Содержание
Зарубежные буквенные обозначения электронных комплектующих [Мозаика системного администрирования]
Источник: Публикация на pikabu.ru: Перечень буквенных обозначений радиодеталей на схемах, Файл: Зарубежные (из разных источников; с переводом)
A | Separable assembly or sub-assembly (e.g. printed circuit assembly) | Отдельный модуль или устройство |
AE | Aerial | Антенна |
ANT | Antenna | Антенна |
AR | Amplifier (other than rotating), repeater | Усилитель, повторитель |
AT | Attenuator, inductive termination, resistive termination | Аттенюатор, индуктивная оконечная нагрузка, резистивная оконечная нагрузка |
B | Bead Ferrite | Ферритовый фильтр |
B | Battery | Батарея |
B | Motor | Электродвигатель |
BR | Bridge rectifier | Диодный мост |
BT | Battery | Батарея |
BT | Photovoltaic transducer, solar cell | Фотогальванический преобразователь, солнечная батарея |
C | Capacitor | Конденсатор |
CB | Circuit Board | Монтажная плата |
CB | Circuit breaker | Автоматический выключатель |
CN | Capacitor network | Конденсаторная сборка |
CP | Connector adapter, junction (coaxial or waveguide) | Переходник, cоединение (коаксиала или волновода) |
CR | Diode (TVS, thyristor, Zener, asymmetrical varistor, photodiode, stabistor, varactor overvoltage absorber) | Диод (лавинный диод, тиристор, стабилитрон, варистор с асимметричной ВАХ, фотодиод, стабистор, варактор, поглотитель перенапряжения) |
CRT | Cathode ray tube | Электронно-лучевая трубка |
D | Diode (LED, TVS, thyristor, Zener, asymmetrical varistor, photodiode, stabistor, varactor overvoltage absorber) | Диод (светодиод, лавинный диод, тиристор, стабилитрон, варистор с асимметричной ВАХ, фотодиод, стабистор, варактор, поглотитель перенапряжения) |
DC | Directional coupler | Направленный соединитель |
DL | Delay line | Линия задержки |
DS | Display, alphanumeric display device, annunciator, signal lamp | Дисплей, алфавитно-цифровой индикатор, световой индикатор, сигнальная лампа |
DSP | Digital signal processor | Цифровой сигнальный процессор |
E | Electrical contact, antenna, binding post, cable termination, electrical contact brush, electrical shield, ferrite bead rings, hall element, insulator, lightning arrester, magnetic core, permanent magnet, short circuit (termination), telephone protector, vibrating reed, miscellaneous electrical part | Электрический контакт, электрод, антенна, клемма, кабельный наконечник, электрическая щётка, электрический экран, ферритовое кольцо, элемент на эффекте холла, изолятор, искровой разрядник, магнитный сердечник, постоянный магнит, перемычка, громполоса, вибрирующий пружинный контакт, прочие радиодетали |
EP | Earphone | Головные телефоны |
EQ | Equalizer | Эквалайзер |
F | Fuse | Предохранитель |
FB | Ferrite bead | Ферритовый фильтр |
FD | Fiducial | Точка выравнивания |
FEB | Ferrite bead | Ферритовый фильтр |
FET | Field-effect transistor | Полевой транзистор |
FL | Filter | Фильтр |
G | Generator or oscillator, electronic chopper, interrupter vibrator, rotating amplifier, telephone magneto | Электрогенератор или осциллятор, электронный чоппер, вибропреобразователь, электромашинный усилитель, телефонный индуктор |
GDT | Gas-discharge lamp | Газоразрядная лампа |
GN | General network | Общая сеть |
H | Hardware, e.![]() | Крепёжные элементы (винты, гайки, шайбы) |
HP | Hydraulic part | Деталь гидравлики |
HR | Heater, heating lamp, heating resistor, infrared lamp, thermomechanical transducer | Нагревательный элемент, нагревательная лампа, нагревательный резистор, инфракрасная лампа, термомеханический преобразователь |
HS | Handset, operator’s set | Телефонная трубка, телефонная гарнитура |
HT | Earphone | Головной телефон, наушники |
HY | Circulator or directional coupler | Циркулятор или направленный ответвитель |
I | Lamp | Лампа накаливания |
IC | Integrated Circuit | Микросхема, интегральная схема |
J | Jack, Receptacle, Terminal Strip, connector | Гнездо, розетка, патрон, клеммник, коннектор |
J | Wire link, jumper | Джампер |
J | Jumper chip | Резистор нулевого сопротивления (перемычка или SMD-предохранитель) |
