интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Магнитный гистерезис. Магнитный гистерезис


Магнитный гистерезис

Магнитный гистерезис— явление зависимостивектора намагничиванияи вектора магнитной индукции в веществе не только от приложенного внешнего поля, но и от истории данного образца. Магнитный гистерезис обычно проявляется вферромагнетиках—Fe,Co,Niи сплавах на их основе. Именно магнитным гистерезисом объясняется существованиепостоянных магнитов.

Теория явления гистерезиса учитывает конкретную магнитную доменную структуру образца и её изменения в ходе намагничивания и перемагничивания. Эти изменения обусловлены смещением доменных границ и ростом одних доменов за счёт других, а также вращением вектора намагниченности в доменах под действием внешнего магнитного поля. При полной ориентации всех доменов в направлении внешнего поля (ферромагнетик становится «однодоменным») достигается состояние насыщения. При выключении внешнего поля происходит некоторое уменьшение намагниченности вследствие теплового движения в кристалле, однако ферромагнетик остается намагниченным, так как при невысоких температурах энергия теплового движения сравнительно невелика и ее недостаточно для полной разориентации доменов.

Эти процессы требуют больших энергетических затрат и являются нелинейными. Кривая размагничивания ферромагнетика не совпадает с кривой намагничивания. Изменение намагниченности ферромагнетика (и индукции поля в нем) запаздывает по отношению к изменению напряженности внешнего поля. Это явление называется гистерезисом.При уменьшении напряженности внешнего поля до нуля, индукция поля в магнетике не равна нулю, ее величина называетсяостаточной индукциейВо. Чтобы полностью размагнитить магнетик, надо изменить направление внешнего поля на противоположное, и увеличивать его. При некотором значении напряженности «обратного» поля Нс, называемомкоэрцитивной силой,магнетик полностью размагничивается. Замкнутая кривая, отражающая процесс перемагничивания ферромагнетиков, называетсяпетлей гистерезиса(рис.1).

Рис.1. Петля гистерезиса

На данном графике точки В и С характеризуют состояние насыщения. Величина остаточной индукции характеризуется отрезком B0.

Коэрцитивная сила определяется точкой пересечения петли гистерезиса с осью напряженности магнитного поля. По величине коэрцитивной силы ферромагнетики разделяются на мягкие и жесткие магнитные материалы.

Жесткие ферромагнетики используются для постоянных магнитов, они имеют большую остаточную намагниченность и широкую петлю гистерезиса.

Мягкие ферромагнетики применяются в приборах и установках, работающих с переменными электромагнитными полями, где требуется частое перемагничивание при минимальных энергетических потерях (например, в сердечниках трансформаторов). Для них характерна небольшая остаточная намагниченность и узкая петля гистерезиса.

Описание установки

Опытная установка состоит из модуля ФПЭ-07, генератора сигналов ФГ-100 и осциллографа. Модуль содержит тороидальный трансформатор с исследуемым ферромагнитным сердечником в форме кольца, резисторы R1, R2и конденсатор С. С выхода генератора переменное напряжение через резисторR1 подается на первичную обмотку трансформатора, а затем - на вход «Х» осциллографа. Напряженность магнитного поля, создаваемого током первичной обмотки, пропорциональна напряжению на нейUx. С вторичной обмотки трансформатора через цепь, содержащую резисторR2и конденсатор С, сигнал подается на вход «Y» осциллографа. Индукция магнитного поля, возникающего в ферромагнитном сердечнике, пропорциональна напряжению на вторичной обмотке трансформатораUy.

studfiles.net

Магнитный гистерезис - это... Что такое Магнитный гистерезис?

Петля гистерезиса. Подобная зависимость величин характерна для всех видов гистерезиса

Гистере́зис (греч. ὑστέρησις — «отстающий») — свойство систем (обычно физических), которые не сразу следуют приложенным силам. Реакция этих систем зависит от сил, действовавших ранее, то есть системы зависят от собственной истории.

В физике

Наибольший интерес представляют магнитный гистерезис, сегнетоэлектрический гистерезис и упругий гистерезис.

Магнитный гистерезис

Магнитный гистерезис — явление зависимости вектора намагничивания и вектора напряженности магнитного поля в веществе не только от приложенного внешнего поля, но и от предыстории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках — Fe, Co, Ni и сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов.

Явление магнитного гистерезиса наблюдается не только при изменении поля H по величине и знаку, но также и при его вращении (гистерезис магнитного вращения), что соответствует отставанию (задержке) в изменении направления M с изменением направления H. Гистерезис магнитного вращения возникает также при вращении образца относительно фиксированного направления H.

Теория явления гистерезиса учитывает конкретную магнитную доменную структуру образца и её изменения в ходе намагничивания и перемагничивания. Эти изменения обусловлены смещением доменных границ и ростом одних доменов за счёт других, а также вращением вектора намагниченности в доменах под действием внешнего магнитного поля. Всё, что задерживает эти процессы и способствует попаданию магнетиков в метастабильные состояния, может служить причиной магнитного гистерезиса.

В однодоменных ферромагнитных частицах (в частицах малых размеров, в которых образование доменов энергетически невыгодно) могут идти только процессы вращения M. Этим процессам препятствует магнитная анизотропия различного происхождения (анизотропия самого кристалла, анизотропия формы частиц и анизотропия упругих напряжений). Благодаря анизотропии, M как бы удерживается некоторым внутренним полем HA (эффективным полем магнитной анизотропии) вдоль одной из осей лёгкого намагничивания, соответствующей минимуму энергии. Магнитный гистерезис возникает из-за того, что два направления M (по и против) этой оси в магнитоодноосном образце или несколько эквивалентных (по энергии) направлений М в магнитомногоосном образце соответствуют состояниям, отделённым друг от друга потенциальным барьером (пропорциональным HA). При перемагничивании однодоменных частиц вектор M рядом последовательных необратимых скачков поворачивается в направлении H, Такие повороты могут происходить как однородно, так и неоднородно по объёму. При однородном вращении M коэрцитивная сила . Более универсальным является механизм неоднородного вращения M. Однако наибольшее влияние на Hc он оказывает в случае, когда основную роль играет анизотропия формы частиц. При этом Hc может быть существенно меньше эффективного поля анизотропии формы.

В электронике и электротехнике используются устройства, обладающие магнитным - различные магнитные носители информации, или электрическим гистерезисом, например, триггер Шмитта или гистерезисный двигатель.

