Содержание
Определить сопротивление резистора по полоскам
Калькулятор цветовой маркировки резисторов поможет расшифровать по цветным кольцам на резисторе его номинал и допустимое отклонение сопротивления от его номинального значения. Цветную маркировку на резисторах следует читать слева направо. Как правило, первое кольцо расположено ближе к одному из выводов или шире чем остальные. Кликните, чтобы узнать цену.
Поиск данных по Вашему запросу:
Схемы, справочники, даташиты:
Прайс-листы, цены:
Обсуждения, статьи, мануалы:
Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
Содержание:
- Как узнать мощность резистора по полоскам
- Цветовая маркировка резисторов
- Онлайн-калькулятор номиналов резисторов
- Таблицы цветовой маркировки резисторов
- Маркировка резисторов
- Калькулятор цветовой маркировки резисторов.
Резистор золотой черный красный коричневый
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Как узнать номинал сгоревшего резистора
Как узнать мощность резистора по полоскам
Резисторы, в особенности малой мощности — довольно мелкие детали, резистор мощностью 0,Вт имеет длину несколько миллиметров и диаметр порядка миллиметра. Прочитать на такой детали цифровой номинал сложно, и для них применяют маркировку цветными полосами. Калькулятор позволяет рассчитывать сопротивление и допуск сопротивления резисторов с цветовой маркировкой в виде 4 или 5 цветных колец. Резистор необходимо расположить так, чтобы кольца были сдвинуты к левому краю или широкая полоса была бы слева.
Основная задача любого резистора — линейное преобразование силы тока ампер в напряжение вольт , ограничение силы тока, ослабление источника питания и поглощение электроэнергии.
Резисторы используют во всех сложных схемах и для работы сложных полупроводников. С учетом малого размера элемента нанесение читаемых буквенных или цифровых обозначений невозможно, поэтому применяется цветная маркировка. В статье мы разберем, что означают цветные точки и линии, их цвет, и объясним, как правильно подобрать резистор.
Для начала обратимся к Википедии, которая дает четкое понимание, что из себя представляет любой резистор. В дословном переводе с английского термин означает сопротивление. И действительно, назначение резисторов с постоянным или переменным значение — линейное преобразование силы тока в напряжение, напряжения в силу и т. Маркировочный цвет, порядок и шифрование цифровых кодов в резисторах определены ГОСТ в соответствии с требованиями Публикации 62 Международной электротехнической комиссии.
Согласно этим нормативам для идентификации применяются кольца, цвет и количество которых четко регламентированы. Полосы всегда смещены относительно одного вывода, читаются при этом как в арабской письменности — слева направо.
Если размер пассивного элемента не позволяет визуально заметно обозначить начало, ширину первой полосы делают толще других приблизительно в 1, раза. Последняя шестая полоса нужна для понимания того, насколько будет изменяться сопротивление, если корпус пассивного элемента начнет нагреваться.
Самые маленькие резисторы мощностью 0, wt длиной всего мм, а диаметр — 1 мм. Даже прочитать любую информацию на такой миниатюрке сложно, не говоря уже о том, чтобы нанести ее. Можно, конечно, написать силу тока, например, 4К7, что соответствует Ом, но этой информации крайне недостаточно. Цветовая маркировка резисторов гораздо более практична ввиду следующего:. Также с помощью подсчета количества полос можно определить точность параметров:. Для того, чтобы точно узнать, какой именно нужен резистор и с какими полосками, можно самостоятельно установить по таблице или воспользоваться онлайн-калькулятором в конце статьи.
С помощью этих табличных значений можно быстро определить номинал пассивного элемента, при этом значение имеет очередность полоски или точки, что позволяет получить числовые данные. Цвета означают разные данные — цифра отметки, множитель и допустимое отклонение. С помощью универсальной таблицы прочтем, что скрыто на данном элементе. Итак, имеем 4 полосы:. Напоминаем, читать полосы надо слева направо, а единица измерения Ом.