JFET | Junction gate field-effect transistor | Однопереходный полевой транзистор |
JP | Jumper (Link) | Джампер |
K | Relay, contactor | Реле, контактор, электромагнитный пускатель |
L | Inductor, choke, electrical solenoid, field winding, generator field, lamp ballast, motor field, reactor | Катушка индуктивности, дроссель, соленоид, обмотка электромагнита, обмотка возбуждения генератора, индуктивный балласт, обмотка возбуждения электродвигателя, реактивная катушка |
LA | Lightning arrester | Молниезащита |
LCD | Liquid-crystal display | ЖК-дисплей |
LDR | Light Dependent Resistor, | Фоторезистор |
LED | Light-emitting diode | Светодиод |
LS | Loudspeaker or buzzer, audible alarm, electric bell, electric horn, siren, telephone ringer, telephone sounder | Громкоговоритель или зуммер, звуковая сигнализация, электрический колокол, ревун, сирена, телефонный звонок, телефонный капсюль |
M | Motor | Электродвигатель |
M | Meter, electric timer, electrical counter, oscilloscope, position indicator, thermometer | Измеритель (обобщённый), электрический таймер, электрический счётчик, осциллограф, датчик положения, термометр |
MCB | Miniature circuit breaker | Миниатюрный автоматический выключатель |
MG | Dynamotor, motor-generator | Динамотор, моторгенератор |
MIC | Microphone | Микрофон |
MK | Microphone | Микрофон |
MOSFET | Metal-oxide-semiconductor field-effect transistor | МОП-транзистор |
MOV | Metal oxide varistor | Варистор на базе оксида металла |
MP | Mechanical part (including screws and fasteners) | Механическая деталь (в том числе крепёж) |
MT | Accelerometer | Акселерометр |
N | Neon Lamp | Неоновая лампа |
NE | Neon Lamp | Неоновая лампа |
OP | Operational amplifier | Операционный усилитель |
P | Plug | Штекер, штепсельная вилка |
PC | Photocell | Фотоэлемент |
PCB | Printed circuit board | Печатная плата |
PH | Earphone | Головные телефоны |
PLC | Programmable logic controller | Программируемый логический контроллер |
PS | Power supply, кectifier (complete power-supply assembly) | Вторичный источник электропитания, выпрямитель тока |
PU | Pickup, head | Звукосниматель, передающая телевизионная трубка, магнитная головка |
Q | Transistor, semiconductor controlled rectifier, semiconductor controlled switch, phototransistor (3 terminal), thyratron (semiconductor device) | Транзистор, полупроводниковый преобразователь, полупроводниковый ключ, фототранзистор трёхконтактный, тиратрон полупроводниковый |
R | Resistor, function potentiometer, instrument shunt, magnetoresistor, potentiometer, relay shunt, rheostat | Резистор, функциональный потенциометр, измерительный шунт, магниторезистор, потенциометр, шунт обмотки реле, реостат |
RE | Radio receiver | Радиоприёмное устройство |
RFC | Radio frequency choke | Высокочастотный дроссель |
RJ | Resistor Joint | Резисторная сборка |
RLA | Relay | Реле |
RN | Resistor Network | Резисторная сборка |
RT | Thermistor, ballast lamp, ballast tube, current-regulating resistor, thermal resistor | Терморезистор, термистор, электровакуумный стабилизатор тока, газоразрядный стабилитрон, токорегулирующий резистор, терморезистор |
RV | Varistor, symmetrical varistor, voltage-sensitive resistor | Варистор, варистор с симметричной вах, резистор управляемый напряжением |
RY | Relay | Реле |
S | Switch, contactor (manually, mechanically or thermally operated), flasher (circuit interrupter), governor (electrical contact type), telegraph key, telephone dial, thermal cutout (circuit interrupter) (not visual), thermostat | Переключатель, выключатель, кнопка, пускатель (ручной, механический, термический), прерыватель цепи, регулятор контактного типа, телеграфный ключ, номеронабиратель, термовыключатель, тепловое реле |
SCR | Silicon controlled rectifier | Однонаправленный управляемый тиристор |
SPK | Speaker | Громкоговоритель |
SQ | Electric squib | Электровоспламенитель |
SR | Rotating contact, slip ring | Вращающийся контакт, контактное кольцо |
SUS | Silicon unilateral switch | Пороговый тринистор |
SW | Switch | Переключатель, выключатель, кнопка |
T | Transformer | Трансформатор |