Сегнетоэлектрический гистерезис

Сегнетоэлектрический гистерезис — неоднозначная петлеобразная зависимость поляризации P сегнетоэлектриков от внешнего электрического поля E при его циклическом изменении. Сегнетоэлектрические кристаллы обладают в определенном температурном интервале спонтанной (самопроизвольной, то есть возникающей в отсутствие внешнего электрического поля) электрической поляризацией Pc. Направление поляризации может быть изменено электрическим полем. При этом зависимость P(E) в полярной фазе неоднозначна, значение P при данном E зависит от предистории, то есть от того, каким было электрическое поле в предшествующие моменты времени. Основные параметры сегнетоэлектрического гистерезиса:

  • остаточная поляризация кристалла Pост, при E = 0
  • значение поля EKt(коэрцитивное поле) при котором происходит переполяризация

Упругий гистерезис

В теории упругости явление гистерезиса наблюдается в поведении упругих материалов, которые под воздействием больших давлений способны сохранять деформацию и утрачивать её при воздействии обратного давления (например, вытягивание сжатого стержня). Во многом именно это явление объясняет анизотропию механических характеристик кованых изделий, а также их высокие механические качества.

Различают два вида упругого гистерезиса — динамический и статический.

Динамический гистерезис наблюдают при циклически изменяющихся напряжениях, максимальная амплитуда которых существенно ниже предела упругости. Причиной этого вида гистерезиса является неупругость либо вязкоупругость. При неупругости, помимо чисто упругой деформации (отвечающей закону Гука), имеется составляющая, которая полностью исчезает при снятии напряжений, но с некоторым запаздыванием, а при вязкоупругости эта составляющая полностью со временем не исчезает. Как при неупругом, так и вязкоупругом поведении величина ΔU — энергия упругой деформации не зависит от амплитуды деформации и меняется с частотой изменения нагрузки. Также динамический гистерезис возникает в результате термоупругости, магнитоупругих явлений и изменения положения точечных дефектов и растворённых атомов в кристаллической решётке тела под влиянием приложенных напряжений.

В биологии

Гистерезисные свойства характерны для скелетных мышц млекопитающих.

В почвоведении

Основная гидрофизическая характеристика почвы обладает гистерезисом.

В гидрологии

Зависимость Q=f(H) - связь расходов и уровней воды в реках - имеет петлеобразную форму.

В экономике

Некоторые экономические системы проявляют признаки гистерезиса: например, могут потребоваться значительные усилия, чтобы начать экспорт в какой-либо отрасли, но для его поддержания на постоянном уровне — небольшие.

В теории игр эффект гистерезиса проявляется в том, что небольшие отличия по одному или нескольким параметрам приводят две системы в противоположные стабильные равновесия, например, «хорошее» — доверие, честность и высокое благосостояние; и «плохое» — воровство, недоверие, коррупция и бедность. Несмотря на небольшие первоначальные различия, системы требуют огромных усилий для перехода из одного равновесия в другое.

Эффект гистерезиса - состояние безработицы; достигнув достаточно высокого уровня, она может в определенной мере самовоспроизводиться и удерживаться на нем. Экономические причины гистерезиса (долгосрочной негибкости рынка труда) неоднозначны. Некоторые институциональные факторы ведут к гистерезису. Например, социальное страхование, особенно страхование по безработице, может через налоговую систему снижать спрос фирм на рабочую силу в официальной экономике. Безработица может вести к потере человеческого капитала и к "помечиванию" тех, кто долгое время остается безработным. Профсоюзы могут вести переговоры с целью поддерживать благосостояние их настоящих членов, игнорируя интересы аутсайдеров, оказавшихся безработными. Фиксированные издержки, связанные со сменой должности, места работы или отрасли, также могут приводит к гистерезису. Наконец, возможны трудности при различении реальных и кажущихся явлений гистерезиса, когда конечное состояние системы определяется, ее текущей динамикой или ее начальным состоянием. В первом случае гистерезис отражает наше незнание: добавив недостающие переменные и информацию, можно более полно описать эволюцию изучаемой системы. Др. интерпретация явления гистерезиса - простое существование нескольких состояний равновесия, когда невидимые воздействия перемещают экономику из одного состояния равновесия в др.

Математические модели гистерезиса

Появление математических моделей гистерезисных явлений обуславливалось достаточно богатым набором прикладных задач (прежде всего в теории автоматического регулирования), в которых носители гистерезиса нельзя рассматривать изолированно, поскольку они являлись частью некоторой системы. Создание математической теории гистерезиса относится к 60-м годам XX-го века, когда в Воронежском университете начал работать семинар под руководством М. А. Красносельского, "гистерезисной" тематики. Позднее, в 1983 году появилась монография [1], в которой различные гистерезисные явления получили формальное описание в рамках теории систем: гистерезисные преобразователи трактовались как операторы, зависящие от своего начального состояния как от параметра, определенные на достаточно богатом функциональном пространстве(напр. пространстве непрерывных функций), действующие в некоторое функциональное пространство.

Свойства

Простое параметрическое описание различных петель гистерезиса можно найти в работе[2]. Замена гармонических функций на прямоугольные, треугольные или трапецеидальные импульсы позволяет получить кусочно-линейные петли гистерезиса, часто встречающиеся в дискретной автоматике.

Литература

  1. ↑ М.А. Красносельский,А.В.Покровский. Системы с гистерезисом М., Наука, 1983. 271 стр.
  2. ↑ R. V. Lapshin, “Analytical model for the approximation of hysteresis loop and its application to the scanning tunneling microscope”, Review of Scientific Instruments, volume 66, number 9, pages 4718-4730, 1995.(англ.)

См. также

Обменное смещение - как особенность петель гистерезиса.

Wikimedia Foundation. 2010.

dic.academic.ru

Гистерезис магнитный: описание, свойства, практическое применение

Бывает гистерезис магнитный, сегнетоэлектрический, динамический, упругий. Он также встречается в биологии, почвоведении, экономике. Причем суть у этого определения практически одинакова. Но в статье пойдет речь именно про магнитный, вы узнаете более подробно об этом явлении, от чего оно зависит и когда проявляется. Данное явление изучается в вузах с технической направленностью, в школьную программу не входит, поэтому не каждый знает о нем.

Гистерезис магнитный

гистерезис магнитный

Это необратимая и неоднозначная зависимость показателя намагниченности вещества (причем это, как правило, ферромагнетики магнитоупорядоченные) от внешнего магнитного поля. При этом поле постоянно изменяется – уменьшается или увеличивается. Общая причина существования гистерезиса – это наличие в минимуме термодинамического потенциала нестабильного состояния и стабильного, а также имеются необратимые переходы между ними. Гистерезис – это также проявление магнитного ориентационного фазового перехода 1-го рода. При них переходы от одной к другой фазам происходят из-за метастабильных состояний. Характеристика – это график, который носит название «петля гистерезиса». Иногда еще его называют «кривой намагниченности».

