Обозначение на плате стабилитрона: Nothing found for Ustrojstva Markirovka Stabilitronov %23H2_1

Зарубежные буквенные обозначения электронных комплектующих [Мозаика системного администрирования]

Источник: Публикация на pikabu.ru: Перечень буквенных обозначений радиодеталей на схемах, Файл: Зарубежные (из разных источников; с переводом)

ASeparable assembly or sub-assembly (e.g. printed circuit assembly)Отдельный модуль или устройство
AEAerialАнтенна
ANTAntennaАнтенна
ARAmplifier (other than rotating), repeaterУсилитель, повторитель
ATAttenuator, inductive termination, resistive terminationАттенюатор, индуктивная оконечная нагрузка, резистивная оконечная нагрузка
BBead FerriteФерритовый фильтр
BBatteryБатарея
BMotorЭлектродвигатель
BRBridge rectifierДиодный мост
BTBatteryБатарея
BTPhotovoltaic transducer, solar cellФотогальванический преобразователь, солнечная батарея
CCapacitorКонденсатор
CBCircuit BoardМонтажная плата
CBCircuit breakerАвтоматический выключатель
CNCapacitor networkКонденсаторная сборка
CPConnector adapter, junction (coaxial or waveguide)Переходник, cоединение (коаксиала или волновода)
CRDiode (TVS, thyristor, Zener, asymmetrical varistor, photodiode, stabistor, varactor
overvoltage absorber)
Диод (лавинный диод, тиристор, стабилитрон, варистор с асимметричной ВАХ, фотодиод, стабистор, варактор, поглотитель перенапряжения)
CRTCathode ray tubeЭлектронно-лучевая трубка
DDiode (LED, TVS, thyristor, Zener, asymmetrical varistor, photodiode, stabistor, varactor
overvoltage absorber)
Диод (светодиод, лавинный диод, тиристор, стабилитрон, варистор с асимметричной ВАХ, фотодиод, стабистор, варактор, поглотитель перенапряжения)
DCDirectional couplerНаправленный соединитель
DLDelay lineЛиния задержки
DSDisplay, alphanumeric display device, annunciator, signal lampДисплей, алфавитно-цифровой индикатор, световой индикатор, сигнальная лампа
DSPDigital signal processorЦифровой сигнальный процессор
EElectrical contact, antenna, binding post, cable termination, electrical contact brush, electrical shield, ferrite bead rings, hall element, insulator, lightning arrester, magnetic core, permanent magnet, short circuit (termination), telephone protector, vibrating reed, miscellaneous electrical partЭлектрический контакт, электрод, антенна, клемма, кабельный наконечник, электрическая щётка, электрический экран, ферритовое кольцо, элемент на эффекте холла, изолятор, искровой разрядник, магнитный сердечник, постоянный магнит, перемычка, громполоса, вибрирующий пружинный контакт, прочие радиодетали
EPEarphoneГоловные телефоны
EQEqualizerЭквалайзер
FFuseПредохранитель
FBFerrite beadФерритовый фильтр
FDFiducialТочка выравнивания
FEBFerrite beadФерритовый фильтр
FETField-effect transistorПолевой транзистор
FLFilterФильтр
GGenerator or oscillator, electronic chopper, interrupter vibrator, rotating amplifier, telephone magnetoЭлектрогенератор или осциллятор, электронный чоппер, вибропреобразователь, электромашинный усилитель, телефонный индуктор
GDTGas-discharge lampГазоразрядная лампа
GNGeneral networkОбщая сеть
HHardware, e. g., screws, nuts, washersКрепёжные элементы (винты, гайки, шайбы)
HPHydraulic partДеталь гидравлики
HRHeater, heating lamp, heating resistor, infrared lamp, thermomechanical transducerНагревательный элемент, нагревательная лампа, нагревательный резистор, инфракрасная лампа, термомеханический преобразователь
HSHandset, operator’s setТелефонная трубка, телефонная гарнитура
HTEarphoneГоловной телефон, наушники
HYCirculator or directional couplerЦиркулятор или направленный ответвитель
ILampЛампа накаливания
ICIntegrated CircuitМикросхема, интегральная схема
JJack, Receptacle, Terminal Strip, connectorГнездо, розетка, патрон, клеммник, коннектор
JWire link, jumperДжампер
JJumper chipРезистор нулевого сопротивления (перемычка или SMD-предохранитель)
JFETJunction gate field-effect transistorОднопереходный полевой транзистор
JPJumper (Link)Джампер
KRelay, contactorРеле, контактор, электромагнитный пускатель
LInductor, choke, electrical solenoid, field winding, generator field, lamp ballast, motor field, reactorКатушка индуктивности, дроссель, соленоид, обмотка электромагнита, обмотка возбуждения генератора, индуктивный балласт, обмотка возбуждения электродвигателя, реактивная катушка
LALightning arresterМолниезащита
LCDLiquid-crystal displayЖК-дисплей
LDRLight Dependent Resistor,Фоторезистор
LEDLight-emitting diodeСветодиод
LSLoudspeaker or buzzer, audible alarm, electric bell, electric horn, siren, telephone ringer, telephone sounderГромкоговоритель или зуммер, звуковая сигнализация, электрический колокол, ревун, сирена, телефонный звонок, телефонный капсюль
MMotorЭлектродвигатель
MMeter, electric timer, electrical counter, oscilloscope, position indicator, thermometerИзмеритель (обобщённый), электрический таймер, электрический счётчик, осциллограф, датчик положения, термометр
MCBMiniature circuit breakerМиниатюрный автоматический выключатель
MGDynamotor, motor-generatorДинамотор, моторгенератор
MICMicrophoneМикрофон
MKMicrophoneМикрофон
MOSFETMetal-oxide-semiconductor field-effect transistorМОП-транзистор