TB | Connecting strip, test block | Клеммная колодка, тест-блок |
TC | Thermocouple | Термопара |
TFT | Thin-film-transistor display | TFT-дисплей |
TH | Thermistor | Терморезистор, термистор |
TP | Test point | Контрольная (измерительная) точка |
TR | Transistor | Транзистор |
TR | Radio transmitter | Радиопередатчик |
TUN | Tuner | Тюнер |
U | Integrated Circuit | Микросхема, интегральная схема |
U | Photon-coupled isolator | Оптопара |
V | Vacuum tube, valve, ionization chamber, klystron, magnetron, phototube, resonator tube (cavity type), solion, thyratron (electron tube), traveling-wave tube, voltage regulator (electron tube) | Радиолампа, ионизационная камера, клистрон, магнетрон, вакуумный фотоэлемент, полостной вакуумный резонатор, хемотронный датчик, тиратрон (радиолампа), лампа бегущей волны, регулятор напряжения (радиолампа) |
VC | Variable capacitor | Переменный конденсатор |
VDR | Voltage Dependent Resistor | Варистор; резистор, управляемый напряжением |
VFD | Vacuum fluorescent display | Вакуумно-люминесцентный индикатор |
VLSI | Very-large-scale integration | СБИС — сверхбольшая интегральная схема |
VR | Variable resistor (potentiometer or rheostat) | Переменный резистор (потенциометр или реостат) |
VR | Voltage regulator | Регулятор (стабилизатор) напряжения |
VT | Voltage transformer | Трансформатор напряжения |
W | Wire, bus bar, cable, waveguide | Провод, шина, кабель, волновод |
WT | Wiring tiepoint | Точка примыкания |
X | Solar cell | Солнечный элемент |
X | Other converters | Преобразователи, не включаемые в другие категории |
X | Ceramic resonator | Керамический резонатор, кварцевый генератор |
X_ | Socket connector for another item | Разъём для элементов.![]() |
XA | Socket connector for printed circuit assembly connector | Разъём для печатных плат |
XDS | Socket connector for light socket | Разъём для патрона |
XF | Socket connector for fuse holder | Разъём для предохранителя |
XL | Lampholder | Ламповый патрон |
XMER | Transformer | Трасформатор |
XTAL | Crystal | Кварцевый генератор |
XU | Socket connector for integrated circuit connector | Разъём для микросхемы |
XV | Socket connector for vacuum tube socket | Разъём для радиолампы |
Y | Crystal or oscillator | Кварцевый резонатор или осциллятор |
Z | Zener diode | Стабилитрон |
Z | Balun, coupled tunable resonator, directional phase shifter (non-reciprocal), gyrator, mode suppressor, multistub tuner, phase shifter, resonator (tuned cavity) | Симметрирующий трансформатор, связанный перестраиваемый резонатор, направленный фазовращатель (не обратный), гиратор, фильтр нежелательных типов волн, многошлейфовый согласователь, фазовращатель, объёмный резонатор |
ZD | Zener Diode | Стабилитрон |
ZSCT | Zero sequence current transformer, also called a window-type current transformer | Трансформатор тока нулевой последовательности, трансформатор тока с проёмом для первичной цепи |
Vdd | плюс | (D — drain, сток) |
Vss | минус | (S — source, исток) |
rones. su: Позиционные обозначения элементов на схемах
arduino — В чем разница между Vcc, Vdd, Vee и Vss — Stack Overflow на русском
Стандарт,
Пайка,
Сделай сам,
Электрические схемы,
Печатные платы
D6 SMD МАРКИРОВКА
Перейти к содержимому
Справочник по SMD деталям
Собраны справочные данные по SMD кодировке радиодеталей поверхностного монтажа, с начальными символами обозначения D6. Краткая таблица расшифровки назначения и технических характеристик (различные стабилитроны, супервизоры, микроконтроллеры, драйверы, стабилизаторы и другие чип детали). Указаны стандартные варианты обозначения, но так как постоянно появляются всё новые, приведенный справочник иногда пополняться. Полная таблица СМД деталей по ссылке
код | наименование | функция | корпус | производитель |
D6 | AZ23-C4V3 | 2 стабилитрона ОА 300 мВт, 4,3В | sot23 | GenSemi |
D6 | BC847CM | npn: 45 В/100 мА | sot883 | NXP |
D6 | BCW33R | npn: 32В/100 мА h31=420…800 | sot23r | Diodes |
D6 | BZX384-C5V6 | стабилитрон 300 мВт: 5,6В ±5% | sod323 | Nexperia |
D6 | BZX884-C27 | стабилитрон 250 мВт: 27В 5% | sod882 | NXP |
D6 | MMBC1622D6 | npn: 35 В/100 мА h31=200…400 | sot23 | Motorola |
