Содержание
Электрическая емкость • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения
Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыИмпульс (количество движения)Импульс силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева
Сенсорный экран этого планшета выполнен с использованием проекционно-емкостной технологии.
Общие сведения
Использование емкости
Конденсаторы — устройства для накопления заряда в электронном оборудовании
Историческая справка
Маркировка конденсаторов
Примеры конденсаторов
Ионисторы
Емкостные сенсорные экраны
Поверхностно-емкостные экраны
Проекционно-емкостные экраны
Общие сведения
Измерение емкости конденсатора номинальной емкостью 10 мкФ с помощью осциллографа-мультиметра
Электрическая емкость — это величина, характеризующая способность проводника накапливать заряд, равная отношению электрического заряда к разности потенциалов между проводниками:
C = Q/∆φ
Здесь Q — электрический заряд, измеряется в кулонах (Кл), — разность потенциалов, измеряется в вольтах (В).
В системе СИ электроемкость измеряется в фарадах (Ф). Данная единица измерения названа в честь английского физика Майкла Фарадея.
Фарад является очень большой емкостью для изолированного проводника. Так, металлический уединенный шар радиусом в 13 радиусов Солнца имел бы емкость равную 1 фарад. А емкость металлического шара размером с Землю была бы примерно 710 микрофарад (мкФ).
Так как 1 фарад — очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фарада; нанофарад (нФ), равный одной миллиардной; пикофарад (пФ), равный одной триллионной фарада.
В системе СГСЭ основной единицей емкости является сантиметр (см). 1 сантиметр емкости — это электрическая емкость шара с радиусом 1 сантиметр, помещенного в вакуум. СГСЭ — это расширенная система СГС для электродинамики, то есть, система единиц в которой сантиметр, грам, и секунда приняты за базовые единицы для вычисления длины, массы и времени соответственно. В расширенных СГС, включая СГСЭ, некоторые физические константы приняты за единицу, чтобы упростить формулы и облегчить вычисления.
Использование емкости
Конденсаторы — устройства для накопления заряда в электронном оборудовании
Условные обозначения конденсаторов на принципиальных схемах
Понятие электрической емкости относится не только к проводнику, но и к конденсатору.
Конденсатор — система двух проводников, разделенных диэлектриком или вакуумом. В простейшем варианте конструкция конденсатора состоит из двух электродов в виде пластин (обкладок). Конденсатор (от лат. condensare — «уплотнять», «сгущать») — двухэлектродный прибор для накопления заряда и энергии электромагнитного поля, в простейшем случае представляет собой два проводника, разделённые каким-либо изолятором. Например, иногда радиолюбители при отсутствии готовых деталей изготавливают подстроечные конденсаторы для своих схем из отрезков проводов разного диаметра, изолированных лаковым покрытием, при этом более тонкий провод наматывается на более толстый. Регулируя число витков, радиолюбители точно настраивают контура аппаратуры на нужную частоту. Примеры изображения конденсаторов на электрических схемах приведены на рисунке.
Параллельная RLC-цепь, состоящая из резистора, конденсатора и катушки индуктивности
Историческая справка
Еще 275 лет назад были известны принципы создания конденсаторов. Так, в 1745 г. в Лейдене немецкий физик Эвальд Юрген фон Клейст и нидерландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку» — в ней диэлектриком были стенки стеклянной банки, а обкладками служили вода в сосуде и ладонь экспериментатора, державшая сосуд. Такая «банка» позволяла накапливать заряд порядка микрокулона (мкКл). После того, как ее изобрели, с ней часто проводили эксперименты и публичные представления. Для этого банку сначала заряжали статическим электричеством, натирая ее. После этого один из участников прикасался к банке рукой, и получал небольшой удар током. Известно, что 700 парижских монахов, взявшись за руки, провели лейденский эксперимент. В тот момент, когда первый монах прикоснулся к головке банки, все 700 монахов, сведенные одной судорогой, с ужасом вскрикнули.
В Россию «лейденская банка» пришла благодаря русскому царю Петру I, который познакомился с Мушенбруком во время путешествий по Европе, и подробнее узнал об экспериментах с «лейденской банкой». Петр I учредил в России Академию наук, и заказал Мушенбруку разнообразные приборы для Академии наук.
