Содержание
ГИСТЕРЕЗИС • Большая российская энциклопедия
Авторы: Б. Н. Филиппов, Б. А. Струков, В. Н. Кузнецов
ГИСТЕРЕ́ЗИС (от греч. ὑστέρησις – отставание, запаздывание), запаздывание изменения физич. величины, характеризующей состояние вещества, от изменения др. физич. величины, определяющей внешние условия. Г. имеет место в тех случаях, когда состояние тела в данный момент времени определяется внешними условиями не только в тот же, но и в предшествующие моменты времени. В результате для циклич. процесса (рост и уменьшение внешнего воздействия) получается петлеобразная (неоднозначная) диаграмма, которая называется петлёй гистерезиса. Возникает Г. в разл. веществах и при разных физич. процессах. Наибольший интерес представляют магнитный, сегнетоэлектрический и упругий гистерезис.
Магнитный Г. – неоднозначная зависимость намагниченности $\boldsymbol M$ магнитоупорядоченного вещества (магнетика, напр. , ферро- или ферримагнетика) от внешнего магнитного поля $\boldsymbol H$ при его циклич. изменении (увеличении и уменьшении). Причиной существования магнитного Г. является наличие в определённом интервале изменения $\boldsymbol H$ среди состояний магнетика, отвечающих минимуму термодинамич. потенциала, метастабильных состояний (наряду со стабильными) и необратимых переходов между ними. Магнитный Г. можно также рассматривать как проявление магнитных ориентационных фазовых переходов 1-го рода, для которых прямой и обратный переходы между фазами в зависимости от $\boldsymbol H$ происходят, в силу указанной метастабильности состояний, при разл. значениях $\boldsymbol H$.
Рис. 1. Петли магнитного гистерезиса:1 – максимальная, 2 – частная; а – кривая намагничивания, б и в – кривые перемагничивания; МR – остаточная намагниченность, Нс – коэрцитивная сила, Ms – намагничен. ..
На рис. 1 схематически показана типичная зависимость $M$ от $H$ в ферромагнетике; из состояния $M=0$ при $H=0$ с увеличением $H$ значение $M$ растёт (осн. кривая намагничивания, $\it а$) и в достаточно сильном поле $H⩾H_{\text m}$ $M$ становится практически постоянной и равной намагниченности насыщения $M_{\text s}$. При уменьшении $H$ от значения $H_{\text m}$ намагниченность изменяется вдоль ветви $\it б$ и при $H=0$ принимает значение $M=M_{\text R}$ (остаточная намагниченность). Для размагничивания вещества ($M=0$) необходимо приложить обратное поле $H= –H_{\text c}$, называемое коэрцитивной силой. Далее при $H=–H_{\text m}$ образец намагничивается до насыщения ($M=–M_{\text s}$) в обратном направлении. При изменении $H$ от $–H_{\text m}$ до $+H_{\text m}$ намагниченность изменяется вдоль кривой $\it в$. Ветви $\it б$ и $\it в$, получающиеся при изменении $H$ от $+H_{\text m}$ до $–H_{\text m}$ и обратно, образуют замкнутую кривую, называемую максимальной (или предельной) петлёй Г. Ветви $\it б$ и $\it в$ называются, соответственно, нисходящей и восходящей ветвями петли Г. При изменении $H$ на отрезке $[–H_1, H_1]$ с $H_1$ зависимость $M(H)$ описывается замкнутой кривой (частной петлёй Г.), целиком лежащей внутри макс. петли гистерезиса.
Описанные петли Г. характерны для достаточно медленных (квазистатических) процессов перемагничивания. Отставание $M$ от $H$ при намагничивании и размагничивании приводит к тому, что энергия, приобретаемая магнетиком при намагничивании, не полностью отдаётся при paзмагничивании. Теряемая за один цикл энергия определяется площадью петли Г. Эти потери энергии называются гистерезисными. При динамич. перемагничивании образца переменным магнитным полем $\boldsymbol H_{\sim}$ петля Г. оказывается шире статической вследствие того, что к квазиравновесным гистерезисным потерям добавляются динамические, которые могут быть связаны с вихревыми токами (в проводниках) и релаксационными явлениями.
Форма петли Г. и наиболее важные характеристики магнитного Г. (гистерезисные потери, $H_с$, $M_{\text R}$ и др.) зависят от химич. состава вещества, его структурного состояния и темп-ры, от характера и распределения дефектов в образце, а следовательно, от технологии его пригoтовления и последующих физич. обработок (тепловой, механич., термомагнитной и др.). С магнитным Г. связано гистерезисное поведение целого ряда др. физич. свойств, напр. Г. магнитострикции, Г. гальваномагнитных и магнитооптич. явлений и т. д.