D6 | PMD5003K | драйвер МОП-транзистора | sot346/sc59a/to236 | NXP |
D6 | PEMD6 | «цифровые» npn+pnp: 50В/100 мА 4,7k/- | sot666 | NXP |
D6* | SN74LVC1G175DCK/DRY | одновентильный D-триггер | sc70-6/son6 | TI |
D60 | AD5612AKSZ | 12р ЦАП i²c | sc70-6 | ADI |
D63 | DAC6311IDCK | 10р ЦАП spi | sс70-6 | TI |
D6B | AD5312BRM | сдвоенный 10р ЦАП | usoic-10 | ADI |
D6Q | AD5160BRJZ5 | «цифровой» потенциометр: 5 кОм, 256 поз. | sot23-8 | ADI |
D6p | BFU730F | npn SiGe: 5,8 ГГц 2,8В/30 мА | sot343f | NXP |
D6t | BFU730F | npn SiGe: 5,8 ГГц 2,8В/30 мА | sot343f | NXP |
D6W | BFU730F | npn SiGe: 5,8 ГГц 2,8В/30 мА | sot343f | NXP |
При расшифровке кодировок элементов учитывайте, что при маркировке символы «О» и «0» (ноль и круглая буква) считаются одинаковыми. А тут можете посмотреть разного типа размеры корпусов SMD
Стабилитрон: история и работа в печатных платах
Что такое стабилитрон?
A Стабилитрон — это специальный тип диода, предназначенный для надежного протекания тока «в обратном направлении» при достижении определенного заданного обратного напряжения, известного как Напряжение Зенера . Это кремниевое полупроводниковое устройство, которое позволяет току течь в прямом или обратном направлении.
Стабилитрон
Зенеровские диоды производятся с большим разнообразием зенеровских напряжений, а некоторые даже с переменным напряжением. Некоторые диоды Зенера имеют острый, сильно легированный p-n переход с низким напряжением Зенера, и в этом случае обратная проводимость возникает из-за квантового туннелирования электронов в коротком пространстве между p- и n-областями — это известно как эффект Зенера , после Кларенс Зенер. Диоды с более высоким напряжением Зенера имеют более постепенный переход, и их режим работы также включает лавинный пробой. В стабилитронах присутствуют оба типа пробоя, при этом эффект Зенера преобладает при более низких напряжениях, а лавинный пробой — при более высоких напряжениях.
Стабилитроны широко используются в электронном оборудовании всех видов и являются одним из основных строительных блоков электронных схем. Они используются для создания маломощных стабилизированных шин питания из более высокого напряжения и для обеспечения опорного напряжения для цепей, особенно стабилизированных источников питания. Они также используются для защиты цепей от перенапряжения, особенно электростатического разряда (ЭСР).
История
Прибор назван в честь американского физика Кларенс Зенер , впервые описавший эффект Зенера в 1934 году в своих преимущественно теоретических исследованиях нарушения электрических свойств изолятора. Позже его работа привела к реализации эффекта в Bell Labs в виде электронного устройства, диода Зенера.
Эксплуатация
Обычный твердотельный диод пропускает значительный ток, если его обратное смещение превышает его обратное напряжение пробоя. Когда напряжение пробоя обратного смещения превышается, обычный диод подвергается сильному току из-за лавинного пробоя. Если этот ток не ограничен схемой, диод может быть необратимо поврежден из-за перегрева. Диод Зенера обладает почти такими же свойствами, за исключением того, что устройство специально разработано так, чтобы иметь пониженное напряжение пробоя, так называемое напряжение Зенера. В отличие от обычного устройства, стабилитрон с обратным смещением демонстрирует управляемый пробой и позволяет току поддерживать напряжение на стабилитроне близким к напряжению пробоя Зенера. Например, диод идеально подходит для таких приложений, как генерация опорного напряжения (например, для усилительного каскада или в качестве стабилизатора напряжения для слаботочных приложений).0009
Другим механизмом, производящим аналогичный эффект, является лавинный эффект, как в лавинном диоде. Два типа диодов фактически сконструированы одинаково, и в диодах этого типа присутствуют оба эффекта. В кремниевых диодах примерно до 5,6 вольт эффект Зенера является преобладающим эффектом и показывает заметный отрицательный температурный коэффициент. Выше 5,6 вольт лавинный эффект становится преобладающим и имеет положительный температурный коэффициент.