В дальнейшем конденсаторы усовершенствовались и становились меньше, а их емкость — больше. Конденсаторы широко применяются в электронике. Например, конденсатор и катушка индуктивности образуют колебательный контур, который может быть использован для настройки приемника на нужную частоту.
Существует несколько типов конденсаторов, отличающихся постоянной или переменной емкостью и материалом диэлектрика.
Примеры конденсаторов
Оксидные конденсаторы в блоке питания сервера.
Промышленность выпускает большое количество типов конденсаторов различного назначения, но главными их характеристиками являются ёмкость и рабочее напряжение.
Типичные значение ёмкости конденсаторов изменяются от единиц пикофарад до сотен микрофарад, исключение составляют ионисторы, которые имеют несколько иной характер формирования ёмкости – за счёт двойного слоя у электродов – в этом они подобны электрохимическим аккумуляторам. Суперконденсаторы на основе нанотрубок имеют чрезвычайно развитую поверхность электродов. У этих типов конденсаторов типичные значения ёмкости составляют десятки фарад, и в некоторых случаях они способны заменить в качестве источников тока традиционные электрохимические аккумуляторы.
Вторым по важности параметром конденсаторов является его рабочее напряжение. Превышение этого параметра может привести к выходу конденсатора из строя, поэтому при построении реальных схем принято применять конденсаторы с удвоенным значением рабочего напряжения.
Для увеличения значений ёмкости или рабочего напряжения используют приём объединения конденсаторов в батареи. При последовательном соединении двух однотипных конденсаторов рабочее напряжение удваивается, а суммарная ёмкость уменьшается в два раза. При параллельном соединении двух однотипных конденсаторов рабочее напряжение остаётся прежним, а суммарная ёмкость увеличивается в два раза.
Третьим по важности параметром конденсаторов является температурный коэффициент изменения ёмкости (ТКЕ). Он даёт представление об изменении ёмкости в условиях изменения температур.
В зависимости от назначения использования, конденсаторы подразделяются на конденсаторы общего назначения, требования к параметрам которых некритичны, и на конденсаторы специального назначения (высоковольтные, прецизионные и с различными ТКЕ).
Маркировка конденсаторов
Подобно резисторам, в зависимости от габаритов изделия, может применяться полная маркировка с указанием номинальной ёмкости, класса отклонения от номинала и рабочего напряжения. Для малогабаритных исполнений конденсаторов применяют кодовую маркировку из трёх или четырёх цифр, смешанную цифро-буквенную маркировку и цветовую маркировку.
Соответствующие таблицы пересчёта маркировок по номиналу, рабочему напряжению и ТКЕ можно найти в Интернете, но самым действенным и практичным методом проверки номинала и исправности элемента реальной схемы остаётся непосредственное измерение параметров выпаянного конденсатора с помощью мультиметра.
Оксидный конденсатор собран из двух алюминиевых лент и бумажной прокладки с электролитом. Одна из алюминиевых лент покрыта слоем оксида алюминия и служит анодом. Катодом служит вторая алюминиевая лента и бумажная лента с электролитом. На алюминиевых лентах видны следы электрохимического травления, позволяющего увеличить их площадь поверхности, а значит и емкость конденсатора.
Предупреждение: поскольку конденсаторы могут накапливать большой заряд при весьма высоком напряжении, во избежание поражения электрическим током необходимо перед измерением параметров конденсатора разряжать его, закоротив его выводы проводом с высоким сопротивлением внешней изоляции. Лучше всего для этого подходят штатные провода измерительного прибора.
Оксидные конденсаторы: данный тип конденсатора обладает большой удельной емкостью, то есть, емкостью на единицу веса конденсатора. Одна обкладка таких конденсаторов представляет собой обычно алюминиевую ленту, покрытую слоем оксида алюминия. Второй обкладкой служит электролит. Так как оксидные конденсаторы имеют полярность, то принципиально важно включать такой конденсатор в схему строго в соответствии с полярностью напряжения.
Твердотельные конденсаторы: в них вместо традиционного электролита в качестве обкладки используется органический полимер, проводящий ток, или полупроводник.
Трехсекционный воздушный конденсатор переменной емкости
Переменные конденсаторы: емкость может меняться механическим способом, электрическим напряжением или с помощью температуры.
Пленочные конденсаторы: диапазон емкости данного типа конденсаторов составляет примерно от 5 пФ до 100 мкФ.