Сегнетоэлектрический Г. – неоднозначная зависимость величины вектора электрич. поляризации $\boldsymbol P$ сегнетоэлектриков от напряжённости $\boldsymbol E$ внешнего электрич. поля при циклич. изменении последнего. Сегнетоэлектрики обладают в определённом температурном интервале спонтанной (т. е. самопроизвольной, возникающей в отсутствие внешнего поля) поляризацией $\boldsymbol P_{сп}$. Направление поляризации может быть изменено электрич. полем, при этом значение $\boldsymbol P$ при данном $\boldsymbol E$ зависит от предыстории, т. е. от того, каким было электрич. поле в предшествующие моменты времени. Сегнетоэлектрич. Г. имеет вид характерной петли (петля Г.), осн. параметрами которой являются остаточная поляризация $\boldsymbol P_{ост}$ при $\boldsymbol E=0$ и коэрцитивное поле $\boldsymbol E_к$, при котором происходит изменение направления (переключение) вектора $\boldsymbol P_{сп}$. Для совершенных монокристаллов петля Г. имеет форму, близкую к прямоугольной, и $\boldsymbol P_{ост}=\boldsymbol P_{сп}$. В реальных кристаллах остаточная поляризация меньше спонтанной из-за разбиения кристалла на домены.
Существование сегнетоэлектрич. Г. следует из феноменологич. теории сегнетоэлектрич. явлений, в соответствии с которой равновесным значениям $\boldsymbol P_{сп}$ при любой темп-ре ниже темп-ры сегнетоэлектрич. фазового перехода отвечают два симметричных минимума термодинамич. потенциала, разделённые потенциальным барьером. При $E=±E_к$ один из минимумов исчезает, и кристалл оказывается в состоянии с определённым направлением вектора $\boldsymbol P_{сп}$. При циклич. переключении спонтанной поляризации площадь петли Г. определяет гистерезисные потери – количество энергии электрич. поля, переходящей в теплоту. Величина коэрцитивного поля связана также с процессами зарождения и эволюции в электрич. поле сегнетоэлектрич. доменов – областей кристалла с выделенным электрич. полем направлением вектора спонтанной поляризации.
Рис. 2. Петля упругого гистерезиса.
Упругий Г. – неоднозначная зависимость механического напряжения от деформации упругого тела при циклич. приложении и снятии нагрузки. График зависимости напряжения $σ$ от деформации $ε$ отличается от отрезка прямой линии, соответствующей закону Гука, и представляет собой петлю Г. (рис. 2). Площадь этой петли пропорциональна механической энергии, которая рассеялась (превратилась в теплоту) во время цикла.
Появление упругого Г. в металлах связано с тем, что в некоторых зёрнах поликристалла микронапряжения существенно превышают ср. напряжения в образце, что приводит к появлению пластич. деформаций и тем самым к рассеянию механич. энергии. В некоторых случаях вклад в упругий Г. дают электромагнитные явления.
Упругий Г. как проявление отличия реального упругого тела от идеально упругого наблюдается у всех твёрдых тел, даже при весьма низких темп-рах. Упругий Г. является причиной затухания свободных колебаний упругих тел, затухания в них звука, уменьшения коэф. восстановления при неупругом ударе и др. В общем случае отклонение упругости от идеальной включается в понятие внутреннего трения.
что это такое, кратко и понятно
Некоторые физические и другие системы с запаздыванием отвечают на различные воздействия, приложенные к ним. При этом отклик на воздействие во многом зависит от текущего состояния системы и определяется предысторией настоящего состояния. Для описания таких явлений применяется термин – гистерезис, что в переводе с греческого означает отставание.
Что такое гистерезис?
Говоря простым и понятным языком – гистерезис это ответная, запоздалая реакция некой системы на определённый раздражитель (воздействие). При устранении причины, вызвавшей ответную реакцию системы, либо в результате противоположного действия, она полностью или частично возвращается к первоначальному состоянию. Причём для такого явления характерно то, что поведение системы между крайними состояниями не одинаково. То есть: характеристики перехода от первоначального состояния и обратно – сильно отличаются.
Явление гистерезиса наблюдается:
- в физике;
- электротехнике и
радиоэлектронике; - биологии;
- геологии;
- гидрологии;
- экономике;
- социологии.