В диоде на 5,6 В оба эффекта проявляются вместе, а их температурные коэффициенты почти компенсируют друг друга, поэтому диод на 5,6 В полезен в приложениях, критичных к температуре. Альтернативой, которая используется для источников опорного напряжения, которые должны быть очень стабильными в течение длительных периодов времени, является использование стабилитрона с температурным коэффициентом (TC) 2 мВ/9.0053 или С (напряжение пробоя 6,2-6,3В), соединенных последовательно с прямосмещенным кремниевым диодом (или транзисторным переходом B-E), изготовленным на той же микросхеме. Диод с прямым смещением имеет температурный коэффициент – 2 мВ/ o C, что приводит к нейтрализации термопар.
Современные технологии производства позволяют производить устройства с напряжением ниже 5,6 В с незначительными температурными коэффициентами, но по мере появления устройств с более высоким напряжением температурный коэффициент резко возрастает. Диод на 75 В имеет коэффициент в 10 раз больше, чем диод на 12 В.
Стабилитроны и лавинные диоды, что касается напряжения пробоя, обычно продаются под общим названием стабилитрон. При напряжении 5,6 В, где преобладает эффект Зенера, кривая ВАХ вблизи пробоя гораздо более округлая, что требует большей осторожности при выборе условий смещения. Кривая IV для стабилитронов выше 5,6 В (с преобладанием лавины) намного острее при пробое.
Выполнение правильных стратегий напряжения Зенера для всех конструкций ваших печатных плат (PCB) обеспечит вам различные операции. Вы ищете производителя печатных плат, сборщика или дизайнерскую компанию, чтобы закончить вашу работу с OEM-производителем электроники? MADPCB — ваш лучший выбор, свяжитесь с нами сегодня, чтобы получить быстрое предложение!
Как идентифицировать компоненты на печатных платах
Определить все компоненты на печатных платах может быть сложно.
Если вы когда-либо пытались работать с собственными печатными платами или печатными платами, вы, возможно, испытывали разочарование, глядя на деталь и не зная точно, что это такое. После работы с тысячами печатных плат мы понимаем.
К счастью, есть ресурсы, которые могут помочь. На самом деле их много. Но они разбросаны повсюду. И многие из лучших даже больше не доступны в Интернете, если вы не знаете, как использовать некоторые специальные инструменты (Wayback Machine вам в помощь!)
Но вместо того, чтобы жаловаться на такое положение дел, мы решили создать собственный учебник, чтобы исправить это. Бонус: вы тоже выигрываете.
Вот наш учебник по компонентам печатной платы с большим количеством информации и изображений, которые помогут вам идентифицировать эти отдельные части.
Печатные платы: основы
Печатные платы обычно изготавливаются из многослойного композитного материала. Эта непроводящая подложка сжимает медные схемы, которые фактически составляют схемы, в честь которых названы платы.
субстрат: /ˈsəbˌstrāt/; нижележащее вещество или слой.
Mudcoders.com
Эти медные цепи, также известные как сигнальные дорожки, электрически соединяют и механически поддерживают другие компоненты, установленные на плате.
Почему печатные платы зеленые? На самом деле это паяльная маска, которая видна сквозь стекловолоконную сердцевину платы. Припой защищает медные цепи и предотвращает короткие замыкания. Зеленый припой придает оттенок стеклу, защищающему его.
паяльная маска: /ˈsädər mask/; защитный слой жидкого фотолака, нанесенный на верхнюю и нижнюю часть печатных плат для защиты меди от окисления и пыли.
eurocircuits.com
Пошаговая инструкция по идентификации компонентов
Как и большинство вещей в жизни, идентификация компонентов становится проще, если разбить задачу на более мелкие части.
Идентификация платы Использование
Сначала попытайтесь идентифицировать всю плату. Для чего это используется? Это материнская плата, дочерняя плата или она выполняет определенную задачу? Некоторые доски отмечены кодами, которые помогут в этом процессе. Например, плата DMCB, изображенная ниже, имеет размер 9. 0003 D OS M ain C управление B плата для системы GE Mark V. Многие аббревиатуры советов директоров GE похожи на это. Они могут помочь вам разобраться с приложением платы.
Материнская плата: печатная плата с основными компонентами и разъемами для установки других печатных плат. Дочерняя плата: плата расширения, которая подключается к материнской плате для доступа к процессору и памяти.
AX Control
Эта печатная плата GE DS200DMCBG1ABB функционирует как D OS M ain C управление B весло или DMCB.
