоположную сторону. Ротор изменит направление вращения.
Как подобрать конденсаторы: 3 важных критерия
Трехфазный двигатель создает вращающееся магнитное поле статора за счет равномерного прохождения синусоид токов по каждой обмотке, разнесенных в пространстве на 120 градусов.
В однофазной сети такой возможности нет. Если подключить одно напряжение на все 3 обмотки сразу, то вращения не будет — магнитные поля уравновесятся. Поэтому на одну часть схемы подают напряжение, как есть, а на другую сдвигают ток по углу вращения конденсаторами.
Сложение двух магнитных полей создает импульс моментов, раскручивающих ротор.
От характеристик конденсаторов (величины емкости и допустимого напряжения) зависит работоспособность создаваемой схемы.
Для маломощных двигателей с легким запуском на холостом ходу в отдельных случаях допустимо обойтись только рабочими конденсаторами. Всем остальным движкам потребуется пусковой блок.
Обращаю внимание на три важных параметра:
- емкость;
- допустимое рабочее напряжение;
- тип конструкции.
Как подобрать конденсаторы по емкости и напряжению
Существуют эмпиреческие формулы, позволяющие выполнять простой расчет по величине номинального тока и напряжения.
Однако люди в формулах часто путаются. Поэтому при контроле расчета рекомендую учесть, что для мощности в 1 киловатт требуется подбирать емкость на 70 микрофарад для рабочей цепочки. Зависимость линейная. Смело ей пользуйтесь.
Доверять всем этим методикам можно и нужно, но теоретические расчеты необходимо проверить на практике. Конкретная конструкция двигателя и прилагаемые нагрузки на него всегда требуют корректировок.
Конденсаторы рассчитываются под максимальное значение тока, допустимого по условиям нагрева провода. При этом расходуется много электроэнергии.
Если же электродвигатель преодолевает нагрузки меньшей величины, то емкость конденсаторов желательно снизить. Делают это опытным путем при наладке, замеряя и сравнивая токи в каждой фазе амперметром.
Чаще всего для пуска асинхронного электродвигателя используют металлобумажные конденсаторы.
Они хорошо работают, но обладают низкими номиналами. При сборке в конденсаторную батарею получается довольно габаритная конструкция, что не всегда удобно даже для стационарного станка.
Сейчас
промышленностью выпускаются малогабаритны электролитические конденсаторы, приспособленные для работы с электродвигателями на переменном токе.
Их внутреннее устройство изоляционных материалов приспособлено для работы под разным напряжением. Для рабочей цепочки оно составляет не менее 450 вольт.
У пусковой схемы с условиями кратковременного включения под нагрузку оно уменьшено до 330 за счет снижения толщины диэлектрического слоя. Эти конденсаторы меньше по габаритам.
Это важное условие следует хорошо понимать и применять на практике. Иначе конденсаторы на 330 вольт взорвутся при длительной работе.
Скорее всего для конкретного двигателя одним конденсатором не отделаться. Потребуется собирать батарею, используя последовательное и параллельное соединение их.
При параллельном подключении общая емкость суммируется, а напряжение не меняется.
Последовательное соединение конденсаторов уменьшает общую емкость и делит приложенное напряжение на части между ними.
Какие типы конденсаторов можно использовать
Номинальное напряжение сети 220 вольт — это действующая величина. Ее амплитудное значение составляет 310 вольт. Поэтому минимальный предел для кратковременной работы при запуске выбран 330 V.
Запас напряжения до 450 V для рабочих конденсаторов учитывает броски и импульсы, которые создаются в сети. Занижать его нельзя, а использование емкостей с большим резервом значительно увеличивает габариты батареи, что нерационально.
Для фазосдвигающей цепочки допустимо использовать полярные электролитические конденсаторы, которые созданы для протекания тока только в одну сторону. Схема их включения должна содержать токоограничивающий резистор в несколько Ом.
Без его использования они быстро выходят из строя.
Перед установкой любого конденсатора необходимо проверить его реальную емкость мультиметром, а не полагаться на заводскую маркировку. Особенно это актуально для электролитов: они зачастую преждевременно высыхают.
