Как с помощью тестера определить плюс и минус: Как определить и проверить полярность с помощью мультиметра

Содержание

Как определить полярность светодиода

Содержание

  1. Суть понятия «полярность светодиода»
  2. Виды светодиодов
  3. Как определить полярность светодиода
  4. Как определить полярность светодиода по внешнему виду.
  5. Полярность SMD-светодиода.
  6. Определение полярности диода тестером (мультиметром).
  7. Как определить полярность при помощи подачи питания.
  8. Калькулятор расчета сопротивления резистора.
  9. Как определить полярность по технической документации.
  10. Итоги

Светоизлучающие диоды (СИД) — это полупроводниковые приборы, способные излучать видимый свет при протекании электрического тока в одном направлении. Однако, чтобы устройство работало, оно должно быть правильно подключено. А для того чтобы это сделать, нужно определить полярность диода, то есть — где у диода плюс, а где минус.

 

 

Самый простой способ выяснить полярность устройства — по схеме. Стандартное обозначение светодиода — треугольник, который опирается на катод (вертикальная линия, знак «-«), анод (знак «+») находится на противоположной стороне.

Светодиод на принципиальной схеме

Но если нет схемы, только само устройство — как определить, где плюс, а где минус? Это можно сделать по внешнему виду, или с помощью каких-то простых манипуляций, или с помощью инструментов. Как это определить, зависит как от типа устройства и его состояния, так и от производителя. В этой статье будут рассмотрены все существующие методы.

Суть понятия «полярность светодиода»

В диоде можно выделить следующие части:

  • Кристалл;
  • Анод — подает положительный заряд на кристалл;
  • Катод — накладывает отрицательный заряд на кристалл;
  • Диффузор;
  • Отражатель.

Светодиодный дизайн

Кристалл — это слои полупроводникового материала, в одном из которых больше отрицательных частиц (слой n), а в другом преобладают положительные частицы (слой p). Когда электрический ток проходит от p-слоя к n-слою, возникает люминесценция. Поэтому при подключении светодиода в цепь очень важно учитывать его полярность и подключать «+» источника к аноду, а «-» — к катоду, иначе он просто не будет работать.

Виды светодиодов

Диоды можно классифицировать различными способами. Но чтобы определить полярность, важно знать, какими они бывают по конструкции:

  1. DIP — цилиндрическая лампа, содержащая кристалл на длинных «ножках», которые являются катодом и анодом. Чаще всего он используется для индикаторных целей. Они характеризуются малым углом освещения (20-120 градусов), низким световым потоком и снижением яркости до 70 процентов во время работы.
  2. Spider Led — это диод типа DIP с 4 выводами. Этот диод обладает лучшим теплоотводом и надежностью. Он используется в автомобильной промышленности и для освещения.
  3. SMD — это современный тип светодиодов. Конструктивное отличие заключается в том, что ИС устанавливается непосредственно на подложку, на которой находится теплоотвод. Они очень прочны, имеют небольшие размеры и высокую светоотдачу.

СВЕТОДИОДЫ DIP

SMD светодиоды

Как определить полярность светодиода

Определить полярность светодиода, в зависимости от типа и конструкции, можно следующим образом:

  • по своему внешнему виду;
  • С помощью тестера;
  • С помощью источника питания.

Как определить полярность светодиода по внешнему виду.

Полярность светодиода можно определить визуально по различным признакам. Если это неиспользуемый DIP, то длинная ножка — анод (плюс), короткая — катод (минус). Запомнить его можно довольно легко: K — короткий — катод.

У некоторых производителей катод маркируется точкой или небольшой выемкой на корпусе.

В случае, если DIP не новый, необходимо внимательно осмотреть кристалл под лампой. Анод имеет гораздо меньший размер контакта, чем катод. Катод шире и выглядит как флаг или чаша.

Катод и анод

На фотографии выше ножка катода короче, но размер контакта под лампой намного больше. Поэтому для определения полярности диода DIP мультиметр может не понадобиться. А как насчет SMD?