MOVMetal oxide varistorВаристор на базе оксида металла
MPMechanical part (including screws and fasteners)Механическая деталь (в том числе крепёж)
MTAccelerometerАкселерометр
NNeon LampНеоновая лампа
NENeon LampНеоновая лампа
OPOperational amplifierОперационный усилитель
PPlugШтекер, штепсельная вилка
PCPhotocellФотоэлемент
PCBPrinted circuit boardПечатная плата
PHEarphoneГоловные телефоны
PLCProgrammable logic controllerПрограммируемый логический контроллер
PSPower supply, кectifier (complete power-supply assembly)Вторичный источник электропитания, выпрямитель тока
PUPickup, headЗвукосниматель, передающая телевизионная трубка, магнитная головка
QTransistor, semiconductor controlled rectifier, semiconductor controlled switch, phototransistor (3 terminal), thyratron (semiconductor device)Транзистор, полупроводниковый преобразователь, полупроводниковый ключ, фототранзистор трёхконтактный, тиратрон полупроводниковый
RResistor, function potentiometer, instrument shunt, magnetoresistor, potentiometer, relay shunt, rheostatРезистор, функциональный потенциометр, измерительный шунт, магниторезистор, потенциометр, шунт обмотки реле, реостат
RERadio receiverРадиоприёмное устройство
RFCRadio frequency chokeВысокочастотный дроссель
RJResistor JointРезисторная сборка
RLARelayРеле
RNResistor NetworkРезисторная сборка
RTThermistor, ballast lamp, ballast tube, current-regulating resistor, thermal resistorТерморезистор, термистор, электровакуумный стабилизатор тока, газоразрядный стабилитрон, токорегулирующий резистор, терморезистор
RVVaristor, symmetrical varistor, voltage-sensitive resistorВаристор, варистор с симметричной вах, резистор управляемый напряжением
RYRelayРеле
SSwitch, contactor (manually, mechanically or thermally operated), flasher (circuit interrupter), governor (electrical contact type), telegraph key, telephone dial, thermal cutout (circuit interrupter) (not visual), thermostatПереключатель, выключатель, кнопка, пускатель (ручной, механический, термический), прерыватель цепи, регулятор контактного типа, телеграфный ключ, номеронабиратель, термовыключатель, тепловое реле
SCRSilicon controlled rectifierОднонаправленный управляемый тиристор
SPKSpeakerГромкоговоритель
SQElectric squibЭлектровоспламенитель
SRRotating contact, slip ringВращающийся контакт, контактное кольцо
SUSSilicon unilateral switchПороговый тринистор
SWSwitchПереключатель, выключатель, кнопка
TTransformerТрансформатор
TBConnecting strip, test blockКлеммная колодка, тест-блок
TCThermocoupleТермопара
TFTThin-film-transistor displayTFT-дисплей
THThermistorТерморезистор, термистор
TPTest pointКонтрольная (измерительная) точка
TRTransistorТранзистор
TRRadio transmitterРадиопередатчик
TUNTunerТюнер
UIntegrated CircuitМикросхема, интегральная схема
UPhoton-coupled isolatorОптопара
VVacuum tube, valve, ionization chamber, klystron, magnetron, phototube, resonator tube (cavity type), solion, thyratron (electron tube), traveling-wave tube, voltage regulator (electron tube)Радиолампа, ионизационная камера, клистрон, магнетрон, вакуумный фотоэлемент, полостной вакуумный резонатор, хемотронный датчик, тиратрон (радиолампа), лампа бегущей волны, регулятор напряжения (радиолампа)
VCVariable capacitorПеременный конденсатор
VDRVoltage Dependent ResistorВаристор; резистор, управляемый напряжением
VFDVacuum fluorescent displayВакуумно-люминесцентный индикатор
VLSIVery-large-scale integrationСБИС — сверхбольшая интегральная схема
VRVariable resistor (potentiometer or rheostat)Переменный резистор (потенциометр или реостат)
VRVoltage regulatorРегулятор (стабилизатор) напряжения
VTVoltage transformerТрансформатор напряжения
WWire, bus bar, cable, waveguideПровод, шина, кабель, волновод
WTWiring tiepointТочка примыкания
XSolar cellСолнечный элемент
XOther convertersПреобразователи, не включаемые в другие категории
XCeramic resonatorКерамический резонатор, кварцевый генератор
X_Socket connector for another itemРазъём для элементов. Вторая буква соответствует подключаемому элементу
XASocket connector for printed circuit assembly connectorРазъём для печатных плат
XDSSocket connector for light socketРазъём для патрона
XFSocket connector for fuse holderРазъём для предохранителя
XLLampholderЛамповый патрон
XMERTransformerТрасформатор
XTALCrystalКварцевый генератор
XUSocket connector for integrated circuit connectorРазъём для микросхемы
XVSocket connector for vacuum tube socketРазъём для радиолампы
YCrystal or oscillatorКварцевый резонатор или осциллятор
ZZener diodeСтабилитрон
ZBalun, coupled tunable resonator, directional phase shifter (non-reciprocal), gyrator, mode suppressor, multistub tuner, phase shifter, resonator (tuned cavity)Симметрирующий трансформатор, связанный перестраиваемый резонатор, направленный фазовращатель (не обратный), гиратор, фильтр нежелательных типов волн, многошлейфовый согласователь, фазовращатель, объёмный резонатор
ZDZener DiodeСтабилитрон
ZSCTZero sequence current transformer, also called a window-type current transformerТрансформатор тока нулевой последовательности, трансформатор тока с проёмом для первичной цепи
Vddплюс(D — drain, сток)
Vssминус(S — source, исток)