С учетом указанных особенностей лучше сопоставлять данные со сводной таблицей именно проволочных образцов. И хотя наши стандарты полностью соответствуют международным, а Публикация 62 и вовсе является императивным стандартом, некоторые компании используют свои правила нанесения полос и выбора цвета, с которыми нужно считаться:. Имеет свой стандарт символов и цветов, согласно которым наравне с номинальными показателями, резистор передает информацию о технологии производства и характеристике компонентов.
Используют дополнительные цвета для обозначения дополнительных свойств пассивных элементов цепи. В целом, все маркировки совпадают с ранее приведенными значениями и таблицами, только эти компании еще больше упростили задачу идентификации номинала. При этом резисторы взаимозаменяемы и никаких требований относительно оригинала ни Philips, ни CGW и Panasonic не выдвигают.
Для того, чтобы точно понимать, какие рабочие характеристики требуются и какие резисторы следует покупать для определенной цели, воспользуйтесь простым сервисом. Путем введения исходных данных можно получить информацию по каждому маркировочному цвету, которому соответствует определенный цифровой код. Маркировка в виде 4 колец Сопротивление, допуск:. Маркировка в виде 5 колец Сопротивление, допуск:. Рубрики сайта. Популярное на сайте:. Последние комментарии:. На каждой люстре своя модель ламп.
Через месяц на одной Сопротивление, допуск:.
Цветовая маркировка резисторов
Если у вас возникли проблемы с цветовыми маркировками резисторов, то данный инструмент создан специально для вас. Наш калькулятор цветовых маркировок резисторов поддерживает самые популярные маркировки с четырьмя, пятью и шестью цветовыми полосками. Для работы с данным инструментом необходимо выбрать в выпадающих списках цвета полосок резистора. После чего вы увидите в полях ниже, его сопротивление, погрешность и температурный коэффициент ТКС. Как вы уже догадались, чем больше полос у резистора, тем точнее можно определить его номинал и параметры. Первые две полосы, а у резисторов с пятью и шестью полосками — три, обозначают цифры. Каждая цифра представлена в виде определенного цвета.
Калькулятор маркировки резисторов – это удобный онлайн-инструмент, который поможет определить резисторное сопротивление по цветной.
Онлайн-калькулятор номиналов резисторов
Сегодня человечество нельзя представить без электричества. В любой сфере оно играют либо большую роль. Но необходимо отметить, что для того чтобы оно достигло конечной цели. Необходимо использовать большое количество электроприборов, проводящих элементов и иного оборудования, которое позволяет ощутить пользу от него. Цветовая маркировка резисторов на рисунке. Для нормального функционирования и работы электрооборудования и радиотехники необходимо предварительно собирать схему, именно от правильности сборки и будет зависеть качество предоставляемой услуги. Так для организации схем использую платы, проводники, ключи и многое другое, но ни одна схема не может обойтись без резистора. Что такое резистор?
Таблицы цветовой маркировки резисторов
Резисторы, в особенности малой мощности — довольно мелкие детали, резистор мощностью 0,Вт имеет длину несколько миллиметров и диаметр порядка миллиметра. Прочитать на такой детали цифровой номинал сложно, и для них применяют маркировку цветными полосами. Калькулятор позволяет рассчитывать сопротивление и допуск сопротивления резисторов с цветовой маркировкой в виде 4 или 5 цветных колец. Резистор необходимо расположить так, чтобы кольца были сдвинуты к левому краю или широкая полоса была бы слева.
Расчет номинала резистора по цветовому коду: укажите количество цветных полос и выберите цвет каждой из них меню выбора цвета находится под каждой полоской.