Полярность SMD-светодиода.

SMD-диоды сегодня активно используются практически во всем — от небольших фонариков до лампочек. Но вы не можете заглянуть внутрь их кристалла. Поэтому необходимо обращать внимание на внешние маркировки, на плату и на корпус.

Например, у некоторых производителей на одной стороне диода имеется маркировка в виде небольшого зазора. Контакты на стороне этого зазора являются катодом.

Метка катода на корпусе светодиода

Также на некоторых марках светодиодов производитель размещает пиктограмму в виде символов с указанием направления протекания тока. В этом случае вывод, на который указывает символ, будет катодом.

Символы на SMD светодиодах

Также стоит обратить внимание на плату, в которой установлен светодиод. Производитель часто оставляет подсказку в виде маленького знака плюс на схеме, на стороне анода.

Определение полярности диода тестером (мультиметром).

Мультиметр — это универсальный прибор, с помощью которого можно измерять напряжение, ток и сопротивление. Часто прибор имеет функцию проверки диодов.

Чтобы найти катод и анод, переключите мультиметр в режим тестирования и кратковременно коснитесь контактов один за другим. Когда красный щуп тестера коснется анода, а черный — катода, на дисплее появится число около 1600 мВ, а диод слегка засветится. В обратном, неправильном порядке тестер покажет единицу.

 

 

Мультиметр в режиме проверки диодов

Существует также другой способ определить, где находится плюс и минус на диоде, если тестер имеет возможность тестирования PNP-транзисторов, а диод имеет длинные контактные ножки. В этом случае вставьте одну ножку в отверстие с маркировкой ‘C’, а другую — в отверстие с маркировкой ‘E’. Если диод светится, то отверстие с маркировкой «C» является плюсом (анодом), а отверстие с маркировкой «E» — минусом (катодом). Это самый быстрый способ проверить полярность и работу компонента.

Если диод не имеет длинных ножек, можно использовать иглу или тонкую проволоку.

Как определить полярность при помощи подачи питания.

На первый взгляд, это один из самых простых способов определить, где находится плюс и минус диода. Подключите катод и анод устройства к источнику питания. Если он горит, значит, подключение правильное: на плюсовой стороне источника питания находится анод, на минусовой — катод.

Но если ток в цепи превышает 30 мА, а напряжение выше максимально допустимого, диод может просто выйти из строя. И даже если после проверки он все еще работает, срок его службы, скорее всего, сильно сократится. Безопаснее включить в цепь резистор, причем последовательно. Сопротивление резистора можно рассчитать по формуле:

R = (UBP — Uled)/I

Где:

  • R — сопротивление резистора
  • UBP — рабочее напряжение источника питания
  • Uled — рабочее напряжение светодиода
  • Ток в амперах (не мА, а амперах. 20мА == 0,02А)

Поскольку целью является не сборка электрической схемы, а только проверка полярности, ток можно условно принять равным 20 мА. Индекс сопротивления должен быть выше стандартного значения. Например, результат расчета составляет 515 Ом, поэтому выбираем резистор со значением 560 Ом.

Стандартные значения сопротивления приведены в таблице ниже.

 

Таблица стандартных значений резисторов

Падение напряжения светодиодов DIP-типа можно определить по цвету, в небольшом диапазоне значений. Поэтому для расчета сопротивления можно использовать онлайн-калькулятор сопротивления:

Калькулятор расчета сопротивления резистора.

Более простым вариантом было бы использование неработающего источника питания от материнской платы, т.е. «таблеточной» батарейки CR2032. Это даст достаточное напряжение, чтобы увидеть, где диод находится на плюсовой стороне, а где на минусовой. Однако убедитесь, что ток источника питания не превышает 30 мА. Если это невозможно, лучше включить в схему резистор, как указано выше.

Перед тестированием убедитесь, что ток питания не превышает 30 мА.

Неплохо было бы собрать простой тестер для проверки полярности светодиодов.

