Маркировка конденсаторов неполярных: Неполярные электролитические конденсаторы: отличия от полярных

Содержание

Что такое конденсатор, как обозначается на схемах, единицы емкости

Знакомство с конденсатором для тех кто только начинает знакомиться с радиоэлектроникой и радиолюбительством. Что такое конденсатор. какие бывают конденсаторы, как они обозначаются на принципиальных схемах, единицы измерения емкости конденсаторов, включение конденсаторов.

Что такое конденсатор

Конденсатор, это радиодеталь, обладающая электрической емкостью. Конденсатор можно зарядить и он будет хранить заряд, апотом готов отдать его «по первому требованию». На первый взгляд это похоже на работу аккумулятора, но только на первый взгляд.

Конденсатор не является химическим источником тока, да и вообще источником тока. Конденсатор можно назвать временным хранилищем заряда. Заряд в нем можно пополнять и забирать. Во время зарядки и разрядки конденсатора через него протекает ток.

Напряжение на разряженном конденсаторе равно нулю. Но в процессе зарядки напряжение увеличивается, и как только достигает величины напряжения источника тока, заряд прекращается. С нарастанием напряжения на конденсаторе 8 процессе его зарядки ток зарядки уменьшается.

Физически конденсатор это две металлические пластины, разделенные тонким слоем изолятора. Так и есть. Выходит, что конденсатор пропускать электрический ток не может. Но в процессе зарядки и разрядки ток есть.

То есть, можно сказать, что конденсатор может пропускать изменяющийся ток. то есть, переменный. А постоянный он не пропускает. Это свойство широко используется в электронике и радиотехники для разделения переменного и постоянного токов, которые есть в одной и той же цепи.

Если сопротивление конденсатора постоянному току бесконечно (активное сопротивление), то на переменном токе он обладает весьма определенным реактивным сопротивлением, зависящим от емкости конденсатора и частоты переменного тока.

Еще конденсаторы применяют для задержки подачи напряжения, в таймерах. Там используется то свойство конденсатора, что скорость его заряда или разряда зависит от силы тока заряда или разряда. А если этот ток ограничить резистором, то чем больше будет сопротивление этого резистора, тем дольше будет процесс заряда или разряда.

Если у резистора основным параметром является сопротивление, то у конденсатора -емкость, которая выражается 8 фарадах. Величина 1F (одна фарада) довольно велика, поэтому чаще всего речь идет о микрофарадах, нанофарадах, пикофарадах. Конденсаторы так же как и резисторы бывают постоянные (емкость которых не измена), переменные и подстроечные (с ручкой для регулировки емкости).

Обозначение конденсатора на схемах

В отличие от постоянных резисторов, которые в большинстве своем похожи на бочонок с двумя выводами, постоянные конденсаторы бывают самых разных форм и размеров. Но разделить их можно на две группы, — полярные и неполярные. Разница в том, что у полярного конденсатора есть плюс и минус и подключать в схему его нужно с учетом полярности.

А у неполярного конденсатора выводы равнозначны. На рисунке 1 показаны обозначения конденсаторов, А — неполярный, Б — полярный. В -переменный, Г — подстроечный.

Рис. 1. Обозначение конденсаторов на принципиальных схемах.

Кроме емкости, выраженной, чаще всего в пикофарадах или микрофарадах (иногда и в нанофарадах), другим важным параметром является максимально допустимое напряжение. Если к обкладкам (выводам) конденсатора приложить напряжение выше этой величины может произойти пробой изолятора и конденсатор выйдет из строя.

Если говорят что «конденсатор на 250V», это значит, что на конденсатор нельзя подавать напряжение больше 250V. Меньше -пожалуйста, начиная от нуля. Но больше этой величины, — ни в коем случае!

Таким образом, у конденсатора есть два основных параметра, — емкость, выраженная 8 десятичных долях Фарады (микрофарады, нанофарады, пикофарады), и максимальное напряжение, выраженное в Вольтах.

На схемах значение емкости обычно пишут 8 пикофарадах (р, pF, пФ) и микрофарадах (pF, м, мкФ). 1 мкФ = 1000000 пФ. Но встречаются обозначения и в нанофарадах (nF, п) обычно на зарубежных схемах. 1nF = 1000pF. Бывает что на схемах буква, обозначающая кратную приставку используется как децимальная запятая, например, 1500 р = 1,5n = 1N5 или 1n5.

На многих схемах зарубежной аппаратуры встречается замена греческой буквы «р» на латинскую «и». То есть, 10 микрофарад у них будет так: «10uF». Возможно, это связано с отсутствием греческого шрифта в программе с помощью которой нарисована схема.

Включение конденсаторов

Для получения нужной емкости иногда приходится соединять два конденсатора параллельно или последовательно (рис.2.). При параллельном соединении общая емкость рассчитывается как сумма емкостей:

Собщ = С1 + С2.

При последовательном соединении приходится пользоваться более сложной формулой: Собщ = (С1«С2) / (С1+С2) .

Рис. 2. Параллельное и последовательное включение конденсаторов, формулы для расчета емкости.

Маркировка конденсаторов

Теперь о маркировке конденсаторов. Здесь как и у резисторов есть несколько стандартов. Если конденсатор достаточно больших размеров, то на нем емкость может быть так и указана, например, на стакане оксидного конденсатора емкостью 10 мкФ так и будет написано: 10 pF или 10 мкФ, далее будет указано напряжение, например, 25V, и отмечена полярность выводов, у отечественных конденсаторов возле положительного вывода будет «+», а у иностранных возле отрицательного вывода будет «-» или полоска.

На крупных неполярных конденсаторах тоже все будет написано просто и ясно, например, на конденсаторе типа К73-14 емкостью 0,22 мкФ на максимальное напряжение 250V будет так и написано: 0,22pF 250V.

Сложнее с маленькими керамическими или слюдяными неполярными конденсаторами. Места здесь для маркировки мало, поэтому придумывают сокращения. Например, на конденсаторах типа К10-7 в виде пластинок емкость указывается с использованием кратной приставки как децимальной запятой, вот несколько примеров такой маркировки:

  • 150 пФ — «150р» или «150п»
  • 1500 пФ — «1N5» или «1Н5»
  • 15000пФ (0,015 мкФ) — «15N» или «15Н» .