Гистерезис может иметь как полезное, так и пагубное влияние на происходящие процессы. Это отчётливо просматривается в электротехнике и электронике, о чём речь пойдёт ниже.
Динамический гистерезис
Рассмотрим явление запаздывания ответной реакции во времени на примере механической деформации. Предположим у нас есть металлический стержень, обладающий упругой деформацией. Приложим к одному концу стержня силу, направленную в сторону другого конца, который покоится на опоре. Например, поставим стержень под пресс.
По мере возрастания давления, тело будет сжиматься. В зависимости от механических характеристик металла, реакция стержня на приложенную силу (напряжение) будет проявляться по-разному: вначале сила упругости постепенно будет возрастать, потом она резко устремится к пороговому значению. Достигнув порогового значения, сила упругого напряжения уже не сможет противодействовать возрастающему нагружению.
Если увеличивать силу давления, то в стержне произойдут необратимые изменения – он, либо изменит свою форму, либо разрушится. Но мы не будем доводить наш эксперимент до такого состояния. Начнём уменьшать силу давления. Реакция напряжения при этом будет меняться зеркально: вначале резко понизится, потом постепенно будет стремиться к нулю, по мере разгрузки.
Отставание процесса развития деформации во времени, под действием приложенного механического напряжения вследствие упругого гистерезиса описывается динамической петлей (см. рис. 2). Явление обусловлено особенностями перемещений дислокаций микрочастиц вещества.
Различают упругий гистерезис двух видов:
- Динамический, при котором напряжения изменяются циклически, а максимальная амплитуда напряжений не достигает пределов упругости.
- Статический, характерный для вязкоупругих или неупругих деформаций. При таких деформациях полностью, либо частично исчезают напряжения при снятии нагрузки.
Причиной динамического гистерезиса являются также силы термоупругости и магнитоупругости.
Петля гистерезиса
Кривая, характеризующая ход зависимости ответной реакции системы от приложенного воздействия называется петлёй гистерезиса (показана на рис. 1).
Рис. 1. Петля гистерезиса
Все петли, характеризующие циклический гистерезис, состоят из одной или нескольких замкнутых линий различной формы. Если после завершения цикла система не возвращается в первоначальное состояние, (например, при вязкоупругой деформации), то динамическая петля имеет вид кривой, показанной на рисунке 2.
Рис. 2. Динамическая петля
Анализ гистерезисных петель позволяет очень точно определить поведение системы в результате внешнего воздействия на неё.
Гистерезис в электротехнике
Важными характеристиками сердечников электромагнитов и других электрических машин являются параметры намагничивания ферромагнитных материалов, из которых они изготавливаются. Исследовать эти материалы помогают петли ферромагнетиков. В данном случае прослеживается нелинейная зависимость внутренней магнитной индукции от величины внешних магнитных полей.
На процесс намагничивания (перемагничивания) влияет предыдущее состояние ферромагнетика. Кроме того, кривая намагничивания зависит от типа ферромагнитного образца, из которого состоит сердечник.
Если по катушке с сердечником циркулирует переменный ток, то намагничивания образца приводит к отставанию намагничивания. В результате намагничивания сердечника происходит сдвиг фаз в цепи с индуктивной нагрузкой. Ширина петли гистерезиса при этом зависит от гистерезисных свойств ферромагнетиков, применяемых в сердечнике.
Это объясняется тем, что при изменении полярности тока, ферромагнетик какое-то время сохраняет приобретённую ориентацию полюсов. Для переориентации этих полюсов требуется время и дополнительная энергия, которая израсходуется на нагревание вещества, что приводит к гистерезисным потерям. По величине потерь материалы подразделяются на магнитомягкие и магнитотвёрдые (см. рис. 3).
Рис. 3. Классификация магнитных материалов
Магнитный гистерезис в ферромагнетиках отображает зависимость вектора намагничивания от напряженности электрического поля (см. Рис. 3). Но не только изменение поля по знаку вызывает гистерезис. Вращение поля или (что, то же самое) магнитного образца, также сдвигает временные характеристики намагничивания.
Рис. 4. Петли гистерезиса под действием изменения напряжённости поля
Обратите внимание, что на рисунке изображены двойные петли. Такие петли характерны для магнитного гистерезиса.
В однодоменных ферромагнетиках, которые состоят из очень маленьких частиц, образование доменов не поддерживается (не выгодно с точки зрения энергетических затрат). В таких образцах могут происходить только процессы магнитного вращения.
