интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Онлайн журнал электрика. Метод контурных токов для чайников


Метод контурных токов

Метод контурных токов является одним из основных методов расчета сложных электрических цепей, которым широко пользуются на практике.

При расчете методом контурных токов полагают, что в каждом независимом контуре течет свой контурный ток. Уравнения составляют относительно контурных токов, после чего определяют токи ветвей через контурные токи.

Таким образом, метод контурных токов можно определить как метод расчета, в котором за искомые принимают контурные токи. Число неизвестных в этом методе равно числу уравнений, которые необходимо было бы составить для схемы по II закону Кирхгофа, т.е. . Следовательно, этот метод более экономичен при вычислениях, чем метод уравнений Кирхгофа.

Разработаем алгоритм расчета цепей методом контурных токов на примере приведенной на рис. 2.3. схемы, в которой три независимых контура. Предположим, что в каждом контуре протекает свой контурный ток в указанном направлении. Для каждого из контуров составим уравнения по II закону Кирхгофа. При этом учтем, что по смежной ветви для контурных токов и(ветвьbd, содержащая сопротивление ) протекает ток, по смежной ветви для контурных токови(ветвьdс, содержащая сопротивление ) протекает ток, по смежной ветви для контурных токови(ветвьаd, содержащая сопротивление ) протекает ток.

Тогда уравнения по II закону Кирхгофа для каждого контура принимают следующий вид:

Сгруппируем слагаемые при одноименных токах:

(2.5)

Введем обозначения:

В окончательном виде система уравнений для контурных токов приобретает следующий вид:

(2.6)

в матричной форме

(2.7)

Собственное сопротивление контура (Rii) представляет собой арифметическую сумму сопротивлений всех потребителей, находящихся в i-ом контуре.

Общее сопротивление контура (Rij = Rji) представляет собой алгебраическую сумму сопротивлений потребителей ветви (нескольких ветвей), одновременно принадлежащих i-ому и j-ому контурам. В эту сумму сопротивление входит со знаком «+», если контурные токи протекают через данное сопротивление в одном направлении (согласно), и знак «–», если они протекают встречно.

Контурные ЭДС представляют собой алгебраическую сумму ЭДС источников, входящих в контур. Со знаком «+» в эту сумму входят ЭДС источников, действующих согласно с обходом контура, со знаком «–» входят ЭДС источников, действующих встречно.

Решение полученной системы удобно выполнить методом Крамера

, (2.8)

где , 1, 2, 3, – соответственно определители матриц:

(2.9)

По найденным контурным токам при помощи I закона Кирхгофа определяются токи ветвей.

Таким образом, методика расчета цепи постоянного тока методом контурных токов следующая:

  1. Обозначить все токи ветвей и их положительное направление.

  2. Произвольно выбрать совокупность p независимых контуров, нанести на схему положительное направление контурных токов, протекающих в выбранных контурах.

  3. Определить собственные, общие сопротивления и контурные ЭДС и подставить их в систему уравнений вида (2.3).

  4. Разрешить полученную систему уравнений относительно контурных токов, используя метод Крамера.

  5. Определить токи ветвей через контурные токи по I закону Кирхгофа.

  6. В случае необходимости, с помощью обобщенного закона Ома определить потенциалы узлов.

  7. Проверить правильность расчетов при помощи баланса мощности.

Если в цепи содержится q источников тока, количество совместно рассматриваемых уравнений сокращается на q и становится равным р – q, поскольку токи в таких ветвях известны (для контуров с Iii = J уравнение можно не записывать). В этом случае следует выбирать такую совокупность независимых контурных токов, чтобы часть из них стала известными. Для этого необходимо, чтобы каждый источник тока входил только в один контур. Напряжения UJ источников войдут в качестве неизвестных в правые части уравнений, т.е. в состав контурных ЭДС.

Пример.

Тогда система уравнений по методу контурных токов примет следующий вид:

Причем, , решив первое уравнение, можно получить. Далее

UJ можно определить из второго уравнения системы или, составив уравнение по II закону Кирхгофа для любого контура, в который входит источник тока.

Баланс мощности:

studfiles.net

Метод контурных токов - ТОЭ, РЗА

Если цепь имеет N узлов и К независимых контуров, то для расчета токов на всех участках такой цепи правила Кирхгофа дают (N−1)+К  уравнений. Метод узловых потенциалов позволяет обойтись системой лишь (N−1) уравнений, т. е. сколько дает первое правило Кирхгофа. Метод контурных токов приводит к К уравнениям, т. е. сколько дает лишь второе правило Кирхгофа. Этот метод состоит в следующем.