Имеются и другие типы конденсаторов.
Ионисторы
В наши дни популярность набирают ионисторы.
Ионистор (суперконденсатор) — это гибрид конденсатора и химического источника тока, заряд которого накапливается на границе раздела двух сред — электрода и электролита. Начало созданию ионисторов было положено в 1957 году, когда был запатентован конденсатор с двойным электрическим слоем на пористых угольных электродах. Двойной слой, а также пористый материал помогли увеличить емкость такого конденсатора за счет увеличения площади поверхности. В дальнейшем эта технология дополнялась и улучшалась. На рынок ионисторы вышли в начале восьмидесятых годов прошлого века.
С появлением ионисторов появилась возможность использовать их в электрических цепях в качестве источников напряжения. Такие суперконденсаторы имеют долгий срок службы, малый вес, высокие скорости зарядки-разрядки. В перспективе данный вид конденсаторов может заменить обычные аккумуляторы. Основными недостатками ионисторов является меньшая, чем у электрохимических аккумуляторов удельная энергия (энергия на единицу веса), низкое рабочее напряжение и значительный саморазряд.
Ионисторы применяются в автомобилях Формулы-1. В системах рекуперации энергии, при торможении вырабатывается электроэнергия, которая накапливается в маховике, аккумуляторах или ионисторах для дальнейшего использования.
Электромобиль А2В Университета Торонто. Общий вид
В бытовой электронике ионисторы применяются для стабилизации основного питания и в качестве резервного источника питания таких приборов как плееры, фонари, в автоматических коммунальных счетчиках и в других устройствах с батарейным питанием и изменяющейся нагрузкой, обеспечивая питание при повышенной нагрузке.
В общественном транспорте применение ионисторов особенно перспективно для троллейбусов, так как становится возможна реализация автономного хода и увеличения маневренности; также ионисторы используются в некоторых автобусах и электромобилях.
Электромобиль А2В Университета Торонто. Под капотом
Электрические автомобили в настоящем времени выпускают многие компании, например: General Motors, Nissan, Tesla Motors, Toronto Electric. Университет Торонто совместно с компанией Toronto Electric разработали полностью канадский электромобиль A2B. В нем используются ионисторы вместе с химическими источниками питания, так называемое гибридное электрическое хранение энергии. Двигатели данного автомобиля питаются от аккумуляторов весом 380 килограмм. Также для подзарядки используются солнечные батареи, установленные на крыше электромобиля.
Емкостные сенсорные экраны
В современных устройствах все чаще применяются сенсорные экраны, которые позволяют управлять устройствами путем прикосновения к панелям с индикаторами или экранам. Сенсорные экраны бывают разных типов: резистивные, емкостные и другие. Они могут реагировать на одно или несколько одновременных касаний. Принцип работы емкостных экранов основывается на том, что предмет большой емкости проводит переменный ток. В данном случае этим предметом является тело человека.
Поверхностно-емкостные экраны
Cенсорный экран iPhone выполнен по проекционно-емкостной технологии.
Таким образом, поверхностно-емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. В качестве резистивного материала обычно применяется имеющий высокую прозрачность и малое поверхностное сопротивление сплав оксида индия и оксида олова. Электроды, подающие на проводящий слой небольшое переменное напряжение, располагаются по углам экрана. При касании к такому экрану пальцем появляется утечка тока, которая регистрируется в четырех углах датчиками и передается в контроллер, который определяет координаты точки касания.
Преимущество таких экранов заключается в долговечности (около 6,5 лет нажатий с промежутком в одну секунду или порядка 200 млн. нажатий). Они обладают высокой прозрачностью (примерно 90%). Благодаря этим преимуществам, емкостные экраны уже с 2009 года активно начали вытеснять резистивные экраны.
Недостаток емкостных экранов заключается в том, что они плохо работают при отрицательных температурах, есть трудности с использованием таких экранов в перчатках. Если проводящее покрытие расположено на внешней поверхности, то экран является достаточно уязвимым, поэтому емкостные экраны применяются лишь в тех устройствах, которые защищены от непогоды.
Проекционно-емкостные экраны
Помимо поверхностно-емкостных экранов, существуют проекционно-емкостные экраны. Их отличие заключается в том, что на внутренней стороне экрана нанесена сетка электродов. Электрод, к которому прикасаются, вместе с телом человека образует конденсатор. Благодаря сетке, можно получить точные координаты касания. Проекционно-емкостный экран реагирует на касания в тонких перчатках.