Рис. 5. Механизм возникновения петли магнитного гистерезиса
В электротехнике гистерезисные свойства используются довольно часто:
- в работе электромагнитных реле;
- в конструкциях коммутационных приборов;
- при создании электромоторов и других силовых механизмов.
Явления диэлектрического гистерезиса
У диэлектриков отсутствуют свободные заряды. Электроны тесно связаны со своими атомами и не могут перемещаться. Другими словами, у диэлектриков спонтанная поляризация. Такие вещества называются сегнетоэлектриками.
Однако под действием электрического поля заряды в диэлектриках поляризуются, то есть изменяют ориентацию в противоположные стороны. С увеличением напряжённости поля абсолютная величина вектора поляризации возрастает по нелинейному принципу. В определённый момент поляризация достигает насыщённости, что вызывает эффект диэлектрического гистерезиса.
На изменение поляризации уходит часть энергии, в виде диэлектрических потерь.
Гистерезис в электронике
При срабатывании различных пороговых элементов, часто применяемых в электронных устройствах, требуется задержка во времени. Например, гистерезис используется в компаратороах или триггерах Шмидта с целью стабилизации работы устройств, которые могут срабатывать в результате помех или случайных всплесков напряжения. Задержка по времени исключает случайные отключения электронных узлов.
На таком принципе работает электронный термостат. При достижении заданного уровня температуры устройство срабатывает. Если бы не было эффекта задерживания, частота срабатываний оказалась бы неоправданно высокой. Изменение температуры на доли градуса приводило бы к отключению термостата.
На практике часто разница в несколько градусов не имеет особого значения. Используя устройства, обладающего тепловым гистерезисом, позволяет оптимизировать процесс поддержания рабочей температуры.
Гистерезис в магнитных материалах
Гистерезис в магнитных материалах
Когда ферромагнитный материал намагничивается в одном направлении, он не будет возвращаться к нулевой намагниченности при удалении наложенного намагничивающего поля. Оно должно быть возвращено к нулю полем в противоположном направлении. Если к материалу приложить переменное магнитное поле, его намагниченность будет описывать петлю, называемую петлей гистерезиса. Отсутствие прослеживаемости кривой намагничивания является свойством, называемым гистерезисом, и связано оно с наличием в материале магнитных доменов. Как только магнитные домены переориентируются, требуется некоторая энергия, чтобы повернуть их обратно. Это свойство ферромагнитных материалов используется как магнитная «память». Некоторые композиции ферромагнитных материалов будут сохранять наведенную намагниченность на неопределенный срок и могут использоваться в качестве «постоянных магнитов». Аспекты магнитной памяти оксидов железа и хрома делают их полезными при записи аудиокассет и для магнитного хранения данных на компьютерных дисках. | Индекс | ||
| Назад |
Обычно намагниченность M образца изображают как функцию напряженности магнитного поля H, поскольку H является мерой приложенного извне поля, которое управляет намагничиванием.
| Индекс Ссылка | ||||
| Назад |
Из-за гистерезиса входной сигнал
| Индекс | ||
| Назад |
Существуют значительные различия в гистерезисе различных магнитных материалов. Кривая слева вверху представляет материалы, которые иногда называют магнитно-твердыми. Сюда входят различные стальные сплавы и специальные сплавы, такие как Alnico. При намагничивании, близком к насыщению, такие материалы могут сохранять магнитное поле до B = 1 Тл, что соответствует внутренней намагниченности M = B/μ 0 , равной примерно 800 000 А/м. Кривая справа представляет магнитомягкие материалы, такие как мягкое железо, которые используются для сердечников трансформаторов и двигателей. Они сводят к минимуму потери энергии и нагрев, связанные с периодическим изменением направления магнитного поля в электрических устройствах переменного тока. | Index Reference Hysteresis wiki | ||
| Назад |
Объяснение петли гистерезиса — База знаний Ideal Magnet Solutions
Гистерезис означает отставание
Гистерезис основан на греческом слове, означающем отставание. Итак, магнитный гистерезис — это то, как магнитные свойства материала отстают от силы, создающей эти свойства. Кривая гистерезиса многое говорит нам о реакции материала на магнитное поле, поэтому, если мы знаем, как ее интерпретировать, мы многое узнаем и поймем о реакции материала на магнитное воздействие.
Мы наносим гистерезис материала на график, известный как петля гистерезиса. Другой способ выразить это — сказать, что петля гистерезиса показывает взаимосвязь между внешней силой намагничивания и плотностью наведенного магнитного потока.