Петля гистерезиса

явление гистерезиса

На графике зависимости М от Н можно видеть:

  1. Из нулевого состояния, при котором М=0 и Н=0, с увеличением Н растет и М.
  2. Когда поле увеличивается, то намагниченность становится практически постоянной и равна значению насыщения.
  3. При уменьшении Н происходит обратное изменение, но вот когда Н=0, намагниченность М не будет равна нулю. Это изменение можно видеть по кривой размагничивания. И когда Н=0, М принимает значение, равное остаточной намагниченности.
  4. При увеличении Н в интервале –Нт... +Нт происходит изменение намагниченности вдоль третьей кривой.
  5. Все три кривые, описывающие процессы, соединяются и образуют своеобразную петлю. Она-то и описывает явление гистерезиса – процессы намагничивания и размагничивания.

Энергия намагничивания

кривая намагничивания

Петля считается несимметричной в том случае, когда максимумы поля Н1, которые прикладываются в обратном и прямом направлениях, не являются одинаковыми. Выше была описана петля, которая характерна для медленного процесса перемагничивания. При них происходит сохранение квазиравновесных связей между значениями Н и М. Нужно обратить внимание на то, что при намагничивании или размагничивании происходит отставание М от Н. И это приводит к тому, что вся та энергия, которая приобретается ферромагнитным материалом во время намагничивания, отдается не полностью при прохождении цикла размагничивания. И вот эта разница идет вся в нагрев ферромагнетика. И петля магнитного гистерезиса оказывается в этом случае несимметричной.

Форма петли

Зависит форма петли от многих параметров – намагниченности, напряженности поля, наличия потерь и т. д. Также немалое влияние оказывает и химический состав ферромагнетика, структурное состояние его, температура, характер и распределение дефектов, наличие обработки (тепловой, термомагнитной, механической). Следовательно, гистерезис ферромагнетиков можно изменять, подвергая материалы механической обработке. От этого изменяются все характеристики материала.

Гистерезисные потери

петля магнитного гистерезиса

Во время динамического перемагничивания ферромагнетика переменным магнитным полем наблюдаются потери. Причем они составляют лишь малую долю от полных магнитных потерь. Если петли имеют одинаковую высоту (одинаковое максимальное значение намагниченности М), петля динамического вида оказывается шире статической. Происходит это вследствие того, что ко всем потерям добавляются новые. Это динамические потери, они обычно связаны с вихревым током, магнитной вязкостью. В сумме же получаются достаточно существенные потери на гистерезис.

Однодоменные ферромагнетики

гистерезис ферромагнетиков

В том случае, если частицы имеют различный размер, протекает процесс вращения. Происходит это по причине того, что образование новых доменов невыгодно с энергетической точки зрения. Но процессу вращения частиц мешает анизотропия (магнитная). Она может иметь разное происхождение – образовываться в самом кристалле, возникать вследствие упругого напряжения и т. д.). Но именно при помощи этой анизотропии намагниченность удерживается внутренним полем. Его еще называют эффективным полем магнитной анизотропии. И гистерезис магнитный возникает вследствие того, что намагниченность изменяется в двух направлениях – прямом и обратном. Во время перемагничивания однодоменных ферромагнетиков происходит несколько скачков. Вектор намагниченности М разворачивается в сторону поля Н. Причем поворот может быть однородным или неоднородным.

Многодоменные ферромагнетики

В них кривая намагничивания строится по подобному образу, но вот процессы протекают иные. При перемагничивании происходит смещение границ доменов. Следовательно, одной из причин возникновения гистерезиса может являться задержка смещений границ, а также необратимые скачки. Иногда (если у ферромагнетиков довольно большое поле) гистерезис магнитный определяется задержкой роста и образования зародышей перемагничивания. Именно из этих зародышей образуется доменная структура ферромагнитных веществ.

Теория гистерезиса

потери на гистерезис

Стоит учитывать, что явление магнитного гистерезиса происходит также при вращении поля Н, а не только при его изменении по знаку и величине. Называется это гистерезисом магнитного вращения и соответствует изменению направления намагниченности М с изменением направления поля Н. Возникновение гистерезиса магнитного вращения наблюдается также при вращении исследуемого образца относительно фиксированного поля Н.

Кривая намагничивания характеризует также магнитную структуру домена. Структура изменяется при прохождении процессов намагничивания и перемагничивания. Изменения зависят от того, насколько смещаются границы доменов, от воздействий внешнего магнитного поля. Абсолютно все, что способно задержать все процессы, описанные выше, переводит ферромагнетики в нестабильное состояние и является причиной того, что возникает гистерезис магнитный.

Нужно учесть, что гистерезис зависит от множества параметров. Намагниченность меняется под воздействием внешних факторов – температуры, упругого напряжения, следовательно, возникает гистерезис. При этом появляется гистерезис не только намагниченности, но и всех тех свойств, от которых он зависит. Как можно видеть отсюда, явление гистерезиса можно наблюдать не только при намагничивании материала, но и при других физических процессах, связанных прямо или косвенно с ним.

fb.ru

Гистерезис - это... Что такое Гистерезис?

Рис. 1. Петля гистерезиса. Подобная зависимость величин характерна для всех видов гистерезиса

Гистере́зис (греч. ὑστέρησις — отстающий) — свойство систем (физических, биологических и т. д.), мгновенный отклик которых на приложенные к ним воздействия зависит в том числе и от их текущего состояния, а поведение системы на интервале времени во многом определяется её предысторией. Для гистерезиса характерно явление "насыщения", а также неодинаковость траекторий между крайними состояниями (отсюда наличие остроугольной петли на графиках). Не следует путать это понятие с инерционностью поведения систем, которое обозначает монотонное сопротивление системы изменению её состояния.

В физике

Наибольший интерес представляют магнитный гистерезис, сегнетоэлектрический гистерезис и упругий гистерезис.

Магнитный гистерезис

Магнитный гистерезис — явление зависимости вектора намагничивания и вектора напряженности магнитного поля в веществе не только от приложенного внешнего поля, но и от предыстории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках — Fe, Co, Ni и сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов.

Явление магнитного гистерезиса наблюдается не только при изменении поля H по величине и знаку, но также и при его вращении (гистерезис магнитного вращения), что соответствует отставанию (задержке) в изменении направления M с изменением направления H. Гистерезис магнитного вращения возникает также при вращении образца относительно фиксированного направления H.