Проекционно-емкостные экраны также обладают высокой прозрачностью (около 90%). Они долговечны и достаточно прочные, поэтому их широко применяют не только в персональной электронике, но и в автоматах, в том числе установленных на улице.
Автор статьи: Sergey Akishkin, Tatiana Kondratieva
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
Электроемкость конденсатора — формула и определение
Электроемкость проводников
Проводники умеют не только проводить через себя электрический ток, но и накапливать заряд. Эта способность характеризуется таким параметром, как электроемкость.
Электроемкость C = q/φ С — электроемкость [Ф] q — электрический заряд [Кл] φ — потенциал [В] |
Практикующий детский психолог Екатерина Мурашова
Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков
Конденсаторы
Способность накапливать заряд — полезная штука, поэтому люди придумали конденсаторы. Это такие устройства, которые помогают применять электрическую емкость проводников в практических целях.
Конденсатор состоит из двух или более проводящих пластин (обкладок), разделенных диэлектриком. Между проводящими пластинами образуется электрическое поле, все силовые линии которого идут от одной обкладки к другой.
Зарядка конденсатора — это процесс накопления заряда на двух его обкладках. Заряды на них равны по величине и противоположны по знаку.
Электроемкость конденсатора измеряется отношением заряда на одной из обкладок к разности потенциалов между обкладками:
Электроемкость конденсатора C = q/U С — электроемкость [Ф] q — электрический заряд [Кл] U — напряжение (разность потенциалов) [В] |
По закону сохранения заряда, если обкладки заряженного конденсатора соединить проводником, то заряды нейтрализуются, переходя с одной обкладки на другую. Так происходит разрядка конденсатора.
Любой конденсатор имеет предел напряжения. Если оно окажется слишком большим, то случится пробой диэлектрика, то есть разрядка произойдет прямо сквозь диэлектрик. Такой конденсатор больше работать не будет.
Виды конденсаторов
Особенность электроемкости в том, что она зависит от формы проводника. Для каждого вида проводников есть своя формула расчета электроемкости.
Проще всего вычислить электроемкость плоского конденсатора. Плоский конденсатор состоит из двух металлических пластин, между которыми помещают диэлектрическое вещество.
Электроемкость плоского конденсатора — электроемкость [Ф] — относительная диэлектрическая проницаемость среды [—] — электрическая постоянная Ф/м — площадь пластин [м2] — расстояние между пластинами [м] |
Самый популярный конденсатор — цилиндрический. Он состоит из двух металлических цилиндров, вложенных друг в друга, и диэлектрика, которым заполнено пространство между ними. Рассмотрим формулу электроемкости такого конденсатора.
Электроемкость цилиндрического конденсатора — электроемкость [Ф] — относительная диэлектрическая проницаемость среды [—] — электрическая постоянная Ф/м — длина цилиндров [м] — радиусы цилиндров [м] — функция натурального логарифма, которая зависит от радиусов цилиндров |
Сферический конденсатор состоит из двух проводящих сфер, вложенных друг в друга, и непроводящей жидкости, которой заполнено пространство между ними.
Электроемкость сферического конденсатора — электроемкость [Ф] — относительная диэлектрическая проницаемость среды [—] — электрическая постоянная Ф/м — радиусы сфер [м] |
Подытожим все, что узнали, на картинке-шпаргалке:
Бесплатные занятия по английскому с носителем
Занимайтесь по 15 минут в день. Осваивайте английскую грамматику и лексику. Сделайте язык частью жизни.
Энергия конденсатора
У конденсатора, как и у любой системы заряженных тел, есть энергия. Чтобы зарядить конденсатор, необходимо совершить работу по разделению отрицательных и положительных зарядов. По закону сохранения энергии эта работа будет как раз равна энергии конденсатора.
Доказать, что заряженный конденсатор обладает энергией, несложно. Для этого понадобится электрическая цепь, содержащая в себе лампу накаливания и конденсатор. При разрядке конденсатора вспыхнет лампа — это будет означать, что энергия конденсатора превратилась в тепло и энергию света.
Чтобы вывести формулу энергии плоского конденсатора, нам понадобится формула энергии электростатического поля.