У зарубежных керамических конденсаторов используется такая же маркировка как у резисторов, только за основу идет не единицы Ом, а единицы Пикофарад. Обозначение состоит из трех цифр. Первые две —

значение в пФ, а третья — множитель, практически численно показывающая сколько нулей нужно приписать, чтобы получилось значение выраженное в пФ. Вот несколько примеров такого обозначения:

  • 15 пФ — «150» (к 15 приписать 0 нолей)
  • 150 пФ — «151»(к 15 приписать 1 ноль)
  • 1500 пф — «152» (к 15 приписать 2 ноля)
  • 0,015 мкФ (15000 пФ) — «153» (к 15 приписать 3 нуля).
  • 0,15 мкФ (150000 пФ) — «154» (к 15 приписать 4 нуля).

Эксперимент с конденсатором

Чтобы практически познакомиться со способностью конденсатора накапливать заряд можно провести один эксперимент. Возьмем оксидный конденсатор типа К50-35 емкостью 2200 мкФ и соберем схему, показанную на рисунке 3. Здесь мы будем заряжать конденсатор от батарейки, и разряжать через лампочку от карманного фонаря.

Когда переключатель S1 находится в показанном на схеме положении, через него и резистор R1 конденсатор С1 заряжается. Переключаем S1 в нижнее по схеме положение, и конденсатор С1 разряжается через лампочку Н1.

Рис. 3. Схема простого эксперимента с конденсатором.

Теперь приступаем к делу. Переключаем S1 вниз по схеме и лампочка вспыхивает. Горит она недолго. Затем, возвращаем S1 в исходное положение. Конденсатор заряжается от батарейки. И снова переключаем S1 вниз по схеме.

Лампочка опять вспыхивает, так как на неё поступает заряд, накопленный конденсатором. Если слишком быстро переключать S1 лампа будет вспыхивать слабее, или вообще не будет вспыхивать, так как С1 не успевает зарядиться через R1.

РК-2010-04.

Как выбрать конденсатор?

Во время работы над разделом о конденсаторах я подумал, что было бы полезно объяснить, почему один тип конденсаторов может быть заменен другим. Это важный вопрос, так как существует множество факторов (температурные характеристики, тип корпуса и так далее), которые делают тот или иной тип конденсаторов (электролитический, керамический и пр. ) наиболее предпочтительным для вашего проекта.


В статье будут рассмотрены популярные типы конденсаторов, их достоинства и особенности, а также области применения. В каждом разделе помещены ссылки на результаты поисковых запросов для некоторых серий наиболее популярных конденсаторов из каталога компании Терраэлектроника.


Например, результат поиска для DIP конденсаторов  c рабочим напряжением 450 В серии HP3 производства компании Hitachi с емкостью 56…680 мкФ приведен на Рис.1.



Рис. 1. Результат поискового запроса для  имеющихся на складе конденсаторов серии HP3 с рабочим напряжением 450 В от Hitachi  с емкостью в диапазоне  56…560 мкФ


Конденсаторы (Рис. 2) представляют собой двухвыводные компоненты, используемые для фильтрации, хранения энергии, подавления импульсов напряжения и других задач. В самом простом случае они состоят из двух параллельных пластин, разделенных изоляционным материалом, называемым диэлектриком.



Рис. 2. Конденсаторы различных типов


Конденсаторы хранят электрический заряд. Единицей емкости является Фарад (Ф). Это название было дано в честь Майкла Фарадея, который в свое время стал пионером в области практического использования конденсаторов.


Конденсаторы могут быть полярными и неполярными. К полярным относятся почти все электролитические и танталовые конденсаторы. Они должны подключаться с учетом полярности напряжения. Если перепутать выводы «-» и «+», то это приведет к короткому замыканию. К неполярным относятся керамические, слюдяные и пленочные конденсаторы. Они могут работать при любой полярности приложенного напряжения, что делает их подходящими для применения в цепях переменного тока.


Несмотря на широкое распространение конденсаторов, выбор конкретной модели бывает достаточно сложным. Вы можете знать емкость и рабочее напряжение, которые требуются в вашем проекте, но у конденсаторов есть и множество других характеристик, таких как полярность, температурный коэффициент, стабильность, последовательное эквивалентное сопротивление (ESR) и так далее. Это делает каждый конкретный тип конденсаторов пригодным для конкретного приложения. Ниже перечислены наиболее популярные типы конденсаторов с кратким описанием их достоинств и особенностей.


Типы конденсаторов


Существует несколько типов конденсаторов, которые отличаются электрическими характеристиками и стоимостью. Ниже приведено описание наиболее популярных типов конденсаторов: алюминиевых электролитических, керамических, танталовых, пленочных, слюдяных и полимерных (твердотельных). Кроме того, для каждого типа представлены наиболее подходящие приложения, а также информация о корпусных исполнениях и примеры конкретных серий.





Рис. 3. Алюминиевый электролитический конденсатор


Описание: алюминиевые электролитические конденсаторы (Рис. 3) являются полярными, поэтому их нельзя использовать в цепях переменного напряжения. Они могут иметь высокую номинальную емкость, но отклонение от номинала обычно составляет до 20%.


Приложения: алюминиевые электролитические конденсаторы оптимальны для приложений, которые не требуют высокой точности и работы с переменными напряжениями. Чаще всего они применяются в качестве развязывающих конденсаторов в источниках питания, то есть для уменьшения пульсаций напряжения. Они также широко используются в импульсных DC/DC-преобразователях напряжения.


Корпусное исполнение: как для монтажа в отверстия, так и для поверхностного монтажа.


Примеры:


Для монтажа в отверстия:


  • 25 В серия TKR производства Jamicon с диапазоном доступных емкостей 10…5000 мкФ.
  • 50 В серия ECA-1HM  от Panasonic с диапазоном доступных емкостей 4.7…3300 мкФ.
  • 450 В серия HP32 от Hitachi AIC с диапазоном доступных емкостей 56…1000 мкФ.