Теория явления гистерезиса учитывает конкретную магнитную доменную структуру образца и её изменения в ходе намагничивания и перемагничивания. Эти изменения обусловлены смещением доменных границ и ростом одних доменов за счёт других, а также вращением вектора намагниченности в доменах под действием внешнего магнитного поля. Всё, что задерживает эти процессы и способствует попаданию магнетиков в метастабильные состояния, может служить причиной магнитного гистерезиса.

В однодоменных ферромагнитных частицах (в частицах малых размеров, в которых образование доменов энергетически невыгодно) могут идти только процессы вращения M. Этим процессам препятствует магнитная анизотропия различного происхождения (анизотропия самого кристалла, анизотропия формы частиц и анизотропия упругих напряжений). Благодаря анизотропии, M как-будто удерживается некоторым внутренним полем (эффективным полем магнитной анизотропии) вдоль одной из осей лёгкого намагничивания, соответствующей минимуму энергии. Магнитный гистерезис возникает из-за того, что два направления M (по и против) этой оси в магнитоодноосном образце или несколько эквивалентных (по энергии) направлений М в магнитомногоосном образце соответствуют состояниям, отделённым друг от друга потенциальным барьером (пропорциональным ). При перемагничивании однодоменных частиц вектор M рядом последовательных необратимых скачков поворачивается в направлении H. Такие повороты могут происходить как однородно, так и неоднородно по объёму. При однородном вращении M коэрцитивная сила . Более универсальным является механизм неоднородного вращения M. Однако наибольшее влияние на он оказывает в случае, когда основную роль играет анизотропия формы частиц. При этом может быть существенно меньше эффективного поля анизотропии формы.

Сегнетоэлектрический гистерезис

Сегнетоэлектрический гистерезис — неоднозначная петлеобразная зависимость поляризации P сегнетоэлектриков от внешнего электрического поля E при его циклическом изменении. Сегнетоэлектрические кристаллы обладают в определенном температурном интервале спонтанной (самопроизвольной, то есть возникающей в отсутствие внешнего электрического поля) электрической поляризацией Pc. Направление поляризации может быть изменено электрическим полем. При этом зависимость P(E) в полярной фазе неоднозначна, значение P при данном E зависит от предыстории, то есть от того, каким было электрическое поле в предшествующие моменты времени. Основные параметры сегнетоэлектрического гистерезиса:

  • остаточная поляризация кристалла Pост, при E = 0
  • значение поля EKt(коэрцитивное поле) при котором происходит переполяризация

Упругий гистерезис

В теории упругости явление гистерезиса наблюдается в поведении упругих материалов, которые под воздействием больших давлений способны сохранять деформацию и утрачивать её при воздействии обратного давления (например, вытягивание сжатого стержня). Во многом именно это явление объясняет анизотропию механических характеристик кованых изделий, а также их высокие механические качества.

Различают два вида упругого гистерезиса — динамический и статический.

Динамический гистерезис наблюдают при циклически изменяющихся напряжениях, максимальная амплитуда которых существенно ниже предела упругости. Причиной этого вида гистерезиса является неупругость либо вязкоупругость. При неупругости, помимо чисто упругой деформации (отвечающей закону Гука), имеется составляющая, которая полностью исчезает при снятии напряжений, но с некоторым запаздыванием, а при вязкоупругости эта составляющая со временем исчезает не полностью. Как при неупругом, так и вязкоупругом поведении величина  — энергия упругой деформации — не зависит от амплитуды деформации и меняется с частотой изменения нагрузки. Также динамический гистерезис возникает в результате термоупругости, магнитоупругих явлений и изменения положения точечных дефектов и растворённых атомов в кристаллической решётке тела под влиянием приложенных напряжений.

В электронике и электротехнике

В электронике и электротехнике используются устройства, обладающие магнитным гистерезисом — различные магнитные носители информации, или электрическим гистерезисом, например, триггер Шмитта или гистерезисный двигатель.

Гистерезис используется для подавления шумов (быстрых колебаний, дребезга контактов) в момент переключения логических сигналов.

В электронных приборах всех видов наблюдается явление теплового гистерезиса: после нагрева прибора и его последующего охлаждения до начальной температуры его параметры не возвращаются к начальным значениям. Из-за неодинакового теплового расширения кристаллов полупроводников, кристаллодержателей, корпусов микросхем и печатных плат в кристаллах возникают механические напряжения, которые сохраняются и после охлаждения. Явление теплового гистерезиса наиболее заметно в прецизионных источниках опорного напряжения, используемых в измерительных аналого-цифровых преобразователях. В современных микросхемах относительный сдвиг опорного напряжения вследствие теплового гистерезиса составляют порядка 10-100 ppm[1].

В биологии

Гистерезисные свойства характерны для скелетных мышц млекопитающих.

В почвоведении

Основная гидрофизическая характеристика почвы обладает гистерезисом.

В гидрологии

Зависимость Q=f(H) — связь расходов и уровней воды в реках — имеет петлеобразную форму.

В экономике

Некоторые экономические системы проявляют признаки гистерезиса: например, могут потребоваться значительные усилия, чтобы начать экспорт в какой-либо отрасли, но для его поддержания на постоянном уровне — небольшие.

В теории игр эффект гистерезиса проявляется в том, что небольшие отличия по одному или нескольким параметрам приводят две системы в противоположные стабильные равновесия, например, «хорошее» — доверие, честность и высокое благосостояние; и «плохое» — воровство, недоверие, коррупция и бедность. Несмотря на небольшие первоначальные различия, системы требуют огромных усилий для перехода из одного равновесия в другое.

Эффект гистерезиса — состояние безработицы; достигнув достаточно высокого уровня, она может в определенной мере самовоспроизводиться и удерживаться на нем. Экономические причины гистерезиса (долгосрочной негибкости рынка труда) неоднозначны. Некоторые институциональные факторы ведут к гистерезису. Например, социальное страхование, особенно страхование по безработице, может через налоговую систему снижать спрос фирм на рабочую силу в официальной экономике. Безработица может вести к потере человеческого капитала и к «помечиванию» тех, кто долгое время остается безработным. Профсоюзы могут вести переговоры с целью поддерживать благосостояние их настоящих членов, игнорируя интересы аутсайдеров, оказавшихся безработными. Фиксированные издержки, связанные со сменой должности, места работы или отрасли, также могут приводить к гистерезису. Наконец, возможны трудности при различении реальных и кажущихся явлений гистерезиса, когда конечное состояние системы определяется ее текущей динамикой или ее начальным состоянием. В первом случае гистерезис отражает наше незнание: добавив недостающие переменные и информацию, можно более полно описать эволюцию изучаемой системы. Др. интерпретация явления гистерезиса — простое существование нескольких состояний равновесия, когда невидимые воздействия перемещают экономику из одного состояния равновесия в др.