Маркировка резисторов
Резисторы, в особенности малой мощности — мелкие детали, резистор мощностью 0,Вт имеет длину несколько миллиметров и диаметр порядка миллиметра. Прочитать на такой детали номинал с десятичной запятой трудно, поэтому, при указании номинала вместо десятичной точки пишут букву, соответствующую единицам измерения К — для килоомов, М — для мегаомов, E или R для единиц Ом. Кроме того, любой номинал отображается максимум тремя символами. Однако в таком виде наносить номиналы на маленькие резисторы сложно, и для них применяют маркировку цветными полосами. Первые две полоски всегда означают первые два знака номинала.
Калькулятор цветовой маркировки резисторов. Резистор золотой черный красный коричневый
Хоть ты что делай, а от советской электроники не убежишь. Поэтому, немного теории вам не повредит. Первым взглядом мы должны оценить, какую максимальную мощность может рассеивать резистор. Сверху вниз, внизу на фото, резисторы по мощностям: 2 Ватта, 1 Ватт, 0. МЛТ — это разновидность самых распространенных советских резисторов, от сокращенных названий Металлопленочный, Лакированный, Теплоустойчивый. У других же резисторов мощность можно прикинуть по габаритам. Чем больше резистор по габаритам, тем больше мощности он может рассеять в окружающее пространство. Здесь все просто.
Маркировка резисторов цветными полосками. В основном, сегодня.
Маркировка резисторов по цвету была задумана для облегчения считывания номинала постоянного резистора при любом положении самого резистора. Сопротивление измеряется в омах. Символ ома — буква омега.
Цветными полосками используется в радиоэлектронике для определения сопротивления постоянных резисторов. Большинство электронных компонентов, в частности резисторы, очень малы по размеру, вследствие чего достаточно трудно печатать маркировку прямо на корпус. Поэтому в году был разработан стандарт для идентификации значений электронных компонентов путем нанесения на них цветового кода. На рисунке ниже показано расположение полос значения, множитель и допуск для постоянного резистора. При маркировке с помощью 6 цветными полосками, дополнительная полоска указывает на температурный коэффициент. Разрыв между цветными полосками множителя и допуска определяет левую и правую сторону резистора.
Одним из преимуществ цветовой маркировки резисторов является то, что достаточно легко определить номинал резистора , который расположен на печатной плате.
Естественно, что без сопротивления не обходится ни одна электронная схема. Где-то необходимо ограничение протекающего напряжения по той или иной дорожке, а иногда нужен обратный процесс — вообще, возможности подобных элементов очень велики. И если рассматривать эти компоненты, произведенные в советское время, то никаких вопросов по их характеристикам не возникало — номинал был прописан в обозначении на корпусе, все было предельно понятно. А вот с приходом на радиорынок таких современных элементов, как резисторы, маркировка которых обозначается при помощи полосок, многие радиолюбители даже лучше сказать основная их часть , схватились за голову — как определить сопротивление по этим цветным линиям? Ведь для того, чтобы определить номинал подобного элемента по его цветовой маркировке, необходимо пересмотреть огромное количество таблиц и прочей литературы. И это при том, что некоторые производители пытались ввести дополнительно еще и свои обозначения. Сейчас, когда система производства и обозначений сопротивлений стандартизирована, конечно, цветная маркировка резисторов помогает определять номинал элементов, но все же без некоторых таблиц при этом не обойтись.
Резисторы, в особенности малой мощности — довольно мелкие детали, резистор мощностью 0,Вт имеет длину несколько миллиметров и диаметр порядка миллиметра. Прочитать на такой детали цифровой номинал сложно, и для них применяют маркировку цветными полосами. Калькулятор позволяет рассчитывать сопротивление и допуск сопротивления резисторов с цветовой маркировкой в виде 4 или 5 цветных колец.
Как проверить резистор на работоспособность мультиметром — Ремонт и Строительство
Резистор или постоянное сопротивление – это одновременно самый простой и распространённый элемент в электрических схемах, его устанавливают во всех устройствах. Но, несмотря на свою простоту, при нарушении режимов работы или тепловых условий он может сгореть. Отсюда возникает вопрос, как проверить резистор на работоспособность мультиметром. Технология проверки исправности в домашних условиях будет изложена в этой статье.