Энергия электростатического поля Wp = qEd Wp — энергия электростатического поля [Дж] q — электрический заряд [Кл] E — напряженность электрического поля [В/м] d — расстояние от заряда [м] |
В случае с конденсатором d будет представлять собой расстояние между пластинами.
Заряд на пластинах конденсатора равен по модулю, поэтому можно рассматривать напряженность поля, создаваемую только одной из пластин.
Напряженность поля одной пластины равна Е/2, где Е — напряженность поля в конденсаторе.
В однородном поле одной пластины находится заряд q, распределенный по поверхности другой пластины.
Тогда энергия конденсатора равна:
Wp = qEd/2
Разность потенциалов между обкладками конденсатора можно представить, как произведение напряженности на расстояние:
U = Ed
Поэтому:
Wp = qU/2
Эта энергия равна работе, которую совершит электрическое поле при сближении пластин.
Заменив в формуле разность потенциалов или заряд с помощью выражения для электроемкости конденсатора C = q/U, получим три различных формулы энергии конденсатора:
Энергия конденсатора Wp = qU/2 Wp — энергия электростатического поля [Дж] q — электрический заряд [Кл] U — напряжение на конденсаторе [В] |
Энергия конденсатора Wp = q2/2C Wp — энергия электростатического поля [Дж] q — электрический заряд [Кл] C — электроемкость конденсатора [Ф] |
Энергия конденсатора Wp = CU2/2 Wp — энергия электростатического поля [Дж] C — электроемкость конденсатора [Ф] U — напряжение на конденсаторе [В] |
Эти формулы справедливы для любого конденсатора.
Применение конденсаторов
Конденсатор есть в каждом современном устройстве. Разберем два самых наглядных примера.
Пример раз — вспышка
Без конденсатора вспышка в фотоаппарате работала бы не так, как мы привыкли, а с большими задержками, и к тому же быстро разряжала бы аккумулятор. Конденсатор в этом случае работает как батарейка. Он накапливает заряд от аккумулятора и хранит его до востребования. Когда нам нужна вспышка, конденсатор разряжается, чтобы она сработала и вылетела птичка.
Пример два — тачскрин
Тачскрин на телефоне работает по принципу, схожему с конденсатором. В самом смартфоне, конечно, тоже есть множество конденсаторов, но этот принцип куда интереснее.
Дело в том, что тело человека тоже умеет проводить электричество — у него даже есть сопротивление и электроемкость. Так что можно считать человеческий палец пластиной конденсатора — тело же проводник, почему бы и нет. Но если поднести палец к металлической пластине, получится плохой конденсатор.
В экран телефона встроена матрица из микроскопических пластинок. Когда мы подносим палец к одной из них, получается своего рода конденсатор. Когда перемещаем палец ближе к другой пластинке — еще один конденсатор. Телефон постоянно проверяет пластинки, и если обнаруживает, что у какой-то из них внезапно изменилась электроемкость, значит, рядом есть палец. Координаты пластинки с изменившейся электроемкостью передаются операционной системе телефона, а она уже решает, что с этими координатами делать.
Кстати, то же самое можно проделать, если взять обычную сосиску и поводить ей по экрану смартфона. Тачскрин будет реагировать на все контакты, как реагирует на человеческий палец.
Это не единственный вариант реализации тачскрина, но один из лучших на сегодняшний день. В айфоне используется именно он.
Изучать физику на примерах из реальной жизни может быть очень даже интересно. Попробуйте и убедитесь сами на классическом курсе по физике для 10 класса.
Калькулятор последовательного подключения конденсаторов
Автор Wojciech Sas, PhD
Отзыв от Bogna Szyk и Jack Bowater
Последнее обновление: 13 октября 2022 г. калькулятор?
Калькулятор последовательного подключения конденсаторов поможет вам оценить эквивалентное значение емкости до 10 отдельных конденсаторов . В тексте вы найдете, как работает последовательное добавление конденсаторов, в чем разница между конденсаторами, включенными последовательно и параллельно, и как это соотносится с комбинацией резисторов.
Если вы хотите ознакомиться с формулами этих явлений (и с физикой!), посмотрите пример — можно вычислить конденсаторы при последовательном напряжении и заряде .
У вас есть схема с параллельным расположением конденсаторов? Отправляйтесь к калькулятору параллельных конденсаторов Omni!