Схема сдвига фаз токов конденсаторами и дросселем: что мне не понравилось
Это третья обещанная в заголовке конструкция, которую я реализовал два десятка лет назад, проверил в работе, а потом забросил. Она позволяет использовать до 90% трехфазной мощности двигателя, но обладает недостатками. О них позже.
Собирал я преобразователь трехфазного напряжения на мощность 1 киловатт.
В его состав входят:
- дроссель с индуктивным сопротивлением на 140 Ом;
- конденсаторная батарея на 80 и 40 микрофарад;
- регулируемый реостат на 140 Ом с мощностью 1000 ватт.
Одна фаза работает обычным способом. Вторая с конденсатором сдвигает ток вперед на 90 градусов по ходу вращения электромагнитного поля, а третья с дросселем формирует его отставание на такой же угол.
В создании фазосдвигающего магнитного момента участвуют токи всех трех фаз статора.
Корпус дросселя пришлось собирать механической конструкцией из дерева на пружинах с резьбовой настройкой воздушного зазора для наладки его характеристик.
Конструкция реостата — это вообще «жесть». Сейчас его можно собрать из мощных сопротивлений, купленных в Китае.
Мне даже приходила мысль использовать водяной реостат.
Но я от нее отказался: уж слишком опасная конструкция. Просто намотал на асбестовой трубе толстую стальную проволоку для проведения эксперимента, положил ее на кирпичи.
Когда запустил двигатель циркулярной пилы, то он работал нормально, выдерживал приложенные нагрузки, нормально распиливал довольно толстые колодки.
Все бы хорошо, но счетчик намотал двойную норму: этот преобразователь берет такую же мощность на себя, как и двигатель. Дроссель и проволока неплохо нагрелись.
Из-за высокого потребления электроэнергии, низкой безопасности, сложной конструкции я не рекомендую такой преобразователь.
Меры безопасности при подключении трехфазного двигателя: напоминание
Сначала я повторюсь с рекомендацией использовать все подключения только через отдельный автоматический выключатель. Это очень важно.
Работы по наладке схемы под напряжением должны выполнять обученные люди. Знание ТБ — обязательное условие.
Использование разделительного трансформатора значительно сокращает риск попасть под действие тока. Поэтому используйте его при любых наладочных работах под напряжением.
Специальный инструмент электрика с диэлектрическими рукоятками не только облегчает работу, но и сохраняет здоровье. Не пренебрегайте им!
В заключение рекомендую посмотреть полезное видео владельца Сергея Герасимчука по подключению трехфазного двигателя к однофазной сети.
Если остались вопросы или заметили неточности, то воспользуйтесь разделом комментариев.
Подключение трехфазного двигателя к однофазной сети
Довольно часто возникает необходимость в нестандартном подключении какого-либо электроприбора, применительно к конкретным условиям. Среди возможных вариантов следует выделить подключение трехфазного двигателя к однофазной сети, широко применяемое в бытовых условиях. Данная схема вполне оправдывает себя, несмотря на некоторое снижение мощности подключаемого оборудования.
Подключение трехфазного двигателя к однофазной сети через конденсатор
Подключить трехфазный двигатель к сети с напряжением 220 вольт довольно просто. В стандартной ситуации, в каждой фазе имеется собственная синусоида. Между ними существует фазовый сдвиг, составляющий 120 градусов. За счет этого обеспечивается плавное вращение в статоре электромагнитного поля.
Каждая волна обладает амплитудой 220 вольт, что и дает возможность подключения трехфазного двигателя к обычной сети. Получение трех синусоид из одной фазы происходит с помощью обычного конденсатора, при условии соединения обмоток двигателя треугольником. Объединенные в единое кольцо, они позволяют получать сдвиг по фазе в 45 и 90 градусов, вполне достаточный для не слишком активной работы вала.
Применение конденсатора позволяет достичь мощности двигателя при одной фазе примерно 50-60% от этого же показателя для трех фаз. Однако данная схема подходит не ко всем электродвигателям, поэтому следует выбирать наиболее подходящую модель, например, серии АПН, АО, А, АО2 и другие.