Алгоритм поиска неисправности
Визуальный осмотр
Любой ремонт начинается с внешнего осмотра платы. Нужно без приборов просмотреть все узлы и особое внимание обратить на пожелтевшие, почерневшие части и узлы со следами сажи или нагара. При внешнем осмотре вам может помочь увеличительное стекло или микроскоп, если вы работаете с плотным монтажом SMD компонентов. Разорванные детали могут указывать не только на локальную проблему, но и проблему в элементах обвязки этой детали. Например, взорвавшийся транзистор мог за собой утянуть и пару элементов в обвязке.
Не всегда пожелтевшая от температуры область на плате указывает на последствия выгорания детали. Иногда так получается в результате долгой работы прибора, при проверке все детали могут оказаться целыми.
Кроме осмотра внешних дефектов и следов гари стоит и принюхаться, чтобы проверить, нет ли неприятного запаха как от горелой резины. Если вы нашли почерневший элемент – нужно его проверить. У него может быть одна из трёх неисправностей:
- Обрыв.
- Короткое замыкание.
- Несоответствие номиналу.
Иногда поломка бывает столь очевидной, что её можно определить и без мультиметра, как в примере на фото:
Проверка резистора на обрыв
Проверить исправность можно обычной прозвонкой или тестером в режиме проверки диодов со звуковой индикацией (см. фото ниже). Стоит отметить, что прозвонкой можно проверить лишь резисторы сопротивлением в единицы Ом — десятки кОм. А 100 кОм уже не каждая прозвонка осилит.
Для проверки нужно просто подключить оба щупа к выводам резистора, неважно это СМД компонент или выводной. Быструю проверку можно провести без выпаивания, после чего всё же выпаять подозрительные элементы и проверить повторно на обрыв.
Внимание! При проверке детали не выпаивая с печатной платы, будьте внимательны – вас могут ввести в заблуждение параллельно стоящие элементы. Это актуально как при проверке без приборов, так и при проверке мультиметром. Не ленитесь и лучше выпаяйте подозрительную деталь. Так можно проверить только те резисторы, где вы уверены, что параллельно им в цепи ничего не установлено.
Проверка короткого замыкания
Кроме обрыва, резистор могло пробить накоротко. Если вы используете прозвонку – она должна быть низкоомной, например на лампе накаливания. Т.к. высокоомные светодиодные прозвонки «звонят» цепи сопротивлением и в десятки кОм без существенных изменений яркости свечения. Звуковые индикаторы с этой проверкой справляются лучше чем светодиоды. По частоте пищания можно судить о целостности цепи, на первом месте по достоверности находятся сложные измерительные приборы, такие как мультиметр и омметр.
Проверка на КЗ проводится одним способом, рассмотрим инструкцию пошагово:
- Измерить омметром, прозвонкой или другим прибором участок цепи.
- Если его сопротивление стремится к нулю и прозвонка указывает на замыкание, выпаивают подозрительный элемент.
- Проверить участок цепи уже без элемента, если КЗ ушло – вы нашли неисправности, если нет – выпаивают соседние, пока оно не уйдет.
- Остальные элементы монтируют обратно, тот после которого КЗ ушло заменяют.
- Проверить результаты работы на наличие КЗ.
Вот наглядный пример того, что сгоревший резистор оставил следы на соседних резисторах, есть вероятность, что и они повреждены:
Резистор почернел от высокой температуры, на соседних элементах видны не только следы гари, но и следы перегретой краски, её цвет изменился, часть токопроводящего резистивного слоя могла повредиться.
На видео ниже наглядно показывается, как проверить резистор мультиметром:
Определяем номинал резистора
У советских сопротивлений номинал был указан буквенно-цифровым способом. У современных выводных резисторах номинал зашифрован цветовыми полосами. Чтобы заменить сопротивление после проверки на исправность, нужно расшифровать маркировку сгоревшего.