Последовательное добавление конденсаторов
Конденсатор — это электронный компонент, накапливающий электрический заряд (или электрическую энергию). Конденсаторы могут располагаться в цепи как последовательно, так и параллельно, в зависимости от их будущего применения. При последовательном соединении заряд Ом
в каждом конденсаторе равен Ом. Почему?
Представьте себе установку, состоящую из последовательно соединенных конденсаторов без какого-либо источника напряжения . Самый простой способ визуализировать эту ситуацию — использовать конденсаторы с плоскими пластинами, но он также работает для цилиндрических и сферических конденсаторов. В нашем случае каждый из элементов не хранит заряда. Затем мы применяем напряжение на концах цепи.
Посмотрите на первый конденсатор — когда электроны движутся к источнику питания, одна часть конденсатора становится положительно заряженной. В равновесии это значение равно + Q
. Основное свойство конденсатора состоит в том, что абсолютная величина заряда, хранящегося на обеих обкладках, одинакова, но имеет противоположные знаки . В результате второй конец этого элемента имеет заряд -Q
. Далее, мы не можем произвести этот заряд из пустоты, поэтому он должен исходить от второго конденсатора, и поэтому он также хранит заряд +Q
на соседнем конце. Мы можем продолжать это рассуждение снова и снова, пока не дойдем до последнего элемента. Здесь заряд идет не от соседнего конденсатора, а от источника напряжения.
Вы можете думать об этой проблеме как о черном ящике. Заряд покидает источник питания с одного конца, проходит через коробку и возвращается с другой стороны. Общий заряд должен сохраняться, поэтому входные и выходные значения должны быть эквивалентны.
С другой стороны, напряжение последовательно соединенных конденсаторов, В
, представляет собой сумму напряжений на каждом отдельно ( В₁
, В₂
, …). Переставляя общую формулу для емкости, получаем выражение для напряжения по всей цепи:
В = Q/C₁
,
а также для каждой в отдельности:
В₁ = Q/C₁
, V₂ = Q / C₂
и т. д.
Опять же, добавление конденсаторов последовательно означает суммирование напряжений, поэтому:
В = В₁ + В₂ + …
→ Q/C = Q/C₁ + Q/C₂ + …
.
Мы можем разделить каждую сторону на Q
, и тогда получим окончательный вид формулы емкости (или, точнее говоря, ее обратную):
1 / C = 1 / C₁ + 1 / C₂ + …
.
Другими словами, обратная величина полной емкости равна сумме обратных величин каждой отдельной емкости .
Микросхема 555 в нестабильном режиме использует два последовательно включенных конденсатора для определения характеристического времени работы. Если вам нужен таймер в вашей схеме, попробуйте наш калькулятор таймера 555.
Как использовать конденсаторы в последовательном калькуляторе?
Давайте рассмотрим вычислительный пример. Какова общая емкость четырех последовательно соединенных конденсаторов, где емкость каждого из них составляет Кл₁ = 2 мФ
, Кл₂ = 5 мкФ
, Кл₃ = 6 мкФ
, Кл₄ = 200 нФ
?
🔎 Вы можете быстро расшифровать емкость любого конденсатора с помощью нашего калькулятора конденсаторов.
Преобразуйте единицы измерения, чтобы они были одинаковыми. Мы можем использовать научную нотацию, чтобы упростить задачу. Выражая все в терминах F, мы получаем:
C₁ = 2·10⁻³ F
,C₂ = 5·10⁻⁶ F
,C₃ = 6·10⁻⁶ F
,C₄ = 2·10⁻⁷ F
.Сложите величины, обратные емкости:
1/Кл = 1 / (2·10⁻³ Ф) + 1 / (5·10⁻⁶ Ф) + 1 / (6·10⁻⁶ Ф) + 1 / (2· 10⁻⁷ Ф) = 5,367·10⁶ 1/Ф
.Оцените обратную эту сумму:
C = 1 / (5,367·10⁶ 1/F) = 1,863·10⁻⁷ F
.Мы можем записать окончательный результат последовательного добавления конденсаторов, используя соответствующий префикс:
Кл = 186,3 нФ
.
Обратите внимание, что этот результат может быть менее точным, чем результат калькулятора конденсаторов в последовательном соединении, потому что мы не используем здесь столько значащих цифр.
Если вы посмотрите поближе, то заметите, что результирующая емкость ниже, чем любое из отдельных значений для конденсаторов серии .