rones. su: Позиционные обозначения элементов на схемах

arduino — В чем разница между Vcc, Vdd, Vee и Vss — Stack Overflow на русском

Стандарт,
Пайка,
Сделай сам,
Электрические схемы,
Печатные платы

D6 SMD МАРКИРОВКА

Перейти к содержимому

Справочник по SMD деталям

Собраны справочные данные по SMD кодировке радиодеталей поверхностного монтажа, с начальными символами обозначения D6. Краткая таблица расшифровки назначения и технических характеристик (различные стабилитроны, супервизоры, микроконтроллеры, драйверы, стабилизаторы и другие чип детали). Указаны стандартные варианты обозначения, но так как постоянно появляются всё новые, приведенный справочник иногда пополняться. Полная таблица СМД деталей по ссылке

код

наименование

функция

корпус

производитель

D6

AZ23-C4V3

2 стабилитрона ОА 300 мВт, 4,3В

sot23

GenSemi

D6

BC847CM

npn: 45 В/100 мА

sot883

NXP

D6

BCW33R

npn: 32В/100 мА h31=420…800

sot23r

Diodes

D6

BZX384-C5V6

стабилитрон 300 мВт: 5,6В ±5%

sod323

Nexperia

D6

BZX884-C27

стабилитрон 250 мВт: 27В 5%

sod882

NXP

D6

MMBC1622D6

npn: 35 В/100 мА h31=200…400

sot23

Motorola

D6

PMD5003K

драйвер МОП-транзистора

sot346/sc59a/to236

NXP

D6

PEMD6

«цифровые» npn+pnp: 50В/100 мА 4,7k/-

sot666

NXP

D6*

SN74LVC1G175DCK/DRY

одновентильный D-триггер

sc70-6/son6

TI

D60

AD5612AKSZ

12р ЦАП i²c

sc70-6

ADI

D63

DAC6311IDCK

10р ЦАП spi

sс70-6

TI

D6B

AD5312BRM

сдвоенный 10р ЦАП

usoic-10

ADI

D6Q

AD5160BRJZ5

«цифровой» потенциометр: 5 кОм, 256 поз. , SPI/I²C

sot23-8

ADI

D6p

BFU730F

npn SiGe: 5,8 ГГц 2,8В/30 мА

sot343f

NXP

D6t

BFU730F

npn SiGe: 5,8 ГГц 2,8В/30 мА

sot343f

NXP

D6W

BFU730F

npn SiGe: 5,8 ГГц 2,8В/30 мА

sot343f

NXP

 