Для определения маркировки по цветным полоскам есть масса бесплатных приложений на андроид. Раньше использовались таблицы и специальные приспособления.
Можно сделать вот такую шпаргалку для проверки:
Вырезаете цветные круги, прокалываете их по центру и соединяете, самый большой назад, маленький – спереди. Совмещая круги, вы определяете сопротивление элемента.
Кстати на современных керамических резисторах тоже используется явная маркировка с указанием сопротивления и мощности элемента.
Если вести речь об SMD элементах – здесь всё достаточно просто. Допустим маркировка «123»:
12 * 103 = 12000 Ом = 12 кОм
Встречаются и другие маркировки из 1, 2, 3 и 4 символов.
Если деталь сгорела так, что маркировку вообще не видно, стоит попробовать потереть её пальцем или ластиком, если это не помогло – у нас есть три варианта:
- Искать на схеме электрической принципиальной.
- В некоторых схемах есть несколько одинаковых цепей, в таком случае можно проверить номинал детали на соседнем каскаде. Пример: подтягивающие резисторы на кнопках у микроконтроллеров, ограничительные сопротивления индикаторов.
- Замерить сопротивление уцелевшего участка.
О первых двух способах добавить нечего, давайте узнаем, как проверить сопротивление сгоревшего резистора.
Начнем с того, что нужно очистить покрытие детали. После этого включите на мультиметре режим измерения сопротивления, он обычно подписан «Ohm» или «Ω».
Если вам повезло, и отгорел участок непосредственно возле вывода, просто замерьте сопротивление на концах резистивного слоя.
В примере как на фото можно замерить сопротивление резистивного слоя или определить по цвету маркировочных полос, здесь они не покрыты копотью – удачное стечение обстоятельств.
Ну а если вам не повезло и часть резистивного слоя выгорела – остаётся замерить небольшой участок и умножить результат на количество таких участков по всей длине сопротивления. Т.е. на картинке вы видите, что щупы подключаются к кусочку равному 1/5 от общей длины:
Тогда полное сопротивление равно:
Rизмеренное*5=Rноминальное
Такая проверка позволяет получить результат близкий к реальному номиналу сгоревшего элемента. Этот метод подробно описан в видео:
Как проверить переменный резистор и потенциометр
Чтобы понять, в чем заключается проверка потенциометра, давайте рассмотрим его структуру. Переменный резистор от потенциометра отличается тем, что первый регулируется отверткой, а второй рукояткой.
Потенциометр – это деталь с тремя ножками. Он состоит из ползунка и резистивного слоя. Ползунок скользит по резистивному слою. Крайние ножки – это концы резистивного слоя, а средняя соединена с ползунком.
Чтобы узнать полное сопротивление потенциометра, нужно замерить сопротивление между крайними ножками. А если проверить сопротивление между одной из крайних ножек и центральной – вы узнаете текущее сопротивление на движке относительно одного из краёв.
Но самая частая неисправность такого резистора — это не отгорание концов, а износ резистивного слоя. Из-за этого сопротивление изменяется неправильно, возможна потеря контакта в определенных участках, тогда сопротивление подскакивает до бесконечности (разрыв цепи). Когда движок занимает то положение, в котором контакт ползунка с покрытием вновь появляется – сопротивление вновь становится «правильным». Эту проблему вы могли замечать, когда регулировали громкость на старых колонках или усилителе. Проявляется проблема в том, что при вращении ручки периодически в колонках раздаются щелчки или громкие стуки.
Вообще проверку плавности хода потенциометра нагляднее проводить аналоговым мультиметром со стрелкой, т.к. на цифровом экране вы просто можете не заметить дефекта.
Потенциометры могут быть сдвоенными, иногда их называют «стерео потенциометры», тогда у них 6 выводов, логика проверки такая же.