Определите детали
Затем определите пассивные компоненты, такие как конденсаторы и катушки индуктивности. Не волнуйтесь, позже в этом посте будут фотографии. Затем ищите резисторы и потенциометры. Обычно они имеют метку измерения сопротивления. Символом ома является греческая буква Омега, которая выглядит так: Ом . 100 МОм переводится в 100 мегаом.
Другие легко идентифицируемые компоненты включают в себя генераторы (цилиндры или коробки, обычно помеченные X или Y), трансформаторы (T), диоды (D) и реле (обозначенные как K).
Теперь проверьте, есть ли на плате предохранитель. Предохранители часто представляют собой прозрачные или непрозрачные трубки. Затем попытайтесь идентифицировать какие-либо батареи или транзисторы.
Определите разъемы платы. Соединители используются для подключения других печатных плат или для подключения платы к более крупной системе или внешним компонентам.
Существует так много различных типов разъемов, что вы могли бы потратить месяцы на изучение их всех, но наиболее распространенными являются объединительные платы, клеммные колодки, штыревые разъемы и разъемы, которые их принимают, а также разъемы или вилки.
Наконец, определите процессор и другие интегральные схемы на плате. На многих микросхемах есть этикетка или идентификатор производителя и номера детали. Если это так, вы можете найти отдельное техническое описание, чтобы узнать больше о чипе.
Печатные платы: наиболее распространенные компоненты
Хотя на печатных платах может быть много разных установленных компонентов, восемь составляют наиболее распространенные. К ним относятся
. На этой печатной плате показаны общие детали печатных плат, включая конденсаторы, резисторы, транзисторы и диоды. Щелкните правой кнопкой мыши, чтобы открыть полноразмерное изображение, чтобы увидеть метки на поверхности печатной платы.
- Батареи. В большинстве случаев батареи имеют маркировку «BT». Аккумуляторы обеспечивают резервную запасенную энергию.
- Конденсаторы . Обозначается буквой «С». Конденсаторы хранят энергию и измеряются в фарадах. Обычно это указывается в микрофарадах (мкФ) или миллифарадах (мФ).
- Диоды . Маркировка D или CR. Стабилитроны могут иметь маркировку Z или ZD. Они регулируют напряжения.
- Катушки индуктивности . Обозначены буквой L. Катушки индуктивности накапливают энергию в магнитном поле при протекании электрического тока.
- Светодиоды . Светодиоды. Маркированный светодиод. Светодиоды преобразуют электрическую энергию в свет.
- Резисторы . Обозначены R. Резисторы уменьшают протекающий ток, регулируют уровни сигналов, делят напряжения и ограничивают линии передачи. Они также могут рассеивать ватты электроэнергии в виде тепла.
- Переключатели Маркировка S. Вы используете переключатели каждый день. Так же, как выключатель света или зажигание вашего автомобиля, эти выключатели используются для включения или выключения вещей.
- Транзисторы . Маркировка Q. Транзисторы относятся к типу полупроводников. Они усиливают и исправляют сигналы. Почему они представлены буквой Q? Потому что, когда они впервые вошли в обиход (1950-е годы), трансформаторы уже имели обозначение (T).
Кроме того, люди, честно говоря, не знали, будут ли они достаточно полезны, чтобы оставаться рядом. Так что (Q) казался достаточно хорошим.
Обозначения компонентов печатной платы
Многие печатные платы имеют встроенные «обманки». Ссылочные обозначения, напечатанные на поверхности печатной платы, помогут вам идентифицировать каждый компонент.
Вот список некоторых общих позиционных обозначений. Однако важно понимать, что это всего лишь руководство. Некоторые разработчики печатных плат используют только часть этого списка или могут использовать код для другого типа компонента. Вывод: всегда используйте позиционные обозначения как подсказки, а не как определенный идентификатор.
ATT
BT
CB
D
G
J
L
MOV
PS
0006 R
T
TC
TR
VR
XTAL
ZD
Attentunator
Battery
Circuit Breaker
Diode
Oscillator
Jumper or Jack
Inductor
Metal Oxide Varistor
Блок питания
Транзистор
Резистор
Трансформатор
Термопара
Транзистор
Переменный резистор
Кристалл
Zener Diode
BR
C
DC
F
IC
K
LED
LS
P
POT
S or SW
TB
TP
U
X
Z
Мостовой выпрямитель
Конденсатор
Направленный ответвитель
Предохранитель
Интегральная схема
Реле или контактор
Громкоговоритель 90
0
0
0
09000-Светоизлучающий0-диод
0
009
Подключение
Потенциометр
Переключатель
Терминал Блок
Тестовая точка
Интегрированная цепь
Дань
ZenerEde Deode
Печатные платы с печатью: визуально соответствующие детали
Lets Fais’s As: As As Of As.