Одним из условий использования конденсатора является необходимость изменения его емкости в соответствии с количеством оборотов. Практическое выполнение этого условия представляет серьезную проблему, поэтому управление двигателем выполняется в двухступенчатом варианте. Во время запуска подключается сразу два конденсатора, один из которых отключается после разгона. Остается только рабочий, продолжающий функционировать.
Как подобрать конденсатор для трехфазного двигателя
Пусковой конденсатор должен примерно в 2-2,5 раза превышать емкость рабочего конденсатора. Расчетное напряжение этих устройств обычно в 1,5 раза превышает напряжение сети. Для сетей 220 вольт наилучшим вариантом будут конденсаторы МБПГ, МБГО, МБГЧ, рабочее напряжение которых составляет 500 вольт и более. Если конденсаторы включаются лишь на короткое время, возможно применение в схеме электролитических устройств, таких как КЭ-2, К50-3, ЭГЦ-М с минимальным напряжением 450 вольт.
Между собой конденсаторы соединяются последовательно, через минусовые выводы. Далее в схему добавляется резистор, сопротивлением 200-300 Ом, убирающий оставшийся электрический заряд с конденсаторов.
Расчёт конденсатора для трёхфазного двигателя
Нормальная работа трехфазного электродвигателя с пуском через конденсатор зависит от ряда условий. Одним из них является изменение емкости устройства в соответствии с числом оборотов двигателя. Это достигается за счет двухступенчатого управления, состоящего из двух конденсаторов пускового и рабочего.
Во время пуска происходит замыкание контактов, после чего нажимается кнопка разгона. После того как набрано достаточное количество оборотов, кнопку следует отпустить. Рассчитать емкость рабочего конденсатора можно по следующей формуле: Ср = 4800х I/U, где Ср является емкостью устройства в мкФ, I сила тока, потребляемого двигателем в амперах, U напряжение электрической сети в вольтах. Данная формула подходит при соединении обмоток двигателя методом треугольника. Если же обмотки двигателя соединены звездой, применяется формула Ср = 2800х I/U.
Таким образом, подключение трехфазного двигателя к однофазной сети имеет свои особенности. Например, емкость пускового и рабочего конденсатора должна соответствовать мощности подключаемого двигателя.
ac — Подключение трехфазного электродвигателя к однофазному источнику питания
спросил
Изменено
1 год, 7 месяцев назад
Просмотрено
221 раз
\$\начало группы\$
Я хотел бы знать, какой самый дешевый и простой способ подключить трехфазный асинхронный двигатель переменного тока мощностью 2,2 кВт к однофазному источнику питания 230 В. Кроме того, как в этой настройке можно запускать и останавливать двигатель? Будут ли нужны защитные устройства?
- переменный ток
- трехфазный
- асинхронный двигатель
- однофазный
- электрический
\$\конечная группа\$
\$\начало группы\$
Соединение Штейнмеца, вероятно, самое дешевое и простое, но оно позволяет двигателю обеспечивать только 70% его номинальной мощности. См.: 3-фазный двигатель, работающий от одной фазы с использованием соединения треугольником Штейнмец
Питание двигателя через частотно-регулируемый привод (VFD) позволяет двигателю обеспечивать номинальную мощность, а также обеспечивает регулируемую скорость. Это может быть проще, а стоимость может быть меньше, чем любая другая альтернатива, кроме соединения Штейнмеца.
То, что проще всего, в некоторой степени зависит от опыта человека, выполняющего преобразование.
То, что дешевле, зависит от желания и способности найти и использовать детали, которые используются, и какие материалы можно получить дешево.
Для получения дополнительной информации об альтернативных методах см.: Преобразование однофазного в трехфазное
ЧРП обеспечивает пуск и останов, а также защиту от перегрузки двигателя и замыкания на землю в линиях двигателя. Для подачи питания на частотно-регулируемый привод потребуется автоматический выключатель или другие средства отключения, а также защита параллельных цепей. Перед покупкой частотно-регулируемого привода рекомендуется скачать и прочитать руководство.
\$\конечная группа\$
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя электронную почту и пароль
Опубликовать как гость
Электронная почта
Требуется, но никогда не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
.