При расшифровке кодировок элементов учитывайте, что при маркировке символы «О» и «0» (ноль и круглая буква) считаются одинаковыми. А тут можете посмотреть разного типа размеры корпусов SMD

Стабилитрон: история и работа в печатных платах

Что такое стабилитрон?

 

A Стабилитрон — это специальный тип диода, предназначенный для надежного протекания тока «в обратном направлении» при достижении определенного заданного обратного напряжения, известного как Напряжение Зенера . Это кремниевое полупроводниковое устройство, которое позволяет току течь в прямом или обратном направлении.

Стабилитрон

 

Зенеровские диоды производятся с большим разнообразием зенеровских напряжений, а некоторые даже с переменным напряжением. Некоторые диоды Зенера имеют острый, сильно легированный p-n переход с низким напряжением Зенера, и в этом случае обратная проводимость возникает из-за квантового туннелирования электронов в коротком пространстве между p- и n-областями — это известно как эффект Зенера , после Кларенс Зенер. Диоды с более высоким напряжением Зенера имеют более постепенный переход, и их режим работы также включает лавинный пробой. В стабилитронах присутствуют оба типа пробоя, при этом эффект Зенера преобладает при более низких напряжениях, а лавинный пробой — при более высоких напряжениях.

Стабилитроны широко используются в электронном оборудовании всех видов и являются одним из основных строительных блоков электронных схем. Они используются для создания маломощных стабилизированных шин питания из более высокого напряжения и для обеспечения опорного напряжения для цепей, особенно стабилизированных источников питания. Они также используются для защиты цепей от перенапряжения, особенно электростатического разряда (ЭСР).

 

История

 

Прибор назван в честь американского физика Кларенс Зенер , впервые описавший эффект Зенера в 1934 году в своих преимущественно теоретических исследованиях нарушения электрических свойств изолятора. Позже его работа привела к реализации эффекта в Bell Labs в виде электронного устройства, диода Зенера.

 

Эксплуатация

 

Обычный твердотельный диод пропускает значительный ток, если его обратное смещение превышает его обратное напряжение пробоя. Когда напряжение пробоя обратного смещения превышается, обычный диод подвергается сильному току из-за лавинного пробоя. Если этот ток не ограничен схемой, диод может быть необратимо поврежден из-за перегрева. Диод Зенера обладает почти такими же свойствами, за исключением того, что устройство специально разработано так, чтобы иметь пониженное напряжение пробоя, так называемое напряжение Зенера. В отличие от обычного устройства, стабилитрон с обратным смещением демонстрирует управляемый пробой и позволяет току поддерживать напряжение на стабилитроне близким к напряжению пробоя Зенера. Например, диод идеально подходит для таких приложений, как генерация опорного напряжения (например, для усилительного каскада или в качестве стабилизатора напряжения для слаботочных приложений).0009

Другим механизмом, производящим аналогичный эффект, является лавинный эффект, как в лавинном диоде. Два типа диодов фактически сконструированы одинаково, и в диодах этого типа присутствуют оба эффекта. В кремниевых диодах примерно до 5,6 вольт эффект Зенера является преобладающим эффектом и показывает заметный отрицательный температурный коэффициент. Выше 5,6 вольт лавинный эффект становится преобладающим и имеет положительный температурный коэффициент.

В диоде на 5,6 В оба эффекта проявляются вместе, а их температурные коэффициенты почти компенсируют друг друга, поэтому диод на 5,6 В полезен в приложениях, критичных к температуре. Альтернативой, которая используется для источников опорного напряжения, которые должны быть очень стабильными в течение длительных периодов времени, является использование стабилитрона с температурным коэффициентом (TC) 2 мВ/9.0053 или С (напряжение пробоя 6,2-6,3В), соединенных последовательно с прямосмещенным кремниевым диодом (или транзисторным переходом B-E), изготовленным на той же микросхеме. Диод с прямым смещением имеет температурный коэффициент – 2 мВ/ o C, что приводит к нейтрализации термопар.