В социологии

Проверить информацию.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.На странице обсуждения должны быть пояснения.

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 12 мая 2011.

Формирование общественного мнения и управление им никогда не осуществляется мгновенно. Всегда есть какая-то задержка. Это связано с полным или частичным отказом от стереотипного традиционного мышления и необходимостью «поддаться» в определенных случаях переубеждению и следованию новым взглядам, которые формируются определенными субъектами. В качестве субъектов формирования общественного мнения и управления им могут выступать государство, партии, общественные организации, их лидеры, руководители и управленцы различного уровня и др.

В характере формирования общественного мнения важно учитывать два существенных обстоятельства.[2]

Одно из них указывает на взаимосвязь приложенных усилий субъектом влияния и достигнутым результатом. Уровень затраченной субъектом просветительской и пропагандистской работы можно соотносить с уровнем «намагниченности» (степенью вовлеченности в новую идею) объекта—носителя общественного мнения, социальную группу, коллектив, социальную общность или общество в целом; при этом может обнаружиться некоторое отставание объекта от субъекта. Переубеждение, в том числе с предполагаемыми деструктивными последствиями, далеко не всегда проходит успешно. Оно зависит от собственных моральных ценностей, обычаев, традиций, характера предыдущего воспитания, от этических норм, доминирующих в обществе и т. д.

Второе обстоятельство связано с тем, что новый этап формирования общественного мнения можно соотносить с историей объекта, его опытом, его оценкой теми, кто ранее выступал объектом формирования общественного мнения. При этом можно обнаружить, что "точка отсчета" времени формирования общественного мнения смещается относительно прежней, что является характеристикой самой системы и ее текущего состояния.

Литература по теме

В философии

Жиль Делёз использует понятие гистерезиса при характеристике монадологии Лейбница.

Математические модели гистерезиса

Появление математических моделей гистерезисных явлений обуславливалось достаточно богатым набором прикладных задач (прежде всего в теории автоматического регулирования), в которых носители гистерезиса нельзя рассматривать изолированно, поскольку они являлись частью некоторой системы. Создание математической теории гистерезиса относится к 60-м годам XX-го века[источник не указан 652 дня], когда в Воронежском университете начал работать семинар под руководством М. А. Красносельского, «гистерезисной» тематики. Позднее, в 1983 году появилась монография [3], в которой различные гистерезисные явления получили формальное описание в рамках теории систем: гистерезисные преобразователи трактовались как операторы, зависящие от своего начального состояния как от параметра, определённые на достаточно богатом функциональном пространстве (например, в пространстве непрерывных функций), действующие в некотором функциональном пространстве. Простое параметрическое описание различных петель гистерезиса можно найти в работе [4] (замена в данной модели гармонических функций на прямоугольные, треугольные или трапецеидальные импульсы позволяет также получить кусочно-линейные петли гистерезисы, которые часто встречаются в дискретной автоматике, см. пример на Рис. 2).

Литература

В. А. Костицын, «Опыт математической теории гистерезиса», Матем. сб., 32:1 (1924), 192—202.

Примечания

dic.academic.ru

Магнитный гистерезис, теория и примеры задач

Основные понятия магнитного гистерезиса

Если взять ферромагнетик в ненамагниченном состоянии, поместить его в магнитное поле, напряженность которого можно постепенно изменять, увеличивать величину H от нуля до некоторого значения H_1. Зависимость B\left(H\right) (рис.1 (б)) будет отображать отрезок ОА. Потом будем постепенно уменьшать напряженность внешнего магнитного поля. При этом кривая намагничивания пойдет не по тому же пути (AO), что шла наверх, а по кривой, которая на рис. 1(б) обозначена как ACD. Если от величины напряжения -H_1 изменять магнитное поле снова до H, то кривая намагничивания пройдет ниже и вернется в точку А (см. рис.1). Получается замкнутая кривая, которая называется петлей гистерезиса. Из рис.1 видно, что при H=0 индукция пол ферромагнетика (и его намагниченность) не становятся равными нулю. Из рис. 1(б) видно, что модуль магнитной индукции равен длине отрезка ОС. Этому отрезку соответствует остаточное намагничивание. С существованием остаточного намагничивания связано наличие постоянных магнитов. Для размагничивания ферромагнетика его следует поместить в обратное магнитное поле, величина которого равна так называемой коэрцитивной силе ферромагнетика (H_K=\left|OF'\right|).

Магнитный гистерезис, рисунок 1

Рис. 1(a)

Магнитный гистерезис, рисунок 2

Рис. 1(б)

Петля магнитного гистерезиса

Величины остаточного намагничивания и коэрцитивной силы могут испытывать большие вариации для разных ферромагнетиков. Так, для мягких ферромагнетиков петля гистерезиса узкая, соответственно коэрцитивная сила небольшая. Для материалов, которые применяют при изготовлении постоянных магнитов петля гистерезиса широкая. Петля гистерезиса для зависимости J(H) имеет подобную форму (рис.1 (а)).

Следует отметить, что при увеличении внешнего магнитного поля намагниченность ферромагнетиков растет быстро, затем ее скорость ее роста уменьшается и при некоторой величине, которую называют магнитным насыщением, остается постоянной и не зависит от напряженности внешнего поля. Аналогичный процесс происходит и со связью магнитной индукции ферромагнетика и внешнего магнитного поля. Такую зависимость J(H) объясняют тем, что магнитные моменты молекул при увеличении напряженности внешнего поля ориентируются по полю, так растет степень ориентации моментов. Когда неориентированных моментов остается все меньше и меньше, увеличение J прекращается и происходит магнитное насыщение. На рис. 1 точка А – является точкой насыщения.

Мы получили, что величина магнитной индукции (или величина намагниченности) в ферромагнетике определяется не только существующим внешним магнитным полем, но еще зависит от предыдущих состояний намагничивания, при этом происходит некоторое отставание изменения индукции (намагничивания) от изменений напряженности поля. Магнитный гистерезис подобен диэлектрическому гистерезису в сегнетоэлектриках. Гистерезис очень сильно зависит от состава ферромагнетика и способов его обработки.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Магнитный гистерезис Википедия

Гистере́зис (греч. ὑστέρησις — отставание, запаздывание) — свойство систем (физических, биологических и т. д.), мгновенный отклик которых на приложенные к ним воздействия зависит в том числе и от их текущего состояния, а поведение системы на интервале времени во многом определяется её предысторией. Для гистерезиса характерно явление «насыщения», а также неодинаковость траекторий между крайними состояниями (отсюда наличие остроугольной петли на графиках). Не следует путать это понятие с инерционностью поведения систем, которое обозначает монотонное сопротивление системы изменению её состояния.