На видео ниже наглядно показывается, как проверить потенциометр мультиметром:
Методы проверки резисторов просты, но для получения нормального результата проверки нужен мультиметр или омметр с несколькими пределами измерений. С его помощью вы сможете померить еще и напряжение, ток, емкость, частоту и другие величины в зависимости от модели вашего прибора. Это основной инструмент мастера по ремонту электроники. Сопротивления иногда выходят из строя при внешней целостности, иногда уходят от номинального значения сопротивления. Проверка нужна для определения соответствия деталей номиналам, а также чтобы убедится рабочий или нет элемент. На практике способы проверки могут отличаться от описанных, хотя принцип тот же, всё зависит от ситуации.
led — Расчет сопротивления, когда закон Ома не имеет ответа
\$\начало группы\$
У меня есть источник постоянного тока 3 В и светодиод 3 В, я хочу, чтобы этот светодиод питался всего 5 мА.
Есть формула:
R = V/I
Но в моем случае V равно 0
V[источник] — V[светодиод] = 0
Так что R всегда равно 0!!!
Как подобрать правильный резистор?
- светодиод
- ток
- резисторы
- закон Ома
- низковольтный
\$\конечная группа\$
2
\$\начало группы\$
Светодиоды являются диодами, а диоды не имеют постоянного прямого напряжения. Прямое напряжение на самом деле является функцией тока.
Вот:
Эта кривая взята из описания белого светодиода, заявленного на 3,1 В. Но вы можете видеть, что он достигает только 3,1 В при 60 мА (при 25 ° C). Производитель светодиода выбирает номинальный ток, который делает светодиод максимально ярким без ограничения обещанного срока службы. Вам, конечно, не нужно использовать это точное текущее значение. Более низкий ток будет соответствовать более низкому прямому напряжению. Вам нужно будет найти соответствующий график в таблице данных для вашего светодиода.
Например, предположим, что график в техническом описании вашего светодиода показывает, что 5 мА соответствует прямому падению напряжения 2,8 В. Ваш расчет становится следующим:
Пример:
$$\frac{3V — 2.8V}{5mA} = 40\Omega$$
\$\конечная группа\$
\$\начало группы\$
У закона Ома есть отклик, ноль омов.
Это говорит вам, что если ваш фактический светодиод имеет ровно 3 В Vf при номинальном токе И напряжение питания 3 В никогда не превышает 3 В, вам не нужен резистор.
Вопрос здесь в том, каково истинное Vf фактического светодиода или минимальное Vf, указанное в техническом описании, поскольку они различаются в зависимости от производства, и каково максимальное верхнее отклонение вашего источника питания 3 В. Если вы знаете их, вы можете рассчитать сопротивление, необходимое для наихудшего сценария, когда питание высокое, а Vf низкое.
\$\конечная группа\$
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя электронную почту и пароль
Опубликовать как гость
Электронная почта
Требуется, но никогда не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
.
Расчет сопротивления заземляющего электрода одиночного стержня – Принципы проектирования и испытания заземляющего электрода
Понимание расчета сопротивления заземляющего электрода одиночного стержня и его связи с конструкцией системы заземляющего электрода является ключом к пониманию фундаментальных принципов проектирования, сопротивления заземления и удельного сопротивления грунта измерения и расчеты. Нижеследующее является частью первой из четырех наших принципов проектирования заземляющих электродов и серии испытаний, основанной на нашем официальном документе «Принципы проектирования и испытания заземляющих электродов». Вы можете скачать полный технический документ здесь.
- Теория оболочки
- Удельное сопротивление почвы и измерение
- Расчет сопротивления заземляющего электрода одиночного стержня
- Измерение сопротивления электрода
Расчет сопротивления заземляющего электрода одиночного стержня
Сопротивление заземления можно рассчитать с помощью эмпирических формул, номограмм или программного обеспечения.
Примеры доступных для использования формул содержатся в стандарте молниезащиты AS1768, Приложение C. Приведенные ниже формулы, извлеченные из AS1768, являются двумя наиболее часто используемыми.