Современные технологии производства позволяют производить устройства с напряжением ниже 5,6 В с незначительными температурными коэффициентами, но по мере появления устройств с более высоким напряжением температурный коэффициент резко возрастает. Диод на 75 В имеет коэффициент в 10 раз больше, чем диод на 12 В.

Стабилитроны и лавинные диоды, что касается напряжения пробоя, обычно продаются под общим названием стабилитрон. При напряжении 5,6 В, где преобладает эффект Зенера, кривая ВАХ вблизи пробоя гораздо более округлая, что требует большей осторожности при выборе условий смещения. Кривая IV для стабилитронов выше 5,6 В (с преобладанием лавины) намного острее при пробое.

Выполнение правильных стратегий напряжения Зенера для всех конструкций ваших печатных плат (PCB) обеспечит вам различные операции. Вы ищете производителя печатных плат, сборщика или дизайнерскую компанию, чтобы закончить вашу работу с OEM-производителем электроники? MADPCB — ваш лучший выбор, свяжитесь с нами сегодня, чтобы получить быстрое предложение!

Как идентифицировать компоненты на печатных платах

Определить все компоненты на печатных платах может быть сложно.

Если вы когда-либо пытались работать с собственными печатными платами или печатными платами, вы, возможно, испытывали разочарование, глядя на деталь и не зная точно, что это такое. После работы с тысячами печатных плат мы понимаем.

К счастью, есть ресурсы, которые могут помочь. На самом деле их много. Но они разбросаны повсюду. И многие из лучших даже больше не доступны в Интернете, если вы не знаете, как использовать некоторые специальные инструменты (Wayback Machine вам в помощь!)

Но вместо того, чтобы жаловаться на такое положение дел, мы решили создать собственный учебник, чтобы исправить это. Бонус: вы тоже выигрываете.

Вот наш учебник по компонентам печатной платы с большим количеством информации и изображений, которые помогут вам идентифицировать эти отдельные части.

Печатные платы: основы

Печатные платы обычно изготавливаются из многослойного композитного материала. Эта непроводящая подложка сжимает медные схемы, которые фактически составляют схемы, в честь которых названы платы.

субстрат: /ˈsəbˌstrāt/; нижележащее вещество или слой.

Mudcoders.com

Эти медные цепи, также известные как сигнальные дорожки, электрически соединяют и механически поддерживают другие компоненты, установленные на плате.

Почему печатные платы зеленые? На самом деле это паяльная маска, которая видна сквозь стекловолоконную сердцевину платы. Припой защищает медные цепи и предотвращает короткие замыкания. Зеленый припой придает оттенок стеклу, защищающему его.

паяльная маска: /ˈsädər mask/; защитный слой жидкого фотолака, нанесенный на верхнюю и нижнюю часть печатных плат для защиты меди от окисления и пыли.

eurocircuits.com

Пошаговая инструкция по идентификации компонентов

Как и большинство вещей в жизни, идентификация компонентов становится проще, если разбить задачу на более мелкие части.

Идентификация платы Использование

Сначала попытайтесь идентифицировать всю плату. Для чего это используется? Это материнская плата, дочерняя плата или она выполняет определенную задачу? Некоторые доски отмечены кодами, которые помогут в этом процессе. Например, плата DMCB, изображенная ниже, имеет размер 9. 0003 D OS M ain C управление B плата для системы GE Mark V. Многие аббревиатуры советов директоров GE похожи на это. Они могут помочь вам разобраться с приложением платы.

Материнская плата: печатная плата с основными компонентами и разъемами для установки других печатных плат. Дочерняя плата: плата расширения, которая подключается к материнской плате для доступа к процессору и памяти.

AX Control

Эта печатная плата GE DS200DMCBG1ABB функционирует как D OS M ain C управление B весло или DMCB.

Определите детали

Затем определите пассивные компоненты, такие как конденсаторы и катушки индуктивности. Не волнуйтесь, позже в этом посте будут фотографии. Затем ищите резисторы и потенциометры. Обычно они имеют метку измерения сопротивления. Символом ома является греческая буква Омега, которая выглядит так: Ом . 100 МОм переводится в 100 мегаом.

Другие легко идентифицируемые компоненты включают в себя генераторы (цилиндры или коробки, обычно помеченные X или Y), трансформаторы (T), диоды (D) и реле (обозначенные как K).