Что такое кривая BH?
График гистерезиса известен как кривая B-H, где B (плотность потока материала, измеренная в теслах или мегагауссах) отложена по вертикальной оси, а H (внешняя приложенная намагничивающая сила, измеренная в амперах на метр) откладывается по горизонтальной оси. Мы также можем изучить ряд других магнитных концепций и принципов, просто подробно изучив петлю гистерезиса.
Кривая B-H магнитного материала. Когда мы следуем буквам от a до g, мы получаем важные магнитные данные о материале, которые помогают нам понять магнитные свойства материала.
Плотность магнитного потока (B) магнитного материала будет увеличиваться — от точки a в начале координат — в присутствии приложенного магнитного поля (H) до тех пор, пока не достигнет максимума, при котором она больше не будет реагировать на увеличение магнитного поля. поле в точке b . Это пункт Положительное насыщение , где любое дальнейшее увеличение внешнего магнитного поля не приведет к дальнейшему увеличению плотности потока материала.
Обнаружение остаточной намагниченности и коэрцитивности в петле гистерезиса
Следующее, что мы делаем, это возвращаемся налево по горизонтальной оси к началу координат. Мы обнаруживаем, что материал высвобождает часть своего магнетизма, и там, где приложенное поле снова достигает нуля (точка c на кривой B-H), материал обнаруживает свою остаточную магнитную силу, которая называется остаточной магнитной силой (также известной как сохраняемость).
Что такое остаточная намагниченность?
Остаточное магнитное поле — это оставшееся магнитное поле, обнаруженное в материале после того, как приложенное магнитное поле уменьшится до нуля. Основываясь на необработанном значении остаточной намагниченности и форме кривой, которую мы генерируем с помощью приложенного магнитного поля, мы можем определить, является ли исследуемый образец магнитно-твердым или магнитомягким материалом.
Теперь, когда мы обращаем приложенное магнитное поле (H) и двигаем его влево, мы видим, что значение B (плотность потока материала) уменьшается до нуля. Сейчас мы находимся в точке d на кривой B-H.
Что такое принудительная сила?
Количество (H), необходимое для перемещения (B) до нулевой линии, дает нам значение коэрцитивной силы материала. Коэрцитивная сила, также известная как коэрцитивная сила, представляет собой сопротивление материала изменениям намагниченности. Магнитомягкие материалы, как правило, имеют низкую коэрцитивную силу, а магнитотвердые материалы имеют высокую коэрцитивную силу. Независимо от магнитной твердости или мягкости материала точка d определяет момент, когда они потеряли свою магнитную силу.
Форма кривой B-H в магнитомягких и твердых материалах
Магнитомягкие материалы имеют тонкую кривую гистерезиса, поэтому они широко используются в приложениях, требующих частого переключения полярности, например, в трансформаторах и обмотки двигателя. Как видно ниже, магнитомягкие материалы имеют низкую остаточную намагниченность и уже потеряли большую часть своего магнитного поля к тому времени, когда они пересекают нулевую линию. Они также имеют крутой отрицательный наклон размагничивания на нулевой линии.
Магнитомягкие материалы — с их низкой коэрцитивной силой — могут часто менять полярность и иметь относительно небольшие электрические потери. Ширина петли гистерезиса многое говорит нам о потерях. Чем уже кривая, тем меньше потери.
Магнитотвердые материалы имеют очень широкую кривую гистерезиса, что делает их практичными в приложениях, где они воздействуют своим магнитным полем на магнитомягкие материалы. Как видно на рисунке ниже, магнитотвердые материалы обладают высокой остаточной намагниченностью и теряют лишь небольшой процент своего магнитного поля к тому времени, когда они пересекают нулевую линию. Их наклон размагничивания на нулевой линии очень пологий и не круче, пока не уходит далеко влево от нулевой линии. Если бы магнитотвердые материалы часто меняли полярность, потери на гистерезис были бы огромными, поэтому они не используются таким образом.
Отрицательное Насыщение
Отталкиваясь влево по оси B, продолжаем наращивать магнитное поле в обратном направлении до достижения точки e — точки Отрицательного Насыщения. Эта точка точно такая же, как точка b , но в противоположном направлении. Жесткий или мягкий магнитный материал в нашем исследовании теперь намагничен в направлении, противоположном его намагниченности, в точке b .
Если мы вернемся к точка b от точка e , мы просто повторим то же самое, что и изначально, но в противоположном направлении.