Для поверхностного монтажа:


  • 16 В серия EEE-FK от Panasonic с диапазоном доступных емкостей 10…4700 мкФ.
  • 50 В серия CA050 от Yageo с диапазоном доступных емкостей 0,22…220 мкФ.



Рис.4. Керамические конденсаторы


Описание: существует два основных типа керамических конденсаторов (Рис. 4): многослойные чип-конденсаторы (MLCC) и керамические дисковые. MLCC пользуются большой популярностью и широко применяются в электронных устройствах, поскольку обладают высокой стабильностью и малым уровнем потерь. Они отличаются низким последовательным сопротивлением (ESR) и минимальной погрешностью номинала по сравнению с электролитическими или танталовыми конденсаторами. Вместе с тем их максимальная емкость невелика и достигает всего нескольких десятков мкФ. Из-за высокой удельной емкости MLCC имеют очень малые габариты и отлично подходят для размещения на печатных платах.


Приложения: поскольку керамические конденсаторы являются неполярными, то их можно применять в цепях переменного тока. Они широко используются в качестве «универсальных» конденсаторов, например, для высокочастотной развязки, фильтрации, подстройки резонаторов и подавления электромагнитных помех. Как MLCC, так и керамические дисковые конденсаторы подразделяются на два класса:


Керамические конденсаторы I класса – точные (+/- 5%) и стабильные конденсаторы с минимальной зависимостью емкости от температуры. Конденсаторы NP0/C0G отличаются минимальным температурным коэффициентом 30 ppm/K. К сожалению, их максимальная емкость ограничена несколькими нанофарадами (нФ). Поскольку они очень стабильны и точны, то их чаще всего используют в системах с частотным регулированием, например, в резонансных схемах для радиочастотных приложений.


Керамические конденсаторы II класса менее точны, но обеспечивают более высокую удельную емкость (номинальные значения — до десятков мкФ) и, следовательно, подходят для фильтрации и развязки. Среди их недостатков можно отметить большой коэффициент напряжения. Например, даже при приложении напряжения, равного половине рабочего, обычно наблюдается снижение емкости на 50%.


  • X5R может работать в диапазоне — 55…85°C с изменением емкости +/- 15%;
  • X7R может работать в диапазоне — 55…125°C с изменением емкости +/- 15%;
  • Y5V — в диапазоне от — 30…+ 85°C с изменением емкости -20/ +80%.

Корпусные исполнения: наиболее распространены корпуса для поверхностного монтажа 0201, 0402, 0603, 0805, 1206 и 1812. Цифры обозначают габаритные размеры в дюймовой системе. Например, 0402 составляет 0,04х0,02″, 0603 — 0,06х0,03″ и так далее.


Примеры:


Тип NP0/C0G:


  • 0402 — серия CC0402JRNPO9 производства компании Yageo с диапазоном доступных емкостей 0,01…1 нФ;
  • 0603 — серия CC0603JRNPO9 от Yageo с диапазоном доступных емкостей 0,008…2,7 нФ.

Тип X7R:


  • 0402 — серия CC0402KRX7R9BB от Yageo с диапазоном доступных емкостей 0,1…10 нФ;
  • 0603 — серия CC0603KRX7R7BB от Yageo с диапазоном доступных емкостей 0,1…1 мкФ;
  • 1206 — серия GRM31 от Murata с диапазоном доступных емкостей 470 пф…22 мкФ;
  • 0805 — серия CL21 от Samsung с диапазоном доступных емкостей 150 пф…10 мкФ.

Для монтажа в отверстия:


  • Серия C315C производства компании Kemet с диапазоном доступных емкостей 1 пФ …1 мкФ.

Танталовые конденсаторы



Рис. 5. Танталовые конденсаторы


Описание: танталовые конденсаторы (Рис. 5) – это подтип электролитических конденсаторов с высоким уровнем поляризации. При их использовании необходимо проявлять осторожность, поскольку они имеют склонность к катастрофическим отказам даже при воздействии импульсов напряжения с амплитудой, лишь немного превышающей номинальное рабочее напряжение. Танталовые конденсаторы могут иметь высокую номинальную емкость и отличаются высокой временной стабильностью. Они меньше по размеру, чем алюминиевые электролитические конденсаторы той же емкости. Но алюминиевые электролиты могут выдерживать более высокие максимальные напряжения.


Приложения: из-за малого тока утечки, стабильности и высокой емкости танталовые конденсаторы часто используются в схемах выборки-хранения, в которых требуется обеспечивать минимальный ток утечки для продолжительного хранения заряда. Также, благодаря малым размерам и долговременной стабильности, они применяются для фильтрации по цепям питания.


Корпусные исполнения: танталовые конденсаторы выпускаются как для монтажа в отверстия, так и для поверхностного монтажа (SMD). Тем не менее, чаще всего используются именно SMD-компоненты. В дюймовой системе типоразмер А соответствует размеру 1206 (0,12х0,06″), типоразмер В соответствует размеру 1210, типоразмер C соответствует размеру 2312, типоразмер D — размеру 2917.


Примеры:


  • Типоразмер A: серия TAJA от AVX с диапазоном доступных емкостей 1…10 мкФ;
  • Типоразмер B: серия TAJB от AVX с диапазоном доступных емкостей 10…47 мкФ;
  • Типоразмер C: серия TAJC от AVX с диапазоном доступных емкостей 47…220 мкФ;
  • Типоразмер D: серия TAJD от AVX с диапазоном доступных емкостей 220…680 мкФ;
  • Типоразмер A-E: серия 293D компании Vishay с диапазоном доступных емкостей 0,1…1000 мкФ;
  • Типоразмер A-X: серии T491 компании Vishay с диапазоном доступных емкостей 0,1…1000 мкФ.

Пленочные конденсаторы



Рис. 6. Пленочные конденсаторы


Описание: пленочные конденсаторы (Рис. 6) являются неполярными, что позволяет использовать их в цепях переменного напряжения. Они отличаются малыми значениями эквивалентного сопротивления (ESR) и последовательной индуктивности (ESL).