В физике

Наибольший интерес представляют магнитный гистерезис, сегнетоэлектрический гистерезис и упругий гистерезис.

Магнитный гистерезис

Магнитный гистерезис — явление зависимости вектора намагниченности и вектора напряжённости магнитного поля в веществе не только от приложенного внешнего поля, но и от предыстории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках — Fe, Co, Ni и сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов.

Явление магнитного гистерезиса наблюдается не только при изменении поля H по величине и знаку, но также и при его вращении (гистерезис магнитного вращения), что соответствует отставанию (задержке) в изменении направления M с изменением направления H. Гистерезис магнитного вращения возникает также при вращении образца относительно фиксированного направления H.

Теория явления гистерезиса учитывает конкретную магнитную доменную структуру образца и её изменения в ходе намагничивания и перемагничивания. Эти изменения обусловлены смещением доменных границ и ростом одних доменов за счёт других, а также вращением вектора намагниченности в доменах под действием внешнего магнитного поля. Всё, что задерживает эти процессы и способствует попаданию магнетиков в метастабильные состояния, может служить причиной магнитного гистерезиса.

В однодоменных ферромагнитных частицах (в частицах малых размеров, в которых образование доменов энергетически невыгодно) могут идти только процессы вращения M. Этим процессам препятствует магнитная анизотропия различного происхождения (анизотропия самого кристалла, анизотропия формы частиц и анизотропия упругих напряжений). Благодаря анизотропии, M как будто удерживается некоторым внутренним полем HA{\displaystyle H_{A}} (эффективным полем магнитной анизотропии) вдоль одной из осей лёгкого намагничивания, соответствующей минимуму энергии. Магнитный гистерезис возникает из-за того, что два направления M (по и против) этой оси в магнитоодноосном образце или несколько эквивалентных (по энергии) направлений М в магнитомногоосном образце соответствуют состояниям, отделённым друг от друга потенциальным барьером (пропорциональным HA{\displaystyle H_{A}}). При перемагничивании однодоменных частиц вектор M рядом последовательных необратимых скачков поворачивается в направлении H. Такие повороты могут происходить как однородно, так и неоднородно по объёму. При однородном вращении M коэрцитивная сила Hc≈HA{\displaystyle H_{c}\approx H_{A}}. Более универсальным является механизм неоднородного вращения M. Однако наибольшее влияние на Hc{\displaystyle H_{c}} он оказывает в случае, когда основную роль играет анизотропия формы частиц. При этом Hc{\displaystyle H_{c}} может быть существенно меньше эффективного поля анизотропии формы.

Сегнетоэлектрический гистерезис

Зависимость поляризации P{\displaystyle P} от напряжённости электрического поля E{\displaystyle E} в сегнетоэлектрике.

Сегнетоэлектрический гистерезис — неоднозначная петлеобразная зависимость поляризации P{\displaystyle P} сегнетоэлектриков от внешнего электрического поля E{\displaystyle E} при его циклическом изменении. Сегнетоэлектрические кристаллы обладают в определенном температурном интервале спонтанной (самопроизвольной, то есть возникающей в отсутствие внешнего электрического поля) электрической поляризацией Pc{\displaystyle P_{c}}. Направление поляризации может быть изменено электрическим полем. При этом зависимость P{\displaystyle P} (E{\displaystyle E}) в полярной фазе неоднозначна, значение P{\displaystyle P} при данном E{\displaystyle E} зависит от предыстории, то есть от того, каким было электрическое поле в предшествующие моменты времени. Основные параметры сегнетоэлектрического гистерезиса:

  • остаточная поляризация кристалла Pr{\displaystyle P_{r}}, при E=0{\displaystyle E=0}
  • значение поля EKt{\displaystyle E_{Kt}} (коэрцитивное поле) при котором происходит переполяризация

Упругий гистерезис

В теории упругости явление гистерезиса наблюдается в поведении упругих материалов, которые под воздействием больших давлений способны сохранять деформацию и утрачивать её при воздействии обратного давления (например, вытягивание сжатого стержня). Во многом именно это явление объясняет анизотропию механических характеристик кованых изделий, а также их высокие механические качества.

Различают два вида упругого гистерезиса — динамический и статический.

Динамический гистерезис наблюдают при циклически изменяющихся напряжениях, максимальная амплитуда которых существенно ниже предела упругости. Причиной этого вида гистерезиса является неупругость либо вязкоупругость. При неупругости, помимо чисто упругой деформации (отвечающей закону Гука), имеется составляющая, которая полностью исчезает при снятии напряжений, но с некоторым запаздыванием, а при вязкоупругости эта составляющая со временем исчезает не полностью. Как при неупругом, так и вязкоупругом поведении величина ΔU{\displaystyle \Delta U} — энергия упругой деформации — не зависит от амплитуды деформации и меняется с частотой изменения нагрузки. Также динамический гистерезис возникает в результате термоупругости, магнитоупругих явлений и изменения положения точечных дефектов и растворённых атомов в кристаллической решётке тела под влиянием приложенных напряжений.

В электронике и электротехнике

В электронике и электротехнике используются устройства, обладающие магнитным гистерезисом — различные магнитные носители информации, или электрическим гистерезисом, например, триггер Шмитта или гистерезисный двигатель.

Гистерезис используется для подавления шумов (быстрых колебаний, дребезга контактов) в момент переключения логических сигналов.

В электронных приборах всех видов наблюдается явление теплового гистерезиса: после нагрева прибора и его последующего охлаждения до начальной температуры его параметры не возвращаются к начальным значениям. Из-за неодинакового теплового расширения кристаллов полупроводников, кристаллодержателей, корпусов микросхем и печатных плат в кристаллах возникают механические напряжения, которые сохраняются и после охлаждения. Явление теплового гистерезиса наиболее заметно в прецизионных источниках опорного напряжения, используемых в измерительных аналого-цифровых преобразователях. В современных микросхемах относительный сдвиг опорного напряжения вследствие теплового гистерезиса составляет порядка 10—100 ppm[1].

В биологии

Зависимость вероятности поимок Mustela nivalis (ласка) в t-году от плотности основной жертвы — Myodes glareolus (рыжая полевка) осенью предыдущего года (жирная линия) или весной текущего года (тонкая линия). Логит-регрессия по обучающей части ряда наблюдений — 1994—2004 гг. Средний Урал, темнохвойная южная тайга, Висимский заповедник.

Гистерезисные свойства характерны для скелетных мышц млекопитающих.