Теперь проверьте, есть ли на плате предохранитель. Предохранители часто представляют собой прозрачные или непрозрачные трубки. Затем попытайтесь идентифицировать какие-либо батареи или транзисторы.

Определите разъемы платы. Соединители используются для подключения других печатных плат или для подключения платы к более крупной системе или внешним компонентам.

Существует так много различных типов разъемов, что вы могли бы потратить месяцы на изучение их всех, но наиболее распространенными являются объединительные платы, клеммные колодки, штыревые разъемы и разъемы, которые их принимают, а также разъемы или вилки.

Наконец, определите процессор и другие интегральные схемы на плате. На многих микросхемах есть этикетка или идентификатор производителя и номера детали. Если это так, вы можете найти отдельное техническое описание, чтобы узнать больше о чипе.

Печатные платы: наиболее распространенные компоненты

Хотя на печатных платах может быть много разных установленных компонентов, восемь составляют наиболее распространенные. К ним относятся

. На этой печатной плате показаны общие детали печатных плат, включая конденсаторы, резисторы, транзисторы и диоды. Щелкните правой кнопкой мыши, чтобы открыть полноразмерное изображение, чтобы увидеть метки на поверхности печатной платы.

  • Батареи. В большинстве случаев батареи имеют маркировку «BT». Аккумуляторы обеспечивают резервную запасенную энергию.
  • Конденсаторы . Обозначается буквой «С». Конденсаторы хранят энергию и измеряются в фарадах. Обычно это указывается в микрофарадах (мкФ) или миллифарадах (мФ).
  • Диоды . Маркировка D или CR. Стабилитроны могут иметь маркировку Z или ZD. Они регулируют напряжения.
  • Катушки индуктивности . Обозначены буквой L. Катушки индуктивности накапливают энергию в магнитном поле при протекании электрического тока.
  • Светодиоды . Светодиоды. Маркированный светодиод. Светодиоды преобразуют электрическую энергию в свет.
  • Резисторы . Обозначены R. Резисторы уменьшают протекающий ток, регулируют уровни сигналов, делят напряжения и ограничивают линии передачи. Они также могут рассеивать ватты электроэнергии в виде тепла.
  • Переключатели Маркировка S. Вы используете переключатели каждый день. Так же, как выключатель света или зажигание вашего автомобиля, эти выключатели используются для включения или выключения вещей.
  • Транзисторы . Маркировка Q. Транзисторы относятся к типу полупроводников. Они усиливают и исправляют сигналы. Почему они представлены буквой Q? Потому что, когда они впервые вошли в обиход (1950-е годы), трансформаторы уже имели обозначение (T). Кроме того, люди, честно говоря, не знали, будут ли они достаточно полезны, чтобы оставаться рядом. Так что (Q) казался достаточно хорошим.

Обозначения компонентов печатной платы

Многие печатные платы имеют встроенные «обманки». Ссылочные обозначения, напечатанные на поверхности печатной платы, помогут вам идентифицировать каждый компонент.

Вот список некоторых общих позиционных обозначений. Однако важно понимать, что это всего лишь руководство. Некоторые разработчики печатных плат используют только часть этого списка или могут использовать код для другого типа компонента. Вывод: всегда используйте позиционные обозначения как подсказки, а не как определенный идентификатор.

ATT

BT

CB

D

G

J

L

MOV

PS

0006 R

T

TC

TR

VR

XTAL

ZD

Attentunator

Battery

Circuit Breaker

Diode

Oscillator

Jumper or Jack

Inductor

Metal Oxide Varistor

Блок питания

Транзистор

Резистор

Трансформатор

Термопара

Транзистор

Переменный резистор

Кристалл

Zener Diode

BR

C

DC

F

IC

K

LED

LS

P

POT

S or SW

TB

TP

U

X

Z

Мостовой выпрямитель

Конденсатор

Направленный ответвитель

Предохранитель

Интегральная схема

Реле или контактор

Громкоговоритель 90

0

0

0

09000-Светоизлучающий0-диод

0

009

Подключение

Потенциометр

Переключатель

Терминал Блок

Тестовая точка

Интегрированная цепь

Дань

ZenerEde Deode

Печатные платы с печатью: визуально соответствующие детали

Lets Fais’s As: As As Of As. С этой целью мы заканчиваем этот пост несколькими визуальными читами. Используйте этот список в качестве сравнительной таблицы, когда вы запутались в какой-то конкретной части.