Приложения: пленочные конденсаторы часто применяются в схемах с аналого-цифровыми преобразователями. Кроме того, они способны работать с высоким пиковым током и, таким образом, могут применяться в снабберных цепочках для фильтрации индуктивных выбросов напряжения в DC/DC-преобразователях.


Примеры:


  • серия B32021 производства компании EPCOS с диапазоном доступных емкостей 1 нФ…10 нФ и рабочим напряжением 300В AC.
  • серия ECHU от Panasonic c диапазоном доступных емкостей 0,1 нФ…220 нФ и рабочим напряжением 16 В и 50 В DC.

Слюдяные конденсаторы



Рис. 7. Слюдяной конденсатор


Описание: слюдяные конденсаторы (Рис. 7) являются неполярными, отличаются малой величиной потерь, высокой стабильностью и обладают отличными характеристиками на высоких частотах.


Приложения: эффективны при работе в составе радиочастотных схем. Они могут стоить несколько долларов за штуку, поэтому в маломощных приложениях чаще используют керамические конденсаторы. Однако слюдяные конденсаторы благодаря высокому напряжению пробоя остаются практически незаменимыми для таких приложений, как  радиопередатчики высокой мощности.


Примеры:


  • серия CD производства CDE с диапазоном доступных емкостей 0,001…47 нФ (монтаж в отверстия) рабочим напряжением до 500 В .

Полимерные (твердотельные) конденсаторы



Рис. 8. Полимерные (твердотельные) конденсаторы


Описание: твердотельные конденсаторы являются полярными, так же как и другие электролитические конденсаторы, но имеют ряд преимуществ, например, меньшие потери благодаря низкому последовательному сопротивлению ESR и длительный срок службы. Для обычных алюминиевых электролитов существует риск высыхания электролита при низких температурах, но твердотельные конденсаторы благодаря применению твердого полимерного диэлектрика обладают высокой надежностью даже при очень низких температурах.


Приложения: используются вместо электролитов в высококачественных материнских платах и DC/DC-преобразователях.


Примеры:


  • серия OS-CON производства Panasonic с диапазоном доступных емкостей 3,3…2700 мкФ. 
  • серия SP-Cap производства Panasonic с диапазоном доступных емкостей 10…560 мкФ в SMD исполнении. 
  • серия ECAS производства компании Murata с диапазоном доступных емкостей 10…150 мкФ.

Конденсаторные сборки


Описание: конденсаторная сборка (capacitor array)  — это группа конденсаторов, конструктивно объединенных в одном корпусе, причем любой из конденсаторов может быть отдельно от остальных подключен к внешней цепи. Существует много различных типов сборок, которые отличаются количеством конденсаторов, типом диэлектрика, величиной отклонения емкости конденсатора от номинального значения, максимальным рабочим напряжением, типом корпуса и др.


Приложения: конденсаторные сборки широко применяются в мобильной и носимой аппаратуре, в материнских платах компьютеров и цифровых приставках, в радиочастотных модемах и усилителях, в автомобильных и медицинских приложениях и т.д.


Корпусные исполнения: конденсаторные сборки выпускаются как в DIP корпусах, так и в SMD исполнении. Наиболее популярные типоразмеры сборок для поверхностного монтажа 0508, 0612, 0805 представлены в нашем каталоге.


Примеры:


  • Серия CA конденсаторных сборок общего назначения от компании Yageo типоразмера 0612 с диапазоном доступных емкостей от 22 пФ до 100 нФ.

Подобрать необходимый конденсатор в каталоге Терраэлектроники можно двумя способами:


  1. использовать параметрический поиск в соответствующем разделе каталога, для чего необходимо зайти в раздел конденсаторов, выбрать соответствующий задаче тип конденсатора, а далее заполнить ряд фильтров с параметрами. Фрагмент скриншота поиска MLCC конденсатора с параметрами: номиналом 1 нФ, точностью 10 %, диэлектриком X7R, напряжением  250 В и корпусом 0805 представлен на Рис. 9.
  2. воспользоваться интеллектуальным поиском конденсатора по параметрам. Для этого достаточно скопировать строку из спецификации “Конденсатор 1 нФ, X7R, 10%, 250 В, 0805″ или ввести «1n X7R 10% 250V 0805» в строку поиска и получить тот же самый  список подходящих по указанным параметрам компонентов.


Рис. 9. Фрагмент скриншота сервиса поиска конденсатора


Заключение


В данном руководстве были рассмотрены некоторые наиболее популярные типы конденсаторов. Кроме них существуют суперконденсаторы, кремниевые конденсаторы, оксид-ниобиевые и подстрочные конденсаторы, которые обладают уникальными преимуществами по величине емкости, уровню надежности или возможности подстройки. Однако в большинстве электронных схем вы чаще всего увидите один из шести рассмотренных выше типов конденсаторов.

 


Автор: Санкет Гупта Перевод: Вячеслав Гавриков (г. Смоленск)

Разделы: Конденсаторы керамические, Пленочные конденсаторы

Опубликовано: 15.03.2018

Что такое неполяризованный конденсатор? По полярности конденсатора конденсатор можно разделить на неполяризованный конденсатор и поляризованный конденсатор. И в этой статье будет подробно рассказано: что такое неполяризованный конденсатор? Для чего это используется? Как выбрать неполяризованные конденсаторы? В чем разница между поляризованным конденсатором и неполяризованным конденсатором? давайте посмотрим

 

Сравнение поляризованного конденсатора с неполяризованным

Как проверить неполяризованный конденсатор?

 

Ⅱ Концепция

Неполяризованные конденсаторы  являются конденсаторами без положительной или отрицательной полярности. Два электрода неполяризованных конденсаторов могут быть вставлены в цепь случайным образом и не будут протекать, в основном используются в цепях связи, развязки, обратной связи, компенсации и генерации. На рисунке ниже показана эталонная схема неполяризованного конденсатора.