С этой целью мы заканчиваем этот пост несколькими визуальными читами. Используйте этот список в качестве сравнительной таблицы, когда вы запутались в какой-то конкретной части.
Помните: печатные платы используются десятилетиями. Так же как и их присоединенные компоненты. Технология (и внешний вид этой технологии) значительно изменилась за это время. Сравните эти платы от 1970-е по сравнению с концом 1990-х:
Плата детектора уровня сигнала GE 193x Плата связи GE IS200VCMIh3B
Конденсаторы (C)
Первоначально называемые конденсаторами, конденсаторы хранят энергию в электростатическом поле. Они используются в электронных схемах для блокировки постоянного тока и пропускания переменного тока.
Почему это может быть полезно? Сглаживает выходы блока питания. Он стабилизирует напряжение и поток мощности. И это позволяет настраивать резонансные цепи (например, радиоприемники на определенные частоты).0009 Электролитические конденсаторы Elcap. Используется в CC0 1.
0.
Диоды (D)
Типы диодов. CC By-SA 3.0
Диод — это тип полупроводника. Ток может проходить только в одном направлении. Именно для этого и используются диоды: для управления направлением тока.
Существует много видов диодов. На картинке (справа) вы видите несколько вариантов полупроводниковых диодов, включая мостовой выпрямитель (внизу), сигнальный диод, выпрямитель и стабилитрон. Окрашенная полоса часто указывает, в каком направлении движутся электроны, когда диод проводит ток.
Другие виды диодов включают светодиоды (светоизлучающие диоды) и фотодиоды. Фотодиоды улавливают энергию фотонов света.
Предохранители (F)
Предохранители обеспечивают защиту от перегрузки по току. Они защищают провода и дорожки печатных плат и предохраняют их от плавления или возгорания.
Предохранитель на 250 В защищает эту печатную плату GE DS200DPCBG1AAA Mark V.
Многие предохранители для печатных плат выглядят так же, как в приведенном выше примере: плавкий предохранитель с осевыми выводами в прозрачной или полупрозрачной трубке, установленный немного выше поверхности платы.
Другими вариантами являются предохранители Flat-Pak, тонкопленочные чипы и предохранители с радиальными выводами.
Интегральные схемы (U)
Примеры интегральных схем. CC by 4.o Fairchild RAM 2102, 1976.
Интегральные схемы могут называться по-разному, включая IC, чип или микрочип. Эти небольшие компоненты изготовлены из пластин полупроводникового материала. Они выполняют множество функций, включая микропроцессор, таймер, память, усилитель, счетчик и осциллятор.
В печатной плате GE Mark VI IS200VCMIh3BB используется ряд различных интегральных схем (в центре платы).
Интегральные схемы используются с начала 19 века.60-х, хотя микропроцессор и микроконтроллер появились лишь десятилетие спустя.
Если вам нужна дополнительная информация об микросхемах на вашей плате, найдите таблицы данных, относящиеся к конкретной микросхеме. Вы можете найти их, выполнив поиск информации по номеру детали и другой информации, напечатанной на верхней части чипа.
Джемперы (J)
Различные цвета и типы джемперов.
Контакты перемычки слева. Изображение CC из Википедии.
Перемычки замыкают электрическую цепь, позволяя печатной плате выполнять определенную функцию. Большинство перемычек имеют три контакта. Небольшая пластиковая крышка, называемая блоком перемычек, может в любой момент закрыть два из этих контактов.
Ряд красных перемычек расположен на переднем краю платы Mark IV DS3800DMPK1C1B.
Перемычки регулируют ресурсы устройства и вручную настраивают периферийные устройства.
Обычно на печатных платах встречаются перемычки двух разных типов. Первый — это перемычки типа Берга, о которых мы рассказали выше. Второе — проволочные перемычки. Провода-перемычки имеют штыревые контакты на каждом конце и могут соединять две точки на плате без пайки.
Реле (К)
Реле электронно или электромеханически размыкают и замыкают цепи. Эти устройства могут быть нормально открытыми (НО) или нормально закрытыми (НЗ). Это представляет состояние реле, когда оно обесточено. Подача тока изменит состояние реле.
Реле могут защищать оборудование от перегрузки по току, минимального тока, обратного тока и перегрузок, предотвращая повреждение оборудования.
Катушки индуктивности (L)
Различные виды катушек индуктивности и трансформаторов. CC BY-SA 3.0 FIEK-Компьютерике
Катушка индуктивности, которую иногда называют дросселем или катушкой, представляет собой пассивный компонент с двумя выводами, используемый для накопления энергии в магнитном поле при подаче электрического тока.