Помните: печатные платы используются десятилетиями. Так же как и их присоединенные компоненты. Технология (и внешний вид этой технологии) значительно изменилась за это время. Сравните эти платы от 1970-е по сравнению с концом 1990-х:

Плата детектора уровня сигнала GE 193x Плата связи GE IS200VCMIh3B

Конденсаторы (C)

Первоначально называемые конденсаторами, конденсаторы хранят энергию в электростатическом поле. Они используются в электронных схемах для блокировки постоянного тока и пропускания переменного тока.

Почему это может быть полезно? Сглаживает выходы блока питания. Он стабилизирует напряжение и поток мощности. И это позволяет настраивать резонансные цепи (например, радиоприемники на определенные частоты).0009 Электролитические конденсаторы Elcap. Используется в CC0 1. 0.

Диоды (D)

Типы диодов. CC By-SA 3.0

Диод — это тип полупроводника. Ток может проходить только в одном направлении. Именно для этого и используются диоды: для управления направлением тока.

Существует много видов диодов. На картинке (справа) вы видите несколько вариантов полупроводниковых диодов, включая мостовой выпрямитель (внизу), сигнальный диод, выпрямитель и стабилитрон. Окрашенная полоса часто указывает, в каком направлении движутся электроны, когда диод проводит ток.

Другие виды диодов включают светодиоды (светоизлучающие диоды) и фотодиоды. Фотодиоды улавливают энергию фотонов света.

Предохранители (F)

Предохранители обеспечивают защиту от перегрузки по току. Они защищают провода и дорожки печатных плат и предохраняют их от плавления или возгорания.

Предохранитель на 250 В защищает эту печатную плату GE DS200DPCBG1AAA Mark V.

Многие предохранители для печатных плат выглядят так же, как в приведенном выше примере: плавкий предохранитель с осевыми выводами в прозрачной или полупрозрачной трубке, установленный немного выше поверхности платы. Другими вариантами являются предохранители Flat-Pak, тонкопленочные чипы и предохранители с радиальными выводами.

Интегральные схемы (U)

Примеры интегральных схем. CC by 4.o Fairchild RAM 2102, 1976.

Интегральные схемы могут называться по-разному, включая IC, чип или микрочип. Эти небольшие компоненты изготовлены из пластин полупроводникового материала. Они выполняют множество функций, включая микропроцессор, таймер, память, усилитель, счетчик и осциллятор.

В печатной плате GE Mark VI IS200VCMIh3BB используется ряд различных интегральных схем (в центре платы).

Интегральные схемы используются с начала 19 века.60-х, хотя микропроцессор и микроконтроллер появились лишь десятилетие спустя.

Если вам нужна дополнительная информация об микросхемах на вашей плате, найдите таблицы данных, относящиеся к конкретной микросхеме. Вы можете найти их, выполнив поиск информации по номеру детали и другой информации, напечатанной на верхней части чипа.

Джемперы (J)

Различные цвета и типы джемперов. Контакты перемычки слева. Изображение CC из Википедии.

Перемычки замыкают электрическую цепь, позволяя печатной плате выполнять определенную функцию. Большинство перемычек имеют три контакта. Небольшая пластиковая крышка, называемая блоком перемычек, может в любой момент закрыть два из этих контактов.

Ряд красных перемычек расположен на переднем краю платы Mark IV DS3800DMPK1C1B.

Перемычки регулируют ресурсы устройства и вручную настраивают периферийные устройства.

Обычно на печатных платах встречаются перемычки двух разных типов. Первый — это перемычки типа Берга, о которых мы рассказали выше. Второе — проволочные перемычки. Провода-перемычки имеют штыревые контакты на каждом конце и могут соединять две точки на плате без пайки.

Реле (К)

Реле электронно или электромеханически размыкают и замыкают цепи. Эти устройства могут быть нормально открытыми (НО) или нормально закрытыми (НЗ). Это представляет состояние реле, когда оно обесточено. Подача тока изменит состояние реле.

Реле могут защищать оборудование от перегрузки по току, минимального тока, обратного тока и перегрузок, предотвращая повреждение оборудования.

Катушки индуктивности (L)

Различные виды катушек индуктивности и трансформаторов. CC BY-SA 3.0 FIEK-Компьютерике

Катушка индуктивности, которую иногда называют дросселем или катушкой, представляет собой пассивный компонент с двумя выводами, используемый для накопления энергии в магнитном поле при подаче электрического тока.