Рисунок 1. Неполяризованный конденсатор

Идеальный конденсатор не имеет полярности. Однако на практике для получения большой емкости применяют какие-то специальные материалы и конструкции, что приводит к тому, что собственно конденсаторы несколько поляризованы. Обычные поляризованные конденсаторы включают алюминиевые электролитические конденсаторы и танталовые электролитические конденсаторы. Электролитические конденсаторы обычно имеют относительно большую емкость. Неполяризованный конденсатор большой емкости сделать не так просто, потому что объем станет очень большим. Вот почему в реальной схеме так много поляризованных конденсаторов. Поскольку его размеры малы, а напряжение в этой цепи имеет только одно направление, могут пригодиться поляризованные конденсаторы.

Мы используем поляризованные конденсаторы, чтобы избежать недостатков и воспользоваться преимуществами. Мы можем понять это следующим образом: Поляризованный конденсатор на самом деле является конденсатором, который можно использовать только в одном направлении напряжения. Для неполяризованных конденсаторов можно использовать оба направления напряжения. Таким образом, только с точки зрения направления напряжения неполяризованные конденсаторы лучше, чем поляризованные. Вполне возможно заменить поляризованные конденсаторы на неполяризованные, если емкость, рабочее напряжение, объем и т. д. могут соответствовать требованиям.

 

Ⅲ Функция

Неполяризованные конденсаторы, применяемые в цепях чистого переменного тока, и из-за их небольшой емкости они также могут применяться для фильтрации высоких частот. Вот пример, иллюстрирующий применение конденсатора:

В этом случае в основном используется RC-схема подавления искр. При приеме радио- и телепрограммы на антенну, если люминесцентная лампа включена и люминесцентная лампа мигает, будет слышен неравномерный звук радио или динамика телевизора. Многие четкие яркие линии и яркие пятна на экране телевизора являются высокочастотными помехами, вызванными электрическими искрами.

При отключении цепей с индуктивностью между контактами возникает искра. Как показано в схеме слева на рис. 2, переключатель S внезапно выключается, и ток быстро исчезает, то есть изменение тока велико, поэтому на обоих концах катушки создается большая собственная индуктивность. . Эта электродвижущая сила может препятствовать изменению тока, и ее направление согласуется с направлением приложенного напряжения. Когда они накладываются друг на друга, напряжение U1 на переключателе будет очень высоким, а когда напряжение выше определенного значения, это «резкое» напряжение пробьет воздух и образует электрическую искру.

Искра может привести к абляции и окислению контактов, что приведет к неисправности. Поэтому важно устранить искру между контактами. При отключении цепи, пока ток управляющей катушки не падает, напряжение на двух концах катушки не будет слишком большим, поэтому искры не будет, как показано на схеме справа внизу. , цепь подавления искры RC подключена к обоим концам катушки индуктивности. Когда переключатель внезапно выключается, i1 заряжает конденсатор. Часть энергии магнитного поля в индукторе рассеивается на резисторах R и r, а часть преобразуется в энергию электрического поля в конденсаторе С, что вызывает повторный разряд конденсатора С, тем самым устраняя искру.

    

Рис.2. Цепь с индуктивностью и искрогасительной цепью

 

Ⅳ Как выбрать неполяризованные конденсаторы?

    Неполяризованные конденсаторы очень удобны в выборе и использовании. Вы можете напрямую выбрать конденсаторы той же модели и с одинаковыми характеристиками. Если ни одно из вышеперечисленных условий не выполняется, вы можете обратиться к следующим методам:

     1.   Выберите разумную точность конденсатора. В большинстве случаев требования к емкости не очень высоки, и допустимо иметь емкость примерно такую ​​же, как эталонная емкость. В схемах колебаний, схемах фильтрации, схемах задержки и схемах тона абсолютное значение ошибки должно быть в пределах 0,3–0,5%.

     2.  Выберите конденсатор в соответствии с требованиями схемы. Бумажный конденсатор обычно используется для цепи обхода низкочастотного переменного тока. Слюдяной конденсатор или керамический конденсатор обычно используются в цепях высокой частоты или высокого напряжения.

     3.  Конденсаторы могут быть выбраны с номинальным напряжением, большим или равным фактическим потребностям.

     4.  ВЧ конденсаторы нельзя заменять низкочастотными.

     5.  Учитывайте рабочую температуру, рабочий диапазон, температурный коэффициент конденсатора в зависимости от случая применения.

     6.  Последовательный или параллельный метод может использоваться, когда номинальная емкость не может быть достигнута, но напряжение, добавляемое к конденсатору, должно быть меньше выдерживаемого напряжения конденсатора.

 

Ⅴ Разница между неполяризованными и поляризованными конденсаторами

Как полярные, так и неполярные конденсаторы имеют одинаковый принцип, то есть накопление и высвобождение зарядов; напряжение на пластине (здесь электродвижущая сила накопления заряда называется напряжением) не может внезапно измениться

Различные среды, разные характеристики, разная емкость и разная структура приводят к разным условиям использования и использованию. И наоборот, с развитием науки и техники и открытием новых материалов будут появляться более совершенные и разнообразные конденсаторы.

Рис.3. Различные типы конденсаторов

 

5.1 Различные диэлектрики      

Что такое диэлектрик? Другими словами, — это вещество между двумя пластинами конденсатора. В большинстве конденсаторов с полярностью в качестве диэлектрика используются электролиты, благодаря чему конденсатор с полярностью имеет большую емкость по сравнению с другими конденсаторами того же объема. Кроме того, конденсаторы с разной полярностью, изготовленные из разных электролитных материалов и процессов, будут иметь разную емкость. Между тем, выдерживаемое напряжение в основном связано с диэлектрическим материалом. А также существует множество неполяризованных материалов, в том числе наиболее часто используемая пленка из оксида металла и полиэстер. Использование полярных и неполяризованных конденсаторов определяется тем, является ли природа диэлектрика обратимой.

Рис.4. Неполяризованный конденсатор и поляризованный конденсатор

 

5.2 Различная производительность

Производительность и максимизация требований являются требованием использования. Если в блоке питания телевизора в качестве фильтра используется металлооксидно-пленочный конденсатор, и если для удовлетворения фильтра требуется емкость и выдерживаемое напряжение, то, боюсь, внутрь корпуса можно установить только блок питания.