 

Диаграмма светодиодного тестера

Если полярность правильная, вы увидите, что диод загорится, когда вы подключите его к цепи. Ток в нем не будет превышать 6 мА, что безопасно для большинства устройств. Это имеет смысл для тех, кому приходится делать это часто.

Если у вас все получилось с первого раза, не экспериментируйте и подключите светодиод в обратном порядке, чтобы избежать дополнительного риска неудачи.

Как определить полярность по технической документации.

Этот метод можно использовать, если:

  • Марка светодиода известна;
  • Вы знаете марку оборудования и имеете документацию производителя с электрическими схемами.

Информацию о полярности диода всегда можно найти на электрических схемах, в технической документации, каталогах производителей или просто с помощью поисковой системы в Интернете.

Как определить полярность светодиода на видео

5 лучших способов тестирования светодиодов

Итоги

Определение полярности светодиода может быть основано на различных критериях. В некоторых случаях это довольно легко сделать на внешних этикетках или этикетках производителя. Однако, поскольку строгих критериев не существует, такой подход несет в себе определенный риск — многое зависит от производителя и состояния компонента. Самый надежный способ сделать это — мультиметр, который поможет вам точно определить, где находится плюс и минус светодиода.

 

Как определить фазу, ноль и заземление

Многие электроприборы требуют соблюдения полярности. Это не только мощные потребители электроэнергии, такие как посудомоечная машина или электрическая печь, но и привычные для нас переключатели для включения/выключения света. Даже подключение переключателя с размыкаемым нулем вместо фазы может стать причиной удара током.

Стабильная и безопасная работа электроприборов возможна только при правильном подключении. Для этого нужно определить, какой из проводников является фазным, нулевым и заземляющим. В этой статье мы подробно рассмотрим способы, как это сделать безопасно с использованием доступных инструментов, а также разберем, можно ли определить фазность без приборов.

Безопасность прежде всего!

Жизнь и здоровье человека являются наибольшей ценностью. Поэтому, прежде чем приступить к работе с электрооборудованием, следует убедиться, что все инструменты исправны: корпуса без повреждений, изоляция без переломов провода и повреждений, щупы не разболтаны и их корпуса не нарушены.

Не прикасайтесь к участкам без изоляции на инструментах и проводах при работе под напряжением!

При возникновении малейших сомнений в правильности действий, прекратите работу и обратитесь к профессионалу — это убережет вас, а также окружающих людей, от возможного поражения током.

Как определить ноль и фазу индикаторной отверткой

Одним из простейших способов выявления фазы и нуля является работа с отверткой-индикатором. Такой инструмент доступен по цене и несложный в использовании. Подробно рассмотрим его устройство для понимания принципа работы.

Этот прибор состоит из рукоятки и металлического жала, большая часть которого покрыта изоляцией. Внутри прозрачной рукоятки размещен резистор и неоновая лампа, а на торцевой части имеется второй контакт.

Работая с индикаторной отверткой, её жало должно касаться исследуемого элемента, а человек — второго контакта. Емкость и сопротивление человеческого тела здесь выступают частями цепи: если в цепи присутствует напряжение, то лампочка начинает светиться.

Для определения фазы и нуля отверткой-индикатором достаточно дотронуться сначала к одному, а затем к другому не изолированному концу провода или отверстию розетки. Если в исследуемом элементе есть напряжение, то лампочка загорится. Это явление соответствует фазному проводнику. Если свечения нет, то перед нами нулевой или заземляющий кабель.

Как определить фазу и ноль мультиметром

Индикаторной отверткой мы могли определить только наличие напряжения. При помощи тестера мы можем увидеть определенные показатели, отображающиеся на мониторе. Определение рабочего, заземляющего и нулевого рабочего элемента при помощи мультиметра происходит по схожему с сценариею (как с отверткой). Но это более сложный прибор, поэтому нужно быть предельно внимательным при выставлении его режимов. Если вместо режима вольтметра будет выставлен режим амперметра, вы можете получить значительный удар током.