Метод контурных токов Пусть цепь имеет К независимых контуров. Каждому из них ставится в соответствие некоторый ток In (n= 1, 2, …, К), постоянный вдоль всего контура. Такие токи называются контурными. Удобно все контурные токи направлять одинаково, скажем, по часовой стрелке. Рассмотрим, для определенности, мостовую схему, что на рис. 1. Она имеет три независимых контура (выберем их простыми), следовательно, в ней задаются три контурных тока: I1, I2, I3 (рис.5). При одинаковом направлении контурных токов, истинные токи в смежных ветвях (i2, i5 и i6) будут равны разностям двух соседних контурных токов, а в ветвях, не являющихся смежными, истинные токи (i1, i3 и i4) будут совпадать с контурными.

Для изображенной на рис. 1 схемы второе правило Кирхгофа для контурных токов дает:

Метод контурных токов

или:

Метод контурных токов

Решая эту систему уравнений, получим три неизвестных контурных тока : I1, I2 и I3. Затем определяем истинные токи в ветвях с их знаками относительно выбранных стрелок:

i1 = − I3,     i2 = I2 − I1,

i3 = −I1,     i4 = −I2,

i5 = I1 − I3,  i6 = I2 − I3.

Следует отметить, что в методе контурных токов первое правило Кирхгофа выполняется автоматически, в силу самой идеи метода. Действительно, например, для представленной на рис. 1 схемы:

Метод контурных токов

Выбор того или иного метода расчета зависит от конкретного графа (сетки) электрической цепи: если граф таков, что в нем много контуров, но мало узлов, то удобно пользоваться методом узловых потенциалов, в противном случае – методом контурных токов. 

 

Возможно Вам будет полезна следующая статья по теме:

elekt.com.ua

4.2 Метод контурных токов

Метод непосредственного применения законов Кирхгофа громоздок. Имеется возможность уменьшить количество совместно решаемых уравнений системы. Число уравнений, составленных по методу контурных токов, равно количеству уравнений, составляемых по второму закону Кирхгофа. Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах. На рис. 4.2 в качестве примера изображена двухконтурная схема, в которой I11и I22- контурные токи.

Рис. 4.2

Токи в сопротивлениях R1и R2равны соответствующим контурным токам. Ток в сопротивлении R3, являющийся общим для обоих контуров, равен разности контурных токов I11и I22, так как эти токи направлены в ветви с R3встречно.

Порядок расчета

Выбираются независимые контуры, и задаются произвольные направления контурных токов. В нашем случае эти токи направлены по часовой стрелке. Направление обхода контура совпадает с направлением контурных токов. Уравнения для этих контуров имеют следующий вид:

Перегруппируем слагаемые в уравнениях

(4.4)

(4.5)

Суммарное сопротивление данного контура называется собственным сопротивлением контура. Собственные сопротивления контуров схемы

,.

Сопротивление R3, принадлежащее одновременно двум контурам, называется общим сопротивлением этих контуров.

,

где R12- общее сопротивление между первым и вторым контурами; R21- общее сопротивление между вторым и первым контурами. E11= E1и E22= E2- контурные ЭДС. В общем виде уравнения (4.4) и (4.5) записываются следующим образом:

,.

Собственные сопротивления всегда имеют знак "плюс". Общее сопротивление имеет знак "минус", если в данном сопротивлении контурные токи направлены встречно друг другу, и знак "плюс", если контурные токи в общем сопротивлении совпадают по направлению. Решая уравнения (4.4) и (4.5) совместно, определим контурные токи I11и I22, затем от контурных токов переходим к токам в ветвях. Ветви схемы, по которым протекает один контурный ток, называются внешними, а ветви, по которым протекают несколько контурных токов, называются общими. Ток во внешней ветви совпадает по величине и по направлению c контурным. Ток в общей ветви равен алгебраической сумме контурных токов, протекающих в этой ветви. В схеме нарис. 4.2

.

Рекомендации

Контуры выбирают произвольно, но целесообразно выбрать контуры таким образом, чтобы их внутренняя область не пересекалась ни с одной ветвью, принадлежащей другим контурам. Контурные токи желательно направлять одинаково (по часовой стрелке или против). Если нужно определить ток в одной ветви сложной схемы, необходимо сделать его контурным. Если в схеме имеется ветвь с известным контурным током, этот ток следует сделать контурным, благодаря чему количество уравнений становится на единицу меньше.

4.3. Метод узловых потенциалов

Метод узловых потенциалов позволяет составить систему уравнений, по которой можно определить потенциалы всех узлов схемы. По известным разностям узловых потенциалов можно определить токи во всех ветвях. В схеме на рисунке 4.3 имеется четыре узла.

Рис. 4.3

Потенциал любой точки схемы можно принять равным нулю. Тогда у нас останутся неизвестными три потенциала. Узел, величину потенциала которого выбирают произвольно, называют базисным. Укажем в схеме произвольно направления токов.

Примем для схемы ᵠ4 = 0.