Таким образом, фильтр может использовать только полярный конденсатор, а полярная емкость необратима. Как правило, электролитический конденсатор выше 1 мФ, который участвует в соединении, развязке, фильтрации источника питания и так далее. Неполярный конденсатор в основном меньше 1 мФ, что связано с резонансом, связью, выбором частоты, ограничением тока и так далее. Конечно, существуют также неполярные конденсаторы большой емкости и высокого напряжения, которые в основном используются для компенсации реактивной мощности, сдвига фазы двигателя, сдвига фазы мощности преобразования частоты и других целей. Существует много видов неполяризованных конденсаторов.

 

Рис.5. Конденсаторы

 

5.3 Разная емкость

Как было сказано ранее, конденсаторы одного объема имеют разную емкость при разном диэлектрике.

5.4 Другая конструкция

В принципе можно использовать конденсатор любой формы в окружающей среде без учета точечного разряда. Чаще всего используются электролитические конденсаторы круглой формы, редко встречаются квадратные. Форма конденсаторов разнообразна, например трубчатая, деформированная прямоугольная, пластинчатая, квадратная, круглая, комбинированная квадратная или круглая и так далее, в зависимости от того, где они используются. Конечно, есть и невидимые, называемые распределенным конденсатором, которые нельзя игнорировать в высокочастотных и промежуточных устройствах.

5.5 Различное использование Окружающая среда и использование

Из-за внутреннего материала и конструкции емкость конденсатора с полярностью (например, электролиз алюминия) может быть очень большой, но его высокочастотные характеристики не очень хорошие, поэтому он подходит для питания фильтры и другие случаи. Есть еще конденсаторы полярности с хорошими ВЧ характеристиками — танталовые электролизные, цена которых сравнительно высока;

Включая керамические конденсаторы, монолитные конденсаторы, конденсаторы из полиэтилена (CBB) и т. д. Эти неполяризованные конденсаторы имеют небольшие размеры, низкую цену и хорошие высокочастотные характеристики, но они не подходят для большой емкости. Керамические конденсаторы обычно используются в высокочастотной фильтрации, колебательной цепи.

Рис.6. Различные конденсаторы

Магнитные диэлектрические конденсаторы используют керамический материал в качестве мезона и используют серебряный слой на поверхности в качестве электрода. Обладая стабильной производительностью и малой утечкой, магнитные диэлектрические конденсаторы подходят для применения в высокочастотных и высоковольтных цепях.

Вообще говоря, в зависимости от изоляционного материала между двумя полюсами конденсатора. Материал с большой диэлектрической проницаемостью (например, сегнетокерамика, электролиты) подходит для конденсаторов большой емкости и малого объема, потери в которых также велики. Материал с малой диэлектрической проницаемостью (например, керамика) имеет низкие потери и подходит для высокочастотных применений.

Что такое неполяризованный конденсатор

Ⅰ I введение

Неполярный конденсатор является одним из многих конденсаторов. По полярности конденсатора конденсатор можно разделить на неполяризованный конденсатор и поляризованный конденсатор. И в этой статье будет подробно рассказано: что такое неполяризованный конденсатор? Для чего это используется? Как выбрать неполяризованные конденсаторы? В чем разница между поляризованными конденсаторами и неполяризованными конденсаторами? Давайте посмотрим.

 

Поляризованный конденсатор в сравнении с неполяризованным конденсатором

Как проверить неполяризованный конденсатор?

C atalog

Ⅰ Introduction

Catalog

Ⅱ Conception

Ⅲ Function

Ⅳ How to Select Non- поляризованные конденсаторы?

Ⅴ Разница между неполяризованными и поляризованными конденсаторами

5. 1 Различная диэлектрик

5.2 Различная производительность

5.3 Различная мощность

5.4 -поляризованные конденсаторы — это конденсаторы без положительной или отрицательной полярности. Два электрода неполяризованных конденсаторов можно произвольно вставлять в цепь, и они не будут протекать. Они в основном используются в цепях связи, развязки, обратной связи, компенсации и генерации. На рисунке ниже показана эталонная схема неполяризованного конденсатора.

Рисунок 1. Неполяризованный конденсатор

Идеальный конденсатор не имеет полярности. Однако на практике для получения большой емкости применяют какие-то специальные материалы и конструкции, что приводит к тому, что собственно конденсаторы несколько поляризованы. Обычные поляризованные конденсаторы включают алюминиевые электролитические конденсаторы и танталовые электролитические конденсаторы. Электролитические конденсаторы обычно имеют относительно большую емкость. Сделать неполяризованный конденсатор большой емкости не так-то просто, потому что объем станет очень большим. Вот почему в реальной схеме так много поляризованных конденсаторов. Поскольку его размер небольшой, а напряжение в этой цепи только однонаправленное, могут пригодиться поляризованные конденсаторы.

 

Мы используем поляризованные конденсаторы, чтобы избежать их недостатков и использовать их преимущества. Мы можем понять это так: Поляризованный конденсатор на самом деле является конденсатором, который можно использовать только в одном направлении напряжения. Для неполяризованных конденсаторов можно использовать оба направления напряжения. Таким образом, с точки зрения направления напряжения неполярные конденсаторы лучше, чем поляризованные. Вполне возможно заменить поляризованные конденсаторы на неполяризованные, если емкость, рабочее напряжение, объем и т. д. могут соответствовать требованиям.


Ⅲ Функция

Неполяризованные конденсаторы применяются в цепях чистого переменного тока, и из-за их небольшой емкости они также могут применяться для фильтрации высоких частот. Вот пример, иллюстрирующий применение конденсатора:

 

В этом случае в основном используется RC-схема подавления искр. Когда радио- и телепрограмма принимается антенной, и в то же время включается люминесцентная лампа и мигает люминесцентная лампа, вы услышите неравномерный звук радио или динамика телевизора. Многие четкие яркие линии и яркие пятна на экране телевизора являются высокочастотными помехами, вызванными электрическими искрами.