Печатные платы используют катушки индуктивности для генерации, фильтрации сигналов, стабилизации тока и подавления электромагнитных помех.

Катушки индуктивности имеют магнитный сердечник (обычно из феррита, иногда из железа), который увеличивает магнитное поле и его индуктивность.

Катушка индуктивности золотого цвета находится на левой стороне GE IS210AEPSG1AFC 9.0002 Металлооксидные варисторы (MOV)

В печатных платах используется несколько типов резисторов, зависящих от напряжения. Одним из наиболее распространенных является MOV или варистор на основе оксида металла. MOV могут проводить большую мощность в течение короткого промежутка времени. Это делает их отличными для подавления скачков напряжения. Вы найдете MOV, используемые в таких приложениях, как линейная защита, защита от скачков напряжения и защита от переключения.

Плата DS3800NPCS от General Electric оснащена четырьмя MOV (красный, в центре).

Потенциометры (POT) или (R)

Потенциометр — это регулируемый делитель напряжения. Этот компонент представляет собой трехконтактный резистор, который использует вращающийся или скользящий контакт для управления напряжением. До того, как цифровая электроника стала нормой, потенциометры были повсюду, их использовали в радиоприемниках и телевизорах в качестве регуляторов громкости.

К некоторым печатным платам прикреплены лицевые панели. Если вы видите это, ищите ручки с переменной настройкой, установленные на лицевой панели. Эти компоненты почти всегда крепятся к потенциометру на поверхности платы.

Трансформаторы (T)

Трансформаторы обменивают напряжение на ток, не влияя на общую электрическую мощность. Они буквально преобразуют электричество высокого напряжения с малым током в электричество с большим током, электричество низкого напряжения или наоборот.

Плата GE 531X184IPTAEG1 имеет шесть трансформаторов, расположенных вдоль верхнего края.

Почему это важно? С одной стороны, это повышает безопасность. Во-вторых, это позволяет использовать его на местном уровне, «уменьшая» мощность высокого напряжения. Представьте, что случилось бы, например, с вашим компьютером, если бы питание поступало прямо из электросети. Его бы поджарить.

То же самое может произойти, если подать питание непосредственно на хрупкие компоненты печатной платы. Но трансформаторы сохраняют детали в безопасности.

Транзисторы (Q)

Транзисторы имеют три контакта. Они регулируют ток. Они также могут переключать электронные сигналы или усиливать входной сигнал в более мощный выходной сигнал. Сделанные из кремния, транзисторы, по сути, представляют собой два NP-диода, вставленных спиной к спине.

Эти типы транзисторов часто появляются в виде компонентов на печатных платах.

Транзисторы были изобретены в 1947 в Bell Laboratories. С тех пор транзисторные устройства постепенно уменьшались в размерах. Современные исследователи создали транзисторы атомного масштаба размером с один атом.

Резисторы (R)

Если бы вам нужно было угадать, что делают резисторы, что бы вы сказали? Вы можете предположить что-то вроде «они сопротивляются». И вы будете правы.

Резисторы сопротивления току. Это буквально их работа. Это пассивные двухполюсные компоненты. Сопротивляя току, резисторы защищают другие компоненты от проблем с перегрузкой по току, таких как чрезмерное накопление тепла.

Резистор используется для уменьшения тока или разделения напряжения. Он также может терминировать линии передачи и регулировать уровни сигнала.

Чтобы узнать больше о резисторах, ознакомьтесь с нашим кратким руководством по цветовой кодировке резисторов. Он расскажет вам больше об этих компонентах.

Как найти дополнительную информацию о компонентах вашей печатной платы

Если вам все еще нужна дополнительная информация о ваших печатных платах после этого руководства, часто есть другие доступные ресурсы.

Если вы работаете с промышленной печатной платой, найдите соответствующее руководство. Даже к более старому оборудованию часто есть руководства, загруженные где-то в Интернете. Найдите их, используя строку поиска «Inurl:pdf manual» и ваш поисковый запрос. Например, если бы я хотел найти руководство для платы GE IS200DSPX, я бы вбил в Google «Inurl:pdf manual GE IS200DSPX». Вы будете удивлены тем, как часто вы будете получать результаты таким образом.

Вы можете использовать ту же строку поиска для поиска спецификаций для отдельных частей печатной платы. Введите «Inurl: pdf datasheet», а затем искомый запрос. На многих компонентах их производитель и индивидуальный номер детали напечатаны сверху или сбоку.