Как выбрать конденсаторы для подключения однофазного и трехфазного электродвигателя к сети 220 В
Часто бывает, особенно в быту, что асинхронный электродвигатель необходимо подключить к стандартной однофазной сети переменного тока с рабочим напряжением 220 вольт. И двигатель трехфазный! Эта задача типична, когда нам нужно установить наждак или сверлильный станок, например, в гараже.
Чтобы все правильно устроить, используют так называемые пусковые и рабочие (фазосдвигающие) конденсаторы. Вообще конденсаторы бывают разных типов, разной емкости, и прежде чем приступить к построению схемы, необходимо выбрать конденсаторы соответствующего типа, номинального напряжения и правильно рассчитать их требуемую емкость.
Всем известно, что электрический конденсатор представляет собой две проводящие пластины, разделенные диэлектриком, и служит для накопления, временного хранения и передачи электрического заряда, то есть электрической энергии.
Конденсаторы бывают двух типов: полярные и неполярные. Неполярные можно использовать в цепях переменного тока, полярные — нет. Если полярный конденсатор включить в цепь переменного тока, то очень скоро произойдет короткое замыкание в диэлектрическом слое, и конденсатор выйдет из строя. Неполярные одинаково эффективно реагируют на напряжение любой полярности, подаваемое на его обкладки, а также на переменное напряжение.
Итак, выбирая рабочий конденсатор для трехфазного двигателя, необходимо учитывать несколько основных параметров рабочей цепи переменного тока. Приведенная ниже формула для расчета емкости рабочего конденсатора в микрофарадах, при частоте тока в сети 50 Гц, выглядит так:
Здесь в зависимости от схемы соединения обмоток статора двигателя («звезда» или «треугольник»), коэффициент в начале формулы примет значение 4800 для «треугольника» или 2800 для «звезды». I — номинальное значение эффективного тока статора подключенного двигателя.
Номинальный ток I указан на заводской табличке (информационной табличке) на корпусе двигателя или, если табличка затерта, измеряется токоизмерительными клещами в одной из фаз при нормальном трехфазном питании двигателя. U — действующее (действующее значение) переменное напряжение сети, к которой будет подключен двигатель с конденсатором, например 220 вольт.
Существует и более простой подход к выбору емкости рабочего конденсатора — на каждые 100 Вт мощности двигателя при соединении звездой берется 7 мкФ емкости конденсатора. Если соединение треугольником, то емкость на 100 Вт будет 12 мкФ.
При выборе емкости конденсатора очень важно не превышать расчетную, иначе ток через обмотку статора превысит номинал, двигатель перегреется и вообще может быстро сгореть.
При пуске двигателя под нагрузкой, а это часто бывает, так как наждачный круг или буровой инструмент имеют значительную массу, пусковой ток должен быть больше номинального тока.
Для этого параллельно рабочему подключается дополнительный пусковой конденсатор на время пуска. Этот конденсатор нужен только на несколько секунд, пока двигатель не наберет номинальные обороты. После этого пусковой конденсатор отключается и в цепи остается только рабочий фазосдвигающий конденсатор.
Емкость пускового конденсатора выбирают в 2,5-3 раза больше емкости рабочего конденсатора. Причем номинальное напряжение этого конденсатора должно быть по возможности не менее чем в 1,5 раза больше сетевого напряжения питания. Иногда для получения требуемой пусковой емкости и запаса по напряжению применяют даже последовательно соединенные конденсаторы.
Если двигатель не трехфазный, а однофазный, то он может иметь пусковую обмотку, служащую для создания крутящего момента в секундах пуска. Также должен быть фазосдвигающий конденсатор. А вот однофазные двигатели могут работать в различных режимах.
Если пусковой конденсатор и пусковая обмотка питаются только при пуске, то на 1 киловатт мощности двигателя берите 70 мкФ. Если рабочий конденсатор вместе с дополнительной обмоткой все время питать, то брать около 30 мкФ на киловатт.
Если пусковой конденсатор подключен в момент пуска, а рабочий конденсатор продолжает подключаться в процессе работы оборудования, то, как правило, значение суммарной емкости пускового и рабочего конденсаторов выбирают из соотношения 1 мкФ на 100 Вт мощности.