Печатные платы используют катушки индуктивности для генерации, фильтрации сигналов, стабилизации тока и подавления электромагнитных помех.
Катушки индуктивности имеют магнитный сердечник (обычно из феррита, иногда из железа), который увеличивает магнитное поле и его индуктивность.
Катушка индуктивности золотого цвета находится на левой стороне GE IS210AEPSG1AFC 9.0002 Металлооксидные варисторы (MOV)
В печатных платах используется несколько типов резисторов, зависящих от напряжения.
Одним из наиболее распространенных является MOV или варистор на основе оксида металла. MOV могут проводить большую мощность в течение короткого промежутка времени. Это делает их отличными для подавления скачков напряжения. Вы найдете MOV, используемые в таких приложениях, как линейная защита, защита от скачков напряжения и защита от переключения.
Плата DS3800NPCS от General Electric оснащена четырьмя MOV (красный, в центре).
Потенциометры (POT) или (R)
Потенциометр — это регулируемый делитель напряжения. Этот компонент представляет собой трехконтактный резистор, который использует вращающийся или скользящий контакт для управления напряжением. До того, как цифровая электроника стала нормой, потенциометры были повсюду, их использовали в радиоприемниках и телевизорах в качестве регуляторов громкости.
К некоторым печатным платам прикреплены лицевые панели. Если вы видите это, ищите ручки с переменной настройкой, установленные на лицевой панели. Эти компоненты почти всегда крепятся к потенциометру на поверхности платы.
Трансформаторы (T)
Трансформаторы обменивают напряжение на ток, не влияя на общую электрическую мощность. Они буквально преобразуют электричество высокого напряжения с малым током в электричество с большим током, электричество низкого напряжения или наоборот.
Плата GE 531X184IPTAEG1 имеет шесть трансформаторов, расположенных вдоль верхнего края.
Почему это важно? С одной стороны, это повышает безопасность. Во-вторых, это позволяет использовать его на местном уровне, «уменьшая» мощность высокого напряжения. Представьте, что случилось бы, например, с вашим компьютером, если бы питание поступало прямо из электросети. Его бы поджарить.
То же самое может произойти, если подать питание непосредственно на хрупкие компоненты печатной платы. Но трансформаторы сохраняют детали в безопасности.
Транзисторы (Q)
Транзисторы имеют три контакта. Они регулируют ток. Они также могут переключать электронные сигналы или усиливать входной сигнал в более мощный выходной сигнал.
Сделанные из кремния, транзисторы, по сути, представляют собой два NP-диода, вставленных спиной к спине.
Эти типы транзисторов часто появляются в виде компонентов на печатных платах.
Транзисторы были изобретены в 1947 в Bell Laboratories. С тех пор транзисторные устройства постепенно уменьшались в размерах. Современные исследователи создали транзисторы атомного масштаба размером с один атом.
Резисторы (R)
Если бы вам нужно было угадать, что делают резисторы, что бы вы сказали? Вы можете предположить что-то вроде «они сопротивляются». И вы будете правы.
Резисторы сопротивления току. Это буквально их работа. Это пассивные двухполюсные компоненты. Сопротивляя току, резисторы защищают другие компоненты от проблем с перегрузкой по току, таких как чрезмерное накопление тепла.
Резистор используется для уменьшения тока или разделения напряжения. Он также может терминировать линии передачи и регулировать уровни сигнала.
Чтобы узнать больше о резисторах, ознакомьтесь с нашим кратким руководством по цветовой кодировке резисторов.
Он расскажет вам больше об этих компонентах.
Как найти дополнительную информацию о компонентах вашей печатной платы
Если вам все еще нужна дополнительная информация о ваших печатных платах после этого руководства, часто есть другие доступные ресурсы.
Если вы работаете с промышленной печатной платой, найдите соответствующее руководство. Даже к более старому оборудованию часто есть руководства, загруженные где-то в Интернете. Найдите их, используя строку поиска «Inurl:pdf manual» и ваш поисковый запрос. Например, если бы я хотел найти руководство для платы GE IS200DSPX, я бы вбил в Google «Inurl:pdf manual GE IS200DSPX». Вы будете удивлены тем, как часто вы будете получать результаты таким образом.
Вы можете использовать ту же строку поиска для поиска спецификаций для отдельных частей печатной платы. Введите «Inurl: pdf datasheet», а затем искомый запрос. На многих компонентах их производитель и индивидуальный номер детали напечатаны сверху или сбоку.