Итак, устанавливаем переключатель устройства в режим вольтметра переменного тока «~», а предел измерения устанавливаем выше предполагаемого напряжения в сети. Перед началом работы необходимо убедиться, что мультиметр исправен. Для этого нужно измерить напряжение переменного тока в рабочей розетке и проконтролировать полученные значения. После этого можно приступать к определению фазы в исследуемом объекте. Одним из электрощупов касаемся до исследуемого элемента, а контактную часть второго электрощупа зажимаем между двух пальцев. Если на экране отображается какое-либо значение, значительно отличающееся от нуля (близкое к номинальному напряжению в сети), то перед нами рабочий проводник, если же оно равно нулю или очень низкое (до нескольких десятков вольт), то это нулевой или заземляющий проводник.

Как определить фазу и ноль без приборов

Единственный возможный способ различить проводники без использования приборов — при помощи маркировки проводников по цветам. Желто-зеленая окраска изоляции соответствует кабелю заземления, синяя или голубая — нулевому, а рабочий кабель может быть любого цвета. К сожалению, не все придерживаются ГОСТов, а также необходимых требований. Нередко случается, что электричество подключено либо немаркированными кабелями, либо маркировка не соблюдена. Поэтому доверять такому способу нельзя.

В интернете можно найти множество способов определения фазы при помощи подручных средств — картофеля, стакана с водопроводной водой, контрольной лампочки и пр. Эти способы использовать ни в коем случае нельзя — такие опыты могут закончиться фатально не только для вас, но также для окружающих!

Отдельно отметим рекомендуемую даже некоторыми электриками контрольную лампочку, т.е. патрон с лампой, к которому подсоединены два провода. Использование такого самодельного прибора запрещено Правилами Безопасной Эксплуатации Электроустановок, т.к. может причинить серьезный ущерб и нанести травмы.

Также опасно использовать способы, в которых рекомендуется соединение электросети с заземленными предметами — трубами центрального отопления, водоснабжения, газовыми трубами и пр. — если напряжение окажется на таких предметах, то прикосновение к ним может стать смертельным.

Если вы не имеете достаточно инструментов или опыта работы с электричеством, то не рискуйте жизнью и здоровьем, а доверьте подключение электроприборов профессионалу.

Как определить заземление

Часто в новых домах можно встретить проводку из трехжильного кабеля, т.е. в нем присутствует отдельно выведенное заземление. При неправильном подключении есть риск короткого замыкания, а также поражения током. Поэтому для подключения электрооборудования важно знать не только где находится фаза, но также выявить ноль и заземление.

Определить провод заземления сложно из-за того, что по своим параметрам он схож с нулевым.

В электросистемах типа ТТ, имеющих индивидуальный заземляющий контур, можно найти кабель заземления при помощи измерений мультиметром. Для этого нужно поочередно измерить напряжение между рабочим проводником и двумя другими. Большее значение соответствует нулю, меньшее — земле.

В других конфигурациях сети этот прием не работает, поэтому мы рекомендуем предпринять следующие шаги:

  1. Отключить всех потребителей электроэнергии на исследуемом участке цепи.
  2. В щитке определить, где находится сдвоенный УЗО на ввод.
  3. Внимательно осмотрев защитное устройство, определить нахождение нулевого, а также фазного проводника.
  4. Отключить это УЗО.
  5. Аккуратно отсоединить нуль от УЗО на время исследования.
  6. Включить защитное устройство.
  7. Тестером произвести измерения исследуемых элементов поочередно подключая каждый к фазному. Нулевой проводник отключен, поэтому показания измерений будут нулевыми, сочетание фаза-земля покажет около 220 В.
  8. Промаркировать проводники по установленным данным.
  9. Произвести повторное подключение нуля к УЗО.

Помните: неосторожное или неумелое обращение с электричеством может привести к непоправимым последствиям. Не рискуйте жизнью и здоровьем — доверьте дело профессиональным электрикам со стажем и необходимыми допусками.