В экологии популяций система «хищник — жертва» обладает гистерезисом и/или запаздыванием численного отклика хищника.

В почвоведении

Основная гидрофизическая характеристика почвы обладает гистерезисом.

В гидрологии

Зависимость Q=f(H) — связь расходов и уровней воды в реках — имеет петлеобразную форму.

В экономике

Некоторые экономические системы проявляют признаки гистерезиса: например, могут потребоваться значительные усилия, чтобы начать экспорт в какой-либо отрасли, но для его поддержания на постоянном уровне — небольшие.

В теории игр эффект гистерезиса проявляется в том, что небольшие отличия по одному или нескольким параметрам приводят две системы в противоположные стабильные равновесия, например, «хорошее» — доверие, честность и высокое благосостояние; и «плохое» — воровство, недоверие, коррупция и бедность. Несмотря на небольшие первоначальные различия, системы требуют огромных усилий для перехода из одного равновесия в другое.

Эффект гистерезиса — состояние безработицы; достигнув достаточно высокого уровня, она может в определенной мере самовоспроизводиться и удерживаться на нём. Экономические причины гистерезиса (долгосрочной негибкости рынка труда) неоднозначны. Некоторые институциональные факторы ведут к гистерезису. Например, социальное страхование, особенно страхование по безработице, может через налоговую систему снижать спрос фирм на рабочую силу в официальной экономике.

Безработица может вести к потере человеческого капитала и к «помечиванию» тех, кто долгое время остается безработным. Профсоюзы могут вести переговоры с целью поддерживать благосостояние их настоящих членов, игнорируя интересы аутсайдеров, оказавшихся безработными. Фиксированные издержки, связанные со сменой должности, места работы или отрасли, также могут приводить к гистерезису.

Наконец, возможны трудности при различении реальных и кажущихся явлений гистерезиса, когда конечное состояние системы определяется её текущей динамикой или её начальным состоянием. В первом случае гистерезис отражает наше незнание: добавив недостающие переменные и информацию, можно более полно описать эволюцию изучаемой системы. Др. интерпретация явления гистерезиса — простое существование нескольких состояний равновесия, когда невидимые воздействия перемещают экономику из одного состояния равновесия в др.

В социологии

Формирование общественного мнения и управление им никогда не осуществляется мгновенно. Всегда есть какая-то задержка. Это связано с полным или частичным отказом от стереотипного традиционного мышления и необходимостью «поддаться» в определенных случаях переубеждению и следованию новым взглядам, которые формируются определенными субъектами. В качестве субъектов формирования общественного мнения и управления им могут выступать государство, партии, общественные организации, их лидеры, руководители и управленцы различного уровня и др.

В характере формирования общественного мнения важно учитывать два существенных обстоятельства[2].

Одно из них указывает на взаимосвязь приложенных усилий субъектом влияния и достигнутым результатом. Уровень затраченной субъектом просветительской и пропагандистской работы можно соотносить с уровнем «намагниченности» (степенью вовлеченности в новую идею) объекта-носителя общественного мнения, социальную группу, коллектив, социальную общность или общество в целом; при этом может обнаружиться некоторое отставание объекта от субъекта. Переубеждение, в том числе с предполагаемыми деструктивными последствиями, далеко не всегда проходит успешно. Оно зависит от собственных моральных ценностей, обычаев, традиций, характера предыдущего воспитания, от этических норм, доминирующих в обществе и т. д.

Второе обстоятельство связано с тем, что новый этап формирования общественного мнения можно соотносить с историей объекта, его опытом, его оценкой теми, кто ранее выступал объектом формирования общественного мнения. При этом можно обнаружить, что «точка отсчёта» времени формирования общественного мнения смещается относительно прежней, что является характеристикой самой системы и её текущего состояния.

В философии

Жиль Делёз использует понятие гистерезиса при характеристике монадологии Лейбница.

Математические модели гистерезиса

Появление математических моделей гистерезисных явлений обуславливалось достаточно богатым набором прикладных задач (прежде всего в теории автоматического регулирования), в которых носители гистерезиса нельзя рассматривать изолированно, поскольку они являлись частью некоторой системы. В 1960-х годах в Воронежском университете начал работать семинар под руководством М. А. Красносельского, на котором создавалась строгая математическая теория гистерезиса[3].

Позднее, в 1983 году появилась монография М. А. Красносельского и А. В. Покровского[4], в которой различные гистерезисные явления получили формальное описание в рамках теории систем: гистерезисные преобразователи трактовались как операторы, зависящие от своего начального состояния как от параметра, определённые на достаточно богатом функциональном пространстве (например, в пространстве непрерывных функций), действующие в некотором функциональном пространстве.

Простое и интуитивно-понятное параметрическое описание различных петель гистерезиса предложено в работе Р. В. Лапшина.[5] Помимо классических петель замена в данной модели гармонических функций на трапецеидальные или треугольные импульсы позволяет получить кусочно-линейные петли гистерезиса, которые часто встречаются в задачах дискретной автоматики. Имеется реализация модели гистерезиса на языке программирования R (пакет Hysteresis[6]).

Примечания

  1. ↑ Harrison, L. Current Sources & Voltage References. — Newnes, 2005. — 569 p. — (Electronics & Electrical). — ISBN 9780750677523., p. 335
  2. ↑ Горшков М. К. Общественное мнение. Учебное пособие. — М., Политиздат, 1989. — 384 стр.
  3. ↑ Красносельский М. А., Покровский А. В. Системы с гистерезисом. — М.: Наука, 1983.
  4. ↑ Красносельский М. А., Покровский А. В. Системы с гистерезисом. — М.: Наука, 1983. — 271 с.
  5. ↑ R. V. Lapshin (1995). «Analytical model for the approximation of hysteresis loop and its application to the scanning tunneling microscope» (PDF). Review of Scientific Instruments (AIP) 66 (9): 4718-4730. DOI:10.1063/1.1145314. ISSN 0034-6748. (перевод на русский).
  6. ↑ Package Hysteresis (Tools for Modeling Rate-Dependent Hysteretic Processes and Ellipses). R-project (November 20, 2013). Проверено 11 июня 2018.

Литература

Ссылки

wikiredia.ru

Гистерезис в электротехнике. Магнитные свойства веществ

Любой электромагнитный сердечник после действия электрического тока какое-то время сохраняет магнитное поле (остаточный магнетизм). Эта величина зависит от свойств материала, но остаточный магнетизм всегда имеется. Чтобы перемагнитить сердечник, необходим магнитный поток обратного направления. Изменение магнитной индукции не успевает за изменением магнитного потока. Эта задержка по времени намагничивания сердечника из-за изменения направления магнитных потоков и именуется как гистерезис.