Запишем уравнение по первому закону Кирхгофа для узла 1.

(4.6)

В соответствии с законами Ома для активной и пассивной ветви

,

Где - проводимость первой ветви.

,

Где - проводимость второй ветви.

Подставим выражения токов в уравнение (4.6).

(4.7)

где g11= g1+ g2- собственная проводимость узла 1.

Собственной проводимостью узла называется сумма проводимостей ветвей, сходящихся в данном узле. g12= g2- общая проводимость между узлами 1 и 2. Общей проводимостью называют проводимость ветви, соединяющей узлы 1 и 2.

- сумма токов источников, находящихся в ветвях, сходящихся в узле 1. Если ток источника направлен к узлу, величина его записывается в правую часть уравнения со знаком "плюс", если от узла - со знаком "минус". По аналогии запишем для узла 2:

(4.8)

для узла 3:

(4.9)

Решив совместно уравнения (4.7), (4.8), (4.9), определим неизвестные потенциалы φ 1,φ2,φ3, а затем по закону Ома для активной или пассивной ветви найдем токи. Если число узлов схемы - n, количество уравнений по методу узловых потенциалов - (n - 1).

studfiles.net

Метод контурных токов

Расчет любой сложной электрической цепи может быть сведен к решению системы из уравнений, если использовать так называемые контур­ные токи, т.е. токи, замыкающиеся в независимых контурах. В соответствии с этим методом составляются уравнения только по второму закону Кирхгофа, для чего выбирается необходимое число контуров. При расчете полагают, что в каж­дом контуре течет свой контурный ток.

Последовательность расчета и вывод основных уравнений проведем приме­нительно к схеме, показанной на рис. 1.26.

Для расчета по методу контурных токов в схеме выделяют независимые контуры. Если в левом верхнем контуре протекает ток , в правом верх­нем – , в нижнем – , то при направлении обхода всех контуров по часовой стрелке для контурных токов можно составить следующие уравнения по второму закону Кирхгофа

;

. (1.45)

После преобразования получим:

. (1.46)

Введем обозначения

; ; ;

; ; ;

; ; ,

где – полные или собственные сопротивления первого, второго и третьего контуров; – сопротивления смежных ветвей между пер­вым и вторым, первым и третьим, вторым и третьим контурами, взятые со зна­ком минус; – контурные ЭДС первого, второго и третьего конту­ров (в нее со знаком плюс входят те ЭДС, направления которых совпадают с на­правлением обхода контура).

Перепишем уравнения (1.46)

; (1.47)

.

По контурным токам определяют токи в ветвях:

1) токи в наружных ветвях равны контурным токам и совпадают с ними по направлению, если контурный ток является положительным; если контурный ток – отрицательный, то направление тока в ветви меняется;

2) ток в смежной ветви, которая является общей для двух контуров, опреде­ляется как алгебраическая сумма соответствующих контурных токов.

Так, для схемы на рис. 1.26 имеем

Порядок расчета методом контурных токов:

1) для каждого независимого контура произвольно выбирают положитель­ное направление контурного тока;

2) для каждого контура составляют уравнение (1.46) по второму закону Кирхгофа. Для этого направление обхода контура выбирают совпадающим с на­правлением контурного тока;

3) решают систему уравнений относительно контурных токов;

4) определяют токи в ветвях через контурные токи;

5) проверяют решения по второму закону Кирхгофа.

Метод двух узлов

Под мето­дом двух узлов понимают метод расчета электрических цепей, в котором за искомое принимают узловое напряжение. С помощью напряжения между двумя узлами определяют токи в ветвях. На рис. 1.27 показана схема цепи с двумя узлами а и b, состоящая из четырех ветвей. Находим напряжение

Рис. 1.27

. (1.48)

В общем виде напряжение между двумя уз­лами находят по формуле

.

Произведение учитывается со знаком плюс, когда направлено к узлу, потенциал которого условно принят за более положительный (к узлу с первым индексом).

Используя напряжение между узлами , по закону Ома определяем токи

Подставим эти уравнения в уравнение, составленное по первому закону Кирхгофа

,

Рис. 1.28

Три источника ЭДС, соединенные параллельно, можно заменить одним экви­валентным (рис. 1.28).

Из формулы (1.48) при = 0 имеем

В общем виде . (1.49)

 

Число элементов уравнения (1.49) определяется количеством ветвей, содержащих ЭДС. Учитывая , фор­мулу (1.49) запишем в виде

. (1.50)

Пример 1.3. Для схемы на рис. 1.27 определить ток , если = 25 В; = 30 В; = 15 В; = = 100 Ом; = 200 Ом; = 150 Ом.

Решение. Напряжение между двумя узлами (1.48)

В.

Ток

А.