Конденсаторы последовательно и параллельно
Как мы уже выяснили, последовательное расположение конденсаторов приводит к меньшей емкости. Как и следовало ожидать, параллельное соединение конденсаторов увеличивает значение . Мы также можем увидеть некоторое сходство между различными типами электрических элементов:
- Формула для последовательно соединенных конденсаторов эквивалентна формуле для параллельных резисторов.
- Формула для конденсаторов, включенных параллельно, эквивалентна формуле для резисторов, соединенных последовательно.
RC-цепи состоят из комбинации резисторов и конденсаторов. Иногда имеется более одного элемента каждого элемента, но обычно возможно , чтобы превратить каждый из них в один компонент . Если мы расположим конденсаторы параллельно, вы будете знать, как оценить результат!
Некоторые делители напряжения состоят из последовательно соединенных конденсаторов. Ознакомьтесь с нашим калькулятором делителей напряжения, чтобы узнать об их преимуществах по сравнению со стандартными резистивными делителями!
Wojciech Sas, PhD
Вы можете разместить до 10 конденсаторов
Конденсатор 1 (C₁)
Конденсатор 2 (C₂)
Посмотрите 86 похожих калькуляторов электромагнетизма 🧲
Ускорение частицы в размере Electric FieldAc SwattageReaker… 83 еще
100V 16V ELEC Compacitor — SMD
КЛАСК, чтобы увеличить
₹ 7,80 (без учета всех налогов)
Ссылка клиента:
100uF 16V Elec Конденсатор – количество SMD
Лучший продукт
Сравнить
Добавить в список желаний
Артикул: ST2009SD0619Категории: Компоненты SMD, Электрический конденсатор, Компонент SMD
Теги: 0603 Конденсатор SMD, Конденсатор 100 мкФ 16 В, Конденсатор SMD 100 мкФ 16 В, Конденсатор 100 мкФ, Конденсатор SMD 100 мкФ, Конденсатор, Компоненты, Электролитический конденсатор, Электронные компоненты, SMD, Конденсатор SMD, Электролитический конденсатор SMD, Устройство для поверхностного монтажа
- Описание продукта
Описание продукта
Электрический конденсатор 100 мкФ, 16 В, для поверхностного монтажа
Конденсатор представляет собой устройство, накапливающее электрическую энергию в электрическом поле. Это пассивный электронный компонент с двумя клеммами.
Эффект конденсатора известен как емкость. Хотя между любыми двумя соседними электрическими проводниками в цепи существует некоторая емкость, конденсатор — это компонент, предназначенный для добавления емкости в цепь. Конденсатор первоначально был известен как конденсатор или конденсатор. Это название и родственные ему названия до сих пор широко используются во многих языках, но редко в английском языке, за одним заметным исключением являются конденсаторные микрофоны, также называемые конденсаторными микрофонами. Конденсаторы для поверхностного монтажа SMD или SMT используются в крупносерийном производстве — используемые количества исчисляются миллиардами. Они маленькие, не содержат выводов и могут быть размещены на современных печатных платах с помощью машин для захвата и установки, используемых в современном производстве. Существует множество различных типов конденсаторов SMD: от керамических до танталовых и электролитических. Из них наиболее широко используются керамические конденсаторы SMD.
Применение:
- Генерация высокого напряжения и фильтрация сети переменного тока
- Высокая частота и высокое напряжение/мощность
- Высокая надежность, медицинская, военная и космическая
- Автомобилестроение
Особенности/характеристики:
- Емкость: 100 мкФ
- Напряжение: 16 В
- Тип монтажа: SMD/SMT
- Допуск: 10%
- Рабочая температура: от -55°C до 85°C
- Длина: 7 мм
- Ширина: 6,5 мм
- Высота: 5,75 мм
В комплект поставки входят:
- Электрический конденсатор 100 мкФ 16 В — SMD
Примечание. Изображения продуктов показаны только в иллюстративных целях и могут отличаться от фактического продукта.
ИНФОРМАЦИЯ О ПРОДУКТЕ
Информация об отгрузке
Доставка
Мы делаем все возможное, чтобы добраться до каждого уголка Индии, используя несколько лучших курьерских служб, работающих в стране, таких как FedEx, Delhivery, DTDC, BlueDart, XpressBees.