Чтобы понять всю сущность этого явления, необходимо рассмотреть способность веществ к намагничиванию.

Магнитные свойства веществ

Все вещества в окружающей нас природе в той или иной мере обладают магнитными свойствами. Еще в глубокой древности была известна удивительная способность некоторых минералов притягивать железные предметы. Среди многочисленных навигационных приборов, необходимых для прокладывания курса корабля или самолета, обязательно присутствует магнитный компас.

В точнейших измерительных приборах к числу основных деталей относятся постоянные магниты. Известно, что сильными магнитными свойствами обладает не только железо. Сюда входят кобальт, никель, сплавы на их основе и некоторые редкоземельные элементы. Все эти вещества и сплавы называют ферромагнетиками. Объединяет их способность к самопроизвольной спонтанной намагниченности.

Это свойство ферромагнетиков используют при создании постоянных магнитов. Наличие в атомах вещества нескомпенсированных магнитных моментов является необходимым условием возникновения ферромагнетизма.

В опыте Эйнштейна по величине закручивания при намагничивании образца было доказано, что ферромагнетизм связан со спиновыми магнитными моментами электронов. Обменное взаимодействие электронов при определенных соотношениях диаметра атома и внутренней незаполненной оболочки приводят к параллельной ориентации спинов.

Она возможна только при положительном значении интеграла обменной энергии.

В конечном счете, в ферромагнетике устанавливается такая ориентация спинов, которая обеспечивает минимальное значение суммы энергий магнитного и обменного взаимодействия.

Область с однородной спонтанной намагниченностью называют доменом. Энергетически наиболее выгодно такое расположение доменов, при котором они создают замкнутую магнитную цепь.

Между соседними доменами с различным направлением намагниченности имеются переходные слои, называемые границами или стенками домена. В них происходит постепенный поворот вектора намагниченности.

Ферромагнитные свойства у веществ существуют только в определенной области температуры. Температура, при которой ферромагнетики полностью теряют ферромагнитные свойства, называют точкой Кюри. Форму и величину доменов на поверхности ферромагнетика можно увидеть под микроскопом

В элементарной кристаллической ячейке железа ребра куба соответствуют направлению наиболее легкого намагничивания кристалла железа. Диагонали граней определяют направление среднего намагничивания.

Направление наиболее трудного намагничивания совпадает с диагоналями куба. Площадь на графике характеризует энергию магнитной анизотропии.

При отсутствии внешнего поля магнитные моменты доменов ориентированы по направлениям легкого намагничивания. В целом образец размагничен.

В слабых полях происходит рост доменов, направление намагниченности которых составляет меньший угол с направлением внешнего поля.

Этот процесс обратим. Если внешнее поле убрать, образец размагнитится. При увеличении внешнего поля происходит дальнейший рост доменов, который приостанавливается из-за дефектов кристалла. Когда поле достигает определенной величины, стенки растущих доменов скачком преодолевают препятствие. За счет этого препятствия кривая намагниченности имеет ступенчатый характер.

Скачкообразные изменения намагниченности создают в катушке соленоида импульсы напряжения. С дальнейшим увеличением поля вектор намагниченности поворачивается от оси легкого намагничивания в сторону внешнего поля, пока они не совпадут.

Гистерезис

Этот участок называют областью технического насыщения ферромагнетика, а соответствующую величину поля, полем насыщения. Если от этой величины поле уменьшить до нуля, в образце сохранится остаточное намагничивание.

Гистерезис – это явление отставания намагниченности от напряженности внешнего поля. Замыкающие домены, создавая замкнутую магнитную цепь, снижают поля рассеивания и уменьшают свободную энергию образца.

Его определяют, как разность величин магнитного насыщения ферромагнетика и намагниченности замыкающих доменов. Чтобы размагнитить образец, необходимо приложить к нему отрицательное поле, называемое коэрцитивной силой. Когда поле достигнет величины насыщения, произойдет полное перемагничивание ферромагнетика.

На графике можно определить еще одно свойство, которое имеет гистерезис. При очередном изменении поля кривая намагничивания замыкает петлю, которую называют петлей гистерезиса.

Гистерезисная петля для условия насыщения называется предельной петлей. Ее площадь пропорциональна потерям энергии на перемагничивание образца. Ферромагнетики намагничиваясь, изменяют свои линейные размеры. Это явление называют магнитострикцией.

Выделяются две основные группы ферромагнитных материалов:

  1. Магнитотвердые.
  2. Магнитомягкие.

Одно из основных требований к магнитомягким материалам – их высокая коэрцитивная сила. Магнитомягкие материалы намагничиваются до насыщения при небольших полях и имеют малые потери на перемагничивание. От этих параметров зависит потеря энергии трансформатора.

Например, в линии электропередач мощностью 100 х 106 ВА с трансформаторами на концах, ежегодные потери составляют около 5 миллионов киловатт-часов. Одним из лучших представителей магнитомягких материалов считают пермаллой – сплав железа и никеля. Намагниченность пермаллоя в слабых полях в десятки раз превосходит намагниченность железа. Магнитные упорядоченные структуры в некоторых веществах отличаются от магнитной структуры ферромагнетиков.

Если в железе, кобальте и никеле спиновые магнитные моменты направлены параллельно, то в хроме и марганце – антипараллельно. Такие вещества называют антиферромагнетиками.

В данном случае магнитные подрешетки с самопроизвольной намагниченностью компенсированы. Если в кристаллах вещества нет полной компенсации магнитных подрешеток, то его называют ферримагнетиком. Феррит – один из примеров ферримагнетиков, который широко используют в технике. Структура ферритов подобна структуре минералов шпинели, в котором ионы неферромагнитных металлов заменены ферромагнитными.

Гистерезис в электротехнике и электронике

Из многообразия примеров использования ферромагнитных материалов расскажем о применении их в запоминающих устройствах. Для оперативного запоминания информации используют память на ферритовых кольцах. Одного ферритового сердечника достаточно для запоминания одного бита информации. В качестве долговременных запоминающих устройств большой емкости служат специальные магнитные диски (триггеры Шмидта).

Также он используется в специальных гистерезисных электромоторах, устройствах шумоподавления (дребезг контактов, колебания и т.д.) при коммутации логических схем.

Во многих электронных устройствах существует тепловой гистерезис. Во время работы приборы нагреваются, а после охлаждения некоторые свойства уже не принимают начальные значения. При нагреве микросхемы, печатной платы, кристаллы полупроводников расширяются, появляется механическое напряжение. При охлаждении это напряжение в какой-то мере остается.

Похожие темы:

 

electrosam.ru


Каталог товаров