Принцип наложения

Принцип наложения представляет собой частный случай известного из фи­зики принципа независимости действия сил. Сущность принципа наложения за­ключается в том, что в любой ветви линейной цепи с постоянными сопротивле­ниями равен ток алгебраической сумме частичных токов, создаваемых в этой ветви каждой из ЭДС в отдельности. Таким образом, при определении токов в ветвях можно поочередно оставлять в схеме по одной ЭДС, считая, что все ос­тальные ЭДС равными нулю, но оставляя их внутренние сопротивления (рис. 1.29). Обычно получается цепь с последовательно-параллельным соединением сопротивлений. В этой цепи сначала определяются так называемые частичные токи, вызванные действием только первого источника ЭДС. Их обозначают и т.п. Таким же образом рассчитывают частичные токи ( и т.д.), вызываемые действием второй ЭДС.

Алгебраически сложив частичные токи, определяют действительные значе­ния токов в каждом участке сложной цепи, когда все ЭДС действуют одно­временно.

Токи в ветвях .

Рис. 1.29

Порядок расчета по принципу наложения:

1) поочередно рассчитывают частичные токи, возникающие от действия каждого источника, мысленно удаляя остальные из схемы, но оставляя при этом их внутренние сопротивления;

2) определяют токи в ветвях алгебраическим сложением частичных токов.

Следует отметить, что принципом наложения нельзя пользоваться для рас­чета мощностей, так как мощность – квадратичная функция тока или напряже­ния. Например,

.

Похожие статьи:

poznayka.org

Метод контурных токов | Онлайн журнал электрика

Методика расчета цепи способом контурных токов

Способ контурных токовВ способе контурных токов за неведомые величины принимаются расчетные (контурные) токи, которые типо протекают в каждом из независящих контуров. Таким макаром, количество неведомых токов и уравнений в системе равно числу независящих контуров цепи.

Расчет токов веток по способу контурных токов делают в последующем порядке:

1 Вычерчиваем принципную схему цепи и обозначаем все элементы.

2 Определяем все независящие контуры.

3 Произвольно задаемся направлением протекания контурных токов в каждом из независящих контуров (по часовой стрелке либо против). Обозначаем эти токи. Для нумерации контурных токов можно использовать арабские сдвоенные числа (I11, I22, I33 и т. д.) либо римские числа.

4 По второму закону Кирхгофа, относительно контурных токов, составляем уравнения для всех независящих контуров. При записи равенства считать, что направление обхода контура, для которого составляется уравнение, совпадает с направлением контурного тока данного контура. Следует учесть и тот факт, что в смежных ветвях, принадлежащих двум контурам, протекают два контурных тока. Падение напряжения на потребителях в таких ветвях нужно брать от каждого тока в отдельности.

5 Решаем хоть каким способом полученную систему относительно контурных токов и определяем их.

6 Произвольно задаемся направлением реальных токов всех веток и обозначаем их. Маркировать реальные токи нужно таким макаром, чтоб не путать с контурными. Для нумерации реальных токов можно использовать одиночные арабские числа (I1, I2, I3 и т. д.).

7 Перебегаем от контурных токов к реальным, считая, что реальный ток ветки равен алгебраической сумме контурных токов, протекающих по данной ветки.

При алгебраическом суммировании без конфигурации знака берется контурный ток, направление которого совпадает с принятым направлением реального тока ветки. В неприятном случае контурный ток множится на минус единицу.

Пример расчёта сложной цепи способом контурных токов

В цепи, изображённой на рисунке 1, высчитать все токи способом контурных токов. Характеристики цепи: Е1 = 24 В, Е2 = 12 В, r1 = r2 = 4 Ом, r3 = 1 Ом, r4 = 3 Ом.

Схема электронной цепи для примера расчета по способу контурных токов

Рис. 1. Схема электронной цепи для примера расчета по способу контурных токов

Решение. Для расчета сложной цепи этим способом довольно составить два уравнения, по числу независящих контуров. Контурные токи направляем по часовой стрелке и обозначаем I11 и I22 (см. набросок 1).

По второму закону Кирхгофа относительно контурных токов составляем уравнения:

Решаем систему и получаем контурные токи I11 = I22 = 3 А.

Произвольно задаемся направлением реальных токов всех веток и обозначаем их. На рисунке 1 такими токами являются I1, I2, I3. Направление у этих токов однообразное – вертикально ввысь.

Перебегаем от контурных токов к реальным. В первой ветки протекает только один контурный ток I11. Направление его совпадает с направлением реального тока ветки. В таком случае реальный ток I1 + I11 = 3 А.

Реальный ток 2-ой ветки формируется 2-мя контурными I11 и I22. Ток I22 совпадает по направлению с реальным, а I11 ориентирован навстречу реальному. В итоге I2 = I22 — I11 = 3 — 3 = 0А.