 

При отключении цепей с индуктивностью между контактами возникает искра. Как показано в схеме слева на рис. 2, переключатель S внезапно выключается, и ток быстро исчезает, то есть изменение тока велико, поэтому на обоих концах цепи возникает большая собственная индуктивность. катушка. Эта электродвижущая сила может препятствовать изменению тока, и ее направление согласуется с направлением приложенного напряжения. Когда они накладываются друг на друга, напряжение U 1 на переключателе будет очень высокое, и когда напряжение выше определенного значения, это «резкое» напряжение пробьет воздух и образует электрическую искру.

 

Искра может привести к абляции и окислению контактов, что в конечном итоге приведет к неисправности. Поэтому важно устранить искру между контактами. При отключении цепи, пока ток управляющей катушки не падает, напряжение на двух концах катушки не будет слишком большим, поэтому искры не будет. Как показано на схеме справа внизу, цепь подавления искры RC подключена к обоим концам катушки индуктивности. Когда переключатель внезапно выключается, i 1 зарядит конденсатор. Часть энергии магнитного поля в индукторе рассеивается на резисторах R и r, а часть преобразуется в энергию электрического поля в конденсаторе С, что вызывает повторный разряд конденсатора С, тем самым устраняя искру.

    

Рис.2. Цепь с индуктивностью и искрогасителем


Ⅳ Как выбрать неполяризованные конденсаторы?

Неполяризованные конденсаторы очень удобны в выборе и использовании. Вы можете напрямую выбрать конденсаторы той же модели и с одинаковыми характеристиками. Если ни одно из вышеперечисленных условий не выполняется, можно обратиться к следующим методам:

 

     1.  Выберите разумную точность конденсатора. В большинстве случаев требования к емкости не очень высоки, и допустимо иметь емкость примерно такую ​​же, как эталонная емкость. В схемах колебаний, схемах фильтрации, схемах задержки и схемах тона абсолютное значение ошибки должно быть в пределах 0,3–0,5%.

 

     2.  Выберите конденсатор в соответствии с требованиями схемы. Бумажный конденсатор обычно используется для схемы обхода низкочастотного переменного тока. Слюдяной конденсатор или керамический конденсатор обычно используются в цепях высокой частоты или высокого напряжения.

 

     3.  Конденсаторы могут быть выбраны с номинальным напряжением выше или равным фактическим потребностям.

 

     4. Конденсаторы высокочастотные не могут быть заменены конденсаторами низкочастотными.

 

     5. Учитывайте рабочую температуру, рабочий диапазон, температурный коэффициент конденсатора в зависимости от случая применения.

 

     6. Последовательный или параллельный метод может использоваться, когда номинальная емкость не может быть достигнута, но напряжение, добавляемое к конденсатору, должно быть меньше выдерживаемого напряжения конденсатора.


Ⅴ Разница между неполяризованными и поляризованными конденсаторами

Как поляризованные, так и неполяризованные конденсаторы имеют одинаковые принципы, то есть хранение и высвобождение зарядов; напряжение на пластине (здесь электродвижущая сила накопления заряда называется напряжением) не может измениться внезапно.

 

Различные носители, разная производительность, разная емкость и разная структура приводят к разным условиям использования и использованию. И наоборот, с развитием науки и техники и открытием новых материалов будут появляться более совершенные и разнообразные конденсаторы.

Рис.3. Различные типы конденсаторов

5.1 Различные диэлектрики

Что такое диэлектрик? Другими словами, это вещество между двумя пластинами конденсатора. В большинстве конденсаторов с полярностью используются электролиты в качестве диэлектрик , что делает конденсатор полярности более ёмким, чем другие конденсаторы того же объёма. Кроме того, поляризованные конденсаторы, изготовленные из разных электролитных материалов и процессов, будут иметь разную емкость.

 

Между тем, выдерживаемое напряжение в основном связано с диэлектрическим материалом. А также существует множество неполяризованных материалов , включая наиболее широко используемые пленки оксида металла и полиэстер, использование поляризованных и неполяризованных конденсаторов определяется тем, является ли природа диэлектрика обратимой.

Рис.4. Неполяризованный конденсатор и поляризованный конденсатор

5. 2 Различная производительность

Производительность и максимизация требований являются требованием использования. Если в блоке питания телевизора в качестве фильтра используется металлооксидно-пленочный конденсатор, и если для удовлетворения фильтра требуется емкость и выдерживаемое напряжение, то, боюсь, внутрь корпуса можно установить только блок питания.

 

Следовательно, в фильтре можно использовать только поляризованный конденсатор, а полярность емкости необратима. Как правило, электролитический конденсатор выше 1 мФ, который участвует в соединении, развязке, фильтрации источника питания и так далее. Неполяризованный конденсатор в основном менее 1 мкФ, который участвует в резонансе, связи, выборе частоты, ограничении тока и так далее. Конечно, существуют также неполяризованные конденсаторы большой емкости и высокого напряжения, в основном используемые для компенсации реактивной мощности, сдвига фаз двигателя, сдвига фаз мощности преобразования частоты и других целей. Существует много видов неполяризованных конденсаторов.

 

Рис.5. Конденсаторы

5.3 Разная емкость

Как было сказано выше, конденсаторы одного объема имеют разную емкость под разным диэлектриком.

5.4 Другая конструкция

В принципе можно использовать конденсатор любой формы в окружающей среде без учета точечного разряда. Чаще всего используются электролитические конденсаторы круглой формы, редко встречаются квадратные. Форма конденсаторов разнообразна, например трубчатая, деформированная прямоугольная, пластинчатая, квадратная, круглая, комбинированная квадратная или круглая и так далее, в зависимости от того, где они используются. Конечно, есть и невидимые, называемые распределенным конденсатором, которые нельзя игнорировать в высокочастотных и промежуточных устройствах.

5.5 Различное использование Окружающая среда и использование

Из-за внутреннего материала и конструкции емкость полярных конденсаторов (таких как алюминиевый электролиз) может быть очень большой. Однако их высокочастотные характеристики не очень хороши, поэтому они очень подходят для фильтров питания и других случаев. Существуют также поляризованные конденсаторы с хорошими ВЧ-характеристиками — танталовые электролизные, цена которых сравнительно высока.