1. Одиночный вертикальный стержень длиной L и диаметром d метров, вершина стержня на уровне поверхности:
Где
R = сопротивление грунта, Ом =
9 91017ρ 90 метры
L = длина заземляющего электрода в земле, в метрах
d = диаметр заземляющего электрода, в метрах
Примечание. Уравнение обычно называют «модифицированной формулой Дуайта» 9.0119
2. Прямой горизонтальный провод длиной L и диаметром d метров, на поверхности:
Для тонкого полосового заземлителя диаметр можно заменить полушириной полосы.
Традиционно программы позволяли создавать двухслойные модели удельного сопротивления грунта. Это означает, что измеренное сопротивление должно быть усреднено до двух значений с соответствующими глубинами. Современное программное обеспечение может принимать в качестве входных данных многослойные значения удельного сопротивления.
На самом деле реальная ценность программного обеспечения заключается не столько в вычислении значений сопротивления для одного или нескольких электродов, сколько в том, что это можно легко сделать с помощью формул. Однако они могут быть эффективными при расчете сопротивления нескольких заземляющих электродов, шагового напряжения и напряжения прикосновения, а также при моделировании подачи тока короткого замыкания.
Другой метод расчета сопротивления одиночного заземляющего стержня, когда известны размеры и удельное сопротивление, — это использование номограмм. В примере на Рисунке 1 заземляющий стержень длиной 7 м и диаметром 10 мм будет давать сопротивление 7,6 Ом, если показания теста Веннера по 4 точкам равны 1 Ом.
Рисунок 1: Номограмма для расчета сопротивления одиночного заземляющего стержня
Расчет сопротивления заземляющего электрода нескольких заземляющих стержней
Когда заземляющие стержни используются параллельно, сначала может показаться, что сопротивление можно рассчитать с помощью простой уравнение 1/R = 1/R1+ 1/R2+ 1/R3…
Однако, если более внимательно рассмотреть теорию оболочки, обсуждавшуюся ранее, становится очевидным, что расстояние между заземляющими стержнями может иметь некоторое влияние на комбинированное сопротивление . Это связано с тем, что полусферические оболочки каждого из электродов будут перекрывать друг друга, и площадь перекрытия необходимо компенсировать. В крайнем случае, если два электрода наложены друг на друга, размер предлагаемой ими оболочки будет аналогичен оболочке, предлагаемой одним электродом. То есть сопротивление двух электродов будет аналогично сопротивлению одного электрода, если они будут установлены совсем рядом.
Эмпирические правила и коэффициенты использования используются в повседневных расчетах для быстрого расчета параллельных сопротивлений без чрезмерного анализа.
Например, когда два электрода расположены на расстоянии одной длины электрода друг от друга, достигается 85-процентное использование их параллельного сопротивления. Когда эти электроды разнесены на два электрода, достигается 92-процентное использование. Иногда на практике используется эмпирическое правило, согласно которому расстояние между электродами должно быть как минимум в два раза больше глубины электрода, исходя из этого использования.
До появления программного обеспечения для проведения расчетов использование номограмм было общепринятым методом расчета сопротивления нескольких заземляющих стержней. Нет никаких причин, по которым их нельзя использовать сегодня для быстрых расчетов.
Рис. 2: Параллельные заземляющие стержни
На Рис. 3 показана номограмма, которую можно использовать для проектирования многоэлектродной системы, если сопротивление одного электрода известно путем расчета или измерения.
Расчет сопротивления электрода для системы с несколькими заземляющими стержнями является тривиальной задачей при использовании современного программного обеспечения. По сути, это вопрос ввода удельного сопротивления грунта, размеров электродов и размера сетки, и он выдает число без лишней суеты.
Рис. 3. Сопротивление заземления нескольких заземляющих стержней
Загрузите информационный документ nVent ERICO «Принципы проектирования и тестирования заземляющих электродов»
Загрузите информационный документ ниже, в котором излагаются основные принципы проектирования заземляющих электродов, измерения сопротивления заземления и удельного сопротивления почвы и вычисления.