В третьей ветки протекает только контурный ток I22. Направление этого тока обратно направлению реального, потому для I3 можно записать I3 = -I22 = -3А.

Необходимо подчеркнуть, как положительный факт, что в способе контурных токов по сопоставлению с решением по законам Кихгофа приходится решать систему уравнений наименьшего порядка. Но этот способ не позволяет сходу определять реальные токи веток.

Пацкевич В. А.

Школа для электрика

elektrica.info

Метод контурных токов — WiKi

Ме́тод ко́нтурных то́ков — метод сокращения размерности системы уравнений, описывающей электрическую цепь.Метод контурных токов — метод расчёта электрических цепей, при котором за неизвестные принимаются токи в контурах, образованных некоторым условным делением электрической цепи.

Основные принципы

Любая электрическая цепь, состоящая из Р рёбер (ветвей, участков, звеньев) и У узлов, может быть описана системой уравнений в соответствии с 1-м и 2-м правилами Кирхгофа. Число уравнений в такой системе равно Р, из них У–1 уравнений составляется по 1-му правилу Кирхгофа для всех узлов, кроме одного; а остальные Р–У+1 уравнений – по 2-му правилу Кирхгофа для всех независимых контуров. Поскольку независимыми переменными в цепи считаются токи рёбер, число независимых переменных равно числу уравнений, и система разрешима.

Существует несколько методов сократить число уравнений в системе. Одним из таких методов является метод контурных токов.

Метод использует тот факт, что не все токи в рёбрах цепи являются независимыми. Наличие в системе У–1 уравнений для узлов означает, что зависимы У–1 токов. Если выделить в цепи Р–У+1 независимых токов, то систему можно сократить до Р–У+1 уравнений. Метод контурных токов основан на очень простом и удобном способе выделения в цепи Р–У+1 независимых токов.

Метод контурных токов основан на допущении, что в каждом из Р–У+1 независимых контуров схемы циркулирует некоторый виртуальный контурный ток. Если некоторое ребро принадлежит только одному контуру, реальный ток в нём равен контурному. Если же ребро принадлежит нескольким контурам, ток в нём равен сумме соответствующих контурных токов (с учётом направления обхода контуров). Поскольку независимые контура покрывают собой всю схему (т.е. любое ребро принадлежит хотя бы одному контуру), то ток в любом ребре можно выразить через контурные токи, и контурные токи составляют полную систему токов.

Построение системы контуров

Использование планарных графов

Наиболее простым и наглядным методом построения системы независимых контуров является построение планарного графа схемы, то есть размещение ветвей и узлов цепи на плоскости без взаимных пересечений рёбер. Планарный граф разбивает плоскость на К ограниченных областей. Можно показать, что замкнутые цепочки рёбер, ограничивающие эти области, являются системой независимых контуров для рассматриваемой схемы.

Метод планарного графа предпочтителен при ручном расчёте схем. В случае, если схему невозможно изобразить в виде планарного графа, а также в случае компьютерного построения системы контуров применение этого метода может оказаться невозможным.

Метод выделения максимального дерева

Дерево представляет собой подмножество звеньев цепи, представляющее собой односвязный (то есть состоящий из одной части) граф, в котором нет замкнутых контуров. Дерево получается из цепи путём исключения из него некоторых звеньев. Максимальное дерево - это дерево, для которого добавление к нему любого исключённого звена приводит к образованию контура.

Метод выделения максимального дерева основан на последовательном исключении из цепи определённых звеньев согласно следующим правилам:

  • На каждом шагу из цепи в произвольном порядке исключается одно звено;
  • Если исключение звена приводит к нарушению односвязности графа (то есть граф разбивается на две изолированных части, либо появляются «висящие» узлы), то звено возвращается в цепь;
  • Если при исключении звена граф не теряет односвязности, звено остаётся исключённым;
  • Переходим к следующему шагу.

В конце работы алгоритма число исключённых из цепи звеньев оказывается точно равно числу независимых контуров схемы. Каждый независимый контур получается присоединением к цепи соответствующего исключённого звена.

Пример выделения максимального дерева

  • Удаление звена R1

  • Удаление звеньев R2 и R3

  • Удаление звена R4 приводит к появлению «висячего» узла

  • Присоединение к дереву удалённого звена образует контур

Построение системы уравнений

Для построения системы уравнений необходимо выделить в цепи P – У + 1 независимых контуров. По каждому из этих контуров будет составлено одно уравнение по 2-му закону Кирхгофа. В каждом контуре необходимо выбрать направление обхода (например, по часовой стрелке).

Выделение независимых контуров можно осуществить одним из перечисленных выше методов. Следует отметить, что система независимых контуров, как правило, не единственна, как не единственно и максимальное дерево цепи. Однако системы уравнений, составленные по различным системам контуров, математически эквивалентны, поэтому возможен специальный подбор системы контуров, дающей наиболее простую систему уравнений.