 

Включая керамические конденсаторы, монолитные конденсаторы, конденсаторы из полиэтилена (CBB) и т. д., эти неполяризованные конденсаторы имеют небольшие размеры, низкую цену и хорошие высокочастотные характеристики, но они не подходят для большой емкости. . Керамические конденсаторы обычно используются в высокочастотной фильтрации и цепи генерации.

Рис.6. Различные конденсаторы

В конденсаторах с магнитным диэлектриком в качестве мезона используется керамический материал, а в качестве электрода используется серебряный слой на поверхности. Имея стабильную работу и небольшую утечку, магнитные диэлектрические конденсаторы подходят для высокочастотных и высоковольтных цепей.

 

Вообще говоря, в зависимости от изоляционного материала между двумя полюсами конденсатора. Материал с большой диэлектрической проницаемостью (например, сегнетокерамика, электролиты) подходит для конденсаторов большой емкости и малого объема, потери в которых также велики. Материал с малой диэлектрической проницаемостью (например, керамика) имеет низкие потери и подходит для высокочастотных применений.

Ⅵ Часто задаваемые вопросы

1. Можно ли использовать неполяризованный конденсатор вместо поляризованного?

Практически всегда можно заменить электролитический (полярный) конденсатор на электростатический (неполярный) того же номинала с необходимым номинальным напряжением. Однако обратное невозможно.

 

2. В чем основное различие между полярным и неполярным конденсатором (кроме наличия или отсутствия полюсов)? Где мы их используем?

Главное отличие состоит в том, из чего они сделаны. Между прочим, это также определяет, насколько большими они должны быть для данной емкости и сколько они стоят.

 

Полярные конденсаторы также известны как электролитические конденсаторы, поскольку в качестве диэлектрика в них используется электролит. Это обеспечивает чрезвычайно высокую емкость с небольшим током утечки в небольшом корпусе. Керамический конденсатор с эквивалентной емкостью должен быть очень и очень большим.

 

Существует множество различных типов неполярных конденсаторов. Два наиболее распространенных, которые я видел, это керамика и слюда. Керамика дешева, слюда дороже, но я считаю, что слюдяные конденсаторы могут выдерживать более высокое напряжение. В целом они обеспечивают меньший ток утечки, чем электролиты, но и меньшую емкость в зависимости от размера. Основное преимущество заключается в том, что они сохраняют свою емкость при смещении в обоих направлениях.

 

Электролитические конденсаторы полезны в местах, где напряжение никогда не изменит полярность на них при надлежащих условиях использования. Их высокая емкость означает, что их можно более эффективно использовать для фильтрации электропитания, снижения пульсаций в выпрямителе и смягчения переключений включения/выключения.

 

Но для развязки компонентов они не так хороши, потому что без очень хорошего смещения они будут иметь обратное напряжение, а при обратном напряжении они выходят из строя, теряют свою емкость и текут как сумасшедшие.

 

Они также выпускают «волшебный дым» при слишком сильном обратном смещении. Неполярные конденсаторы — нет.

 

3. Что такое полярные и неполярные конденсаторы?

Все электростатические конденсаторы могут подключаться к цепям переменного или постоянного тока независимо от того, какое соединение имеет маркировку для положительной или отрицательной полярности. Они обладают одними и теми же свойствами независимо от того, как они связаны. Это неполярные конденсаторы.

 

Диэлектрик электролитических конденсаторов формируется в виде оксидного слоя на одном электроде в результате химического воздействия под действием тока в одном направлении. Прохождение тока в противоположном направлении приведет к повреждению конденсатора.

 

Поэтому клеммы электролитических конденсаторов специально маркируются с положительной и отрицательной полярностью (чаще всего маркируется отрицательная клемма). Конденсаторы обязательно должны быть подключены с одинаковыми соответствующими полярностями в цепи. Это полярные конденсаторы.

 

4. Как узнать, является ли конденсатор неполяризованным?

В случае неполяризованного конденсатора подключите его любым способом, так как у них нет полярности. Теперь проверьте показания цифрового мультиметра. Если показания мультиметра ближе к реальным значениям (указанным на конденсаторе), то конденсатор можно считать исправным.

 

5. Почему предпочтительны неполярные конденсаторы?

Электролитические конденсаторы имеют более высокую емкость, но для большинства целей предпочтительнее использовать неполяризованные конденсаторы. Они дешевле, могут быть установлены в любом направлении и служат дольше.

 

6. Можно ли заменить поляризованный конденсатор на неполяризованный?

Неполяризованные конденсаторы представляют собой надмножество поляризованных конденсаторов. … В общем, вы можете заменить поляризованный конденсатор на поляризованный или неполяризованный конденсатор с той же емкостью и с номинальным напряжением оригинала или выше.

 

7. Можно ли подключать неполяризованный конденсатор к цепи постоянного тока?

Неполяризованные конденсаторы можно подключать к цепям постоянного или переменного тока. … Ток может течь только во время зарядки или разрядки конденсатора.

 

8. В чем разница между постоянными и полярными конденсаторами?

Электростатические конденсаторы неполярны, то есть их можно подключать с любой полярностью, и разницы нет. Электролитические конденсаторы полярны по своей природе. Их можно подключать только с фиксированной полярностью клемм. Положительные и отрицательные клеммы отмечены.

 

9. Для чего нужен неполярный конденсатор?

Неполяризованные конденсаторы — это конденсаторы без положительной или отрицательной полярности. Два электрода неполяризованных конденсаторов могут быть вставлены в цепь случайным образом и не будут протекать, в основном используются в цепях связи, развязки, обратной связи, компенсации и генерации.

 

10. Все ли электролитические конденсаторы поляризованы?

Почти все электролитические конденсаторы поляризованы, а это означает, что напряжение на положительной клемме всегда должно быть больше, чем напряжение на отрицательной клемме. … Они имеют типичную емкость от 1 мкФ до 47 мФ и рабочее напряжение до нескольких сотен вольт постоянного тока. 9

Как выбрать конденсатор

 

Лучшие продажи диода

Фото Часть Компания Описание Цена (долл. США)

Альтернативные модели

Часть Сравнить Производители Категория Описание

Заказ и качество

Изображение Произв.

Top