Отметим также, что при любом выборе системы контуров в любом контуре обязательно найдётся ребро, которое входит только в этот контур и ни в какой другой. Таким образом, контурный ток всегда совпадает с током в одном из рёбер этого контура. Например, для схемы, изображённой на рисунке, звено 4 входит только в левый контур, поэтому контурный ток обозначен как I4. То же самое относится к двум другим контурам, токи в которых обозначены как I5 и I6. В литературе встречаются и другие обозначения для контурных токов, например, римскими цифрами (II, III, IIII ...), латинскими буквами (IA, IB, IC ...) и т.д.

Принцип построения системы уравнений следующий.

  • Все токи в звеньях выражаем через контурные токи. В данном случае необходимо выразить только те токи, которые не совпадают с одним из контурных токов:
I1=I6−I4;I2=I5−I4;I3=I6−I5;{\displaystyle I_{1}=I_{6}-I_{4};\quad I_{2}=I_{5}-I_{4};\quad I_{3}=I_{6}-I_{5};} 
  • Для каждого контура записываем уравнение по второму закону Кирхгофа:
    • В левой части каждого уравнения записываем сумму токов в звеньях, входящих в контур, умноженных на сопротивление соответствующего звена. Суммирование происходит с учётом знака: если ток в звене совпадает с направлением обхода контура, слагаемое записывается со знаком «плюс», в противном случае — со знаком «минус».
    • В правой части каждого уравнения записываем сумму ЭДС источников, а также сумму произведений токов источников на сопротивление соответствующего звена. Суммирование также происходит с учётом знака, в зависимости от совпадения или несовпадения направления источника с направлением контурного тока:
  Рис. 1. Пример электрической схемы

Для первого контура (I4):

−I1Z1−I2Z2+I4Z4=E4;{\displaystyle -I_{1}Z_{1}-I_{2}Z_{2}+I_{4}Z_{4}=E_{4};}  −(I6−I4)Z1−(I5−I4)Z2+I4Z4=E4;{\displaystyle -(I_{6}-I_{4})Z_{1}-(I_{5}-I_{4})Z_{2}+I_{4}Z_{4}=E_{4};}  (Z1+Z2+Z4)I4−Z2I5−Z1I6=E4;{\displaystyle (Z_{1}+Z_{2}+Z_{4})I_{4}-Z_{2}I_{5}-Z_{1}I_{6}=E_{4};} 

Для второго контура (I5):

I2Z2−I3Z3+I5Z5=J5Z5;{\displaystyle I_{2}Z_{2}-I_{3}Z_{3}+I_{5}Z_{5}=J_{5}Z_{5};}  (I5−I4)Z2−(I6−I5)Z3+I5Z5=J5Z5;{\displaystyle (I_{5}-I_{4})Z_{2}-(I_{6}-I_{5})Z_{3}+I_{5}Z_{5}=J_{5}Z_{5};}  −Z2I4+(Z2+Z3+Z5)I5−Z3I6=J5Z5;{\displaystyle -Z_{2}I_{4}+(Z_{2}+Z_{3}+Z_{5})I_{5}-Z_{3}I_{6}=J_{5}Z_{5};} 

Для третьего контура (I6):

I1Z1+I3Z3+I6Z6=E6;{\displaystyle I_{1}Z_{1}+I_{3}Z_{3}+I_{6}Z_{6}=E_{6};}  (I6−I4)Z1+(I6−I5)Z3+I6Z6=E6;{\displaystyle (I_{6}-I_{4})Z_{1}+(I_{6}-I_{5})Z_{3}+I_{6}Z_{6}=E_{6};}  −Z1I4+−Z3I5+(Z1+Z3+Z6)I6=E6;{\displaystyle -Z_{1}I_{4}+-Z_{3}I_{5}+(Z_{1}+Z_{3}+Z_{6})I_{6}=E_{6};} 

Окончательно получаем систему уравнений

{(Z1+Z2+Z4)⋅I4−Z2⋅I5−Z1⋅I6=E4−Z2⋅I4+(Z2+Z3+Z5)⋅I5−Z3⋅I6=Z5J5−Z1⋅I4−Z3⋅I5+(Z1+Z3+Z6)⋅I6=E6.{\displaystyle {\begin{cases}(Z_{1}+Z_{2}+Z_{4})\cdot I_{4}-Z_{2}\cdot I_{5}-Z_{1}\cdot I_{6}=E_{4}\\-Z_{2}\cdot I_{4}+(Z_{2}+Z_{3}+Z_{5})\cdot I_{5}-Z_{3}\cdot I_{6}=Z_{5}J_{5}\\-Z_{1}\cdot I_{4}-Z_{3}\cdot I_{5}+(Z_{1}+Z_{3}+Z_{6})\cdot I_{6}=E_{6}\end{cases}}.} 

Оптимизированная процедура составления системы

Как видно из вышесказанного, процедуру составления системы можно упростить следующим образом:

  • В левой части К-го уравнения записываем произведение контурного тока на сумму сопротивлений всех звеньев, входящих в контур:
IK(ZK1+ZK2+...)+...,{\displaystyle I_{K}(Z_{K1}+Z_{K2}+...)+...,} 

где  IK{\displaystyle \ I_{K}}  — ток контура, для которого записывается уравнение;

 ZK1...ZKn{\displaystyle \ Z_{K1}...Z_{Kn}}  — сопротивления звеньев, входящих в этот контур.

  • От левой части уравнения отнимаем остальные контурные токи, умноженные на суммы сопротивлений звеньев, по которым контур К пересекается с этими контурами:
...−IA(ZKA1+ZKA2+...)−IB(ZKB1+ZKB2+...)−...{\displaystyle ...-I_{A}(Z_{KA1}+Z_{KA2}+...)-I_{B}(Z_{KB1}+Z_{KB2}+...)-...} 

где  IA,IB,...{\displaystyle \ I_{A},I_{B},...}  — токи контуров, пересекающихся с контуром К;

 ZKA1,ZKA2,...{\displaystyle \ Z_{KA1},Z_{KA2},...}  — сопротивления звеньев, входящих одновременно в контура К и A.

  • В правой части уравнения записываем сумму источников ЭДС с учётом знаков («плюс» — если направления ЭДС и обхода контура совпадают, «минус» — в противном случае):
...=±EK1±EK2...{\displaystyle ...=\pm E_{K1}\pm E_{K2}...} 
  • К правой части уравнения прибавляем величины источников тока, умноженные на сопротивление соответствующего звена с учётом знаков («плюс» — если направления источника тока и обхода контура совпадают, «минус» — в противном случае):
...±JK1ZK1±JK2ZK2...{\displaystyle ...\pm J_{K1}Z_{K1}\pm J_{K2}Z_{K2}...} 

Составив уравнения для всех независимых контуров, получаем совместную систему P–У+1 уравнений относительно P–У+1 неизвестных контурных токов.

Пример

Формальный подход

В матричном виде система уравнений для метода контурных токов выглядит следующим образом[1]:

CZCtI2=C(E+ZJ),{\displaystyle \mathbf {CZC^{t}I_{2}=C(E+ZJ)} ,} 

где

C{\displaystyle \mathbf {C} }  — матрица контуров размера n × p (где n — количество независимых контуров, р — количество звеньев) , в которой i–я строка соответствует независимому контуру i, а j–й столбец соответствует звену j, причём элемент Cij равен

  • 0, если ребро j не входит в контур i;
  • 1, если ребро входит в контур, и направление ребра соответствует направлению обхода контура;
  • –1, если ребро входит в контур, и направление ребра противоположно направлению обхода контура.

Для каждого ребра задаётся направление, которое обычно ассоциируется с направлением тока в этом ребре;

Z{\displaystyle \mathbf {Z} }  — диагональная матрица сопротивлений размера p × p, в которой диагональный элемент Zii равен сопротивлению i–го ребра, а недиагональные элементы равны нулю;

Ct{\displaystyle \mathbf {C} ^{t}}  — транспонированная матрица контуров;

I2{\displaystyle \mathbf {I} _{2}}  — матрица-столбец контурных токов размером n × 1.

J{\displaystyle \mathbf {J} }  — матрица-столбец источников тока размером p × 1, где каждый элемент равен току источника в соответствующем ребре, причём эта величина нулевая, если в данном ребре источник тока отсутствует; положительная, если направление тока источника совпадает с направлением тока в ребре; и отрицательная в противном случае;

E{\displaystyle \mathbf {E} }  — матрица-столбец источников ЭДС размером p × 1, где каждый элемент равен ЭДС источника в соответствующем ребре, причём эта величина нулевая, если в данном ребре источник ЭДС отсутствует; положительная, если направление ЭДС источника совпадает с направлением тока в ребре; и отрицательная в противном случае.

Пример системы уравнений

Для схемы, представленной в предыдущем разделе (см. "Построение системы уравнений", рис. 1), матрицы имеют вид:

C=(−1−1010001−1010101001);I2=(I4I5I6){\displaystyle \mathbf {C} ={\begin{pmatrix}-1&-1&0&1&0&0\\0&1&-1&0&1&0\\1&0&1&0&0&1\end{pmatrix}};\quad \mathbf {I} _{2}={\begin{pmatrix}I_{4}\\I_{5}\\I_{6}\end{pmatrix}}} 

Ct=(−101−1100−11100010001);Z=(Z1000000Z2000000Z3000000Z4000000Z5000000Z6);J=(0000J50);E=(000E40E6){\displaystyle \mathbf {C} ^{t}={\begin{pmatrix}-1&0&1\\-1&1&0\\0&-1&1\\1&0&0\\0&1&0\\0&0&1\\\end{pmatrix}};\quad \mathbf {Z} ={\begin{pmatrix}Z_{1}&0&0&0&0&0\\0&Z_{2}&0&0&0&0\\0&0&Z_{3}&0&0&0\\0&0&0&Z_{4}&0&0\\0&0&0&0&Z_{5}&0\\0&0&0&0&0&Z_{6}\\\end{pmatrix}};\quad \mathbf {J} ={\begin{pmatrix}0\\0\\0\\0\\J_{5}\\0\end{pmatrix}};\quad \mathbf {E} ={\begin{pmatrix}0\\0\\0\\E_{4}\\0\\E_{6}\end{pmatrix}}} 

Перемножаем матрицы в соответствии с матричным уравнением:

CZ=(−Z1−Z20Z4000Z2−Z30Z50Z10Z300Z6);{\displaystyle \mathbf {CZ} ={\begin{pmatrix}-Z_{1}&-Z_{2}&0&Z_{4}&0&0\\0&Z_{2}&-Z_{3}&0&Z_{5}&0\\Z_{1}&0&Z_{3}&0&0&Z_{6}\end{pmatrix}};} 

CZCt=(Z1+Z2+Z4−Z2−Z1−Z2Z2+Z3+Z5−Z3−Z1−Z3Z1+Z3+Z6);{\displaystyle \mathbf {CZC^{t}} ={\begin{pmatrix}Z_{1}+Z_{2}+Z_{4}&-Z_{2}&-Z_{1}\\-Z_{2}&Z_{2}+Z_{3}+Z_{5}&-Z_{3}\\-Z_{1}&-Z_{3}&Z_{1}+Z_{3}+Z_{6}\end{pmatrix}};} 

CZCtI2=((Z1+Z2+Z4)⋅I4−Z2⋅I5−Z1⋅I6−Z2⋅I4+(Z2+Z3+Z5)⋅I5−Z3⋅I6−Z1⋅I4−Z3⋅I5+(Z1+Z3+Z6)⋅I6);{\displaystyle \mathbf {CZC^{t}I_{2}} ={\begin{pmatrix}(Z_{1}+Z_{2}+Z_{4})\cdot I_{4}-Z_{2}\cdot I_{5}-Z_{1}\cdot I_{6}\\-Z_{2}\cdot I_{4}+(Z_{2}+Z_{3}+Z_{5})\cdot I_{5}-Z_{3}\cdot I_{6}\\-Z_{1}\cdot I_{4}-Z_{3}\cdot I_{5}+(Z_{1}+Z_{3}+Z_{6})\cdot I_{6}\end{pmatrix}};} 

E+ZJ=(000E4Z5J5E6);C(E+ZJ)=(E4Z5J5E6){\displaystyle \mathbf {E+ZJ} ={\begin{pmatrix}0\\0\\0\\E_{4}\\Z_{5}J_{5}\\E_{6}\end{pmatrix}};\quad \mathbf {C(E+ZJ)} ={\begin{pmatrix}E_{4}\\Z_{5}J_{5}\\E_{6}\end{pmatrix}}} 

Раскрывая матричную запись, получаем следующую систему уравнений:

{(Z1+Z2+Z4)⋅I4−Z2⋅I5−Z1⋅I6=E4−Z2⋅I4+(Z2+Z3+Z5)⋅I5−Z3⋅I6=Z5J5−Z1⋅I4−Z3⋅I5+(Z1+Z3+Z6)⋅I6=E6.{\displaystyle {\begin{cases}(Z_{1}+Z_{2}+Z_{4})\cdot I_{4}-Z_{2}\cdot I_{5}-Z_{1}\cdot I_{6}=E_{4}\\-Z_{2}\cdot I_{4}+(Z_{2}+Z_{3}+Z_{5})\cdot I_{5}-Z_{3}\cdot I_{6}=Z_{5}J_{5}\\-Z_{1}\cdot I_{4}-Z_{3}\cdot I_{5}+(Z_{1}+Z_{3}+Z_{6})\cdot I_{6}=E_{6}\end{cases}}.} 

Примечания

  1. ↑ Нейман Л. Р., Демирчян К. С. Теоретические основы электротехники: в 2-х т. Учебник для вузов. Том I. — 3-е изд., перераб. и доп. — Л.: Энергоиздат. Ленингр. отд-ние, 1981. — 536 с., ил.

См. также

Литература

  • Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. — М.: Гардарики, 2002. — 638 с. — ISBN 5-8297-0026-3.

ru-wiki.org


Каталог товаров
    .