Оцените новость:

Поделиться:

часто задаваемых вопросов | Аккумуляторы Panasonic

Часто задаваемые вопросы

Могу ли я заряжать Ni-MH аккумуляторы с помощью зарядного устройства, специально разработанного для Ni-Cd аккумуляторов?

Никогда не заряжайте никель-металлогидридные аккумуляторы с помощью зарядного устройства для никель-кадмиевых аккумуляторов. Существуют значительные различия в условиях зарядки между этими двумя типами аккумуляторов.

Что означает «мАч» на моих перезаряжаемых батареях?

Емкость аккумуляторов указывается как ХХХХ мАч (миллиампер/час). Если вы вставите эту батарею в прибор, который постоянно потребляет ток 100 миллиампер, то математически продолжительность работы прибора составит около 20 часов.

Как мне обращаться с белым порошком из-за щелочной утечки?

При попадании на кожу возможен химический ожог. Используйте чистую прохладную воду в течение не менее 15 минут на открытых участках кожи. Обратитесь к врачу в случае раздражения, травмы или боли. При попадании в глаза не трите глаза, а промывайте их чистой прохладной водой в течение не менее 30 минут и немедленно обратитесь к врачу.

Что произойдет, если я случайно оставлю батарейки в стиральной машине?

Аккумуляторы становятся непригодными для использования после пребывания в воде. Однако, как правило, благодаря предохранительному клапану батарея не протечет внутрь стиральной машины, поэтому вероятность того, что ваш текстиль пострадает, минимальна.

Можно ли провозить батарейки для слуховых аппаратов в ручной клади?

Вы всегда можете подняться на борт самолета с батареями для слуховых аппаратов в устройстве. Чтобы узнать о правилах перевозки запасных батареек для слуховых аппаратов, обратитесь в авиакомпанию.

Щелочная батарея работает дольше, чем батарея Zn/C?

Основное различие между цинковой батареей и щелочной батареей заключается в типе электролита, используемого в обеих батареях. Из-за состава щелочная батарея дает больше энергии, чем цинковая. Таким образом, обе батареи следует использовать в разных приборах.

В чем разница между щелочными и литиевыми батареями?

Литиевые батареи могут генерировать сильный заряд энергии после длительного периода низкой разрядки, что делает их идеальными для пожарной сигнализации.

Что означает «LR03 — AAA» на моем аккумуляторе?

Батареи классифицируются в соответствии со стандартами классификации IEC: LR03 соответствует AAA, но в другом стандарте.

Когда следует менять батарейки в пульте дистанционного управления?

Замените батареи, как только устройство начнет работать со сбоями. Извлеките батареи, если вы планируете не использовать устройство в течение длительного периода времени.

Следует ли хранить батареи в холодильнике или морозильной камере?

Нет. Конденсат может повредить аккумуляторы. Не подвергайте батареи воздействию экстремальных температур в любое время.

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • следующий ›
  • последний »

Как пользоваться мультиметром, часть 3: измерение сопротивления и проверка целостности цепи

На прошлой неделе мы показали вам, как использовать мультиметр для измерения напряжения или, точнее, для проверки наличия напряжения, что является наиболее распространенным причина, по которой вы хватаетесь за счетчик и копаетесь в проводке вашего автомобиля. Теперь мы займемся вторым наиболее распространенным применением мультиметра в автомобиле — измерением сопротивления и проверкой непрерывности.

Как мы обсуждали несколько недель назад, сопротивление — это свойство электрического проводника, противодействующее протеканию тока. В нагрузочном устройстве, таком как электродвигатель или электрическая лампочка, сопротивление — это хорошо, потому что оно на самом деле берет протекающий заряд и превращает его во что-то полезное, например, водяное колесо в реке. Однако в большинстве самих проводов вы хотите, чтобы сопротивление было как можно медленнее, чтобы ток мог течь через него, не мешая ему.

При этом, когда мы говорим об измерении сопротивления с помощью измерителя, мы измеряем не динамическое сопротивление цепи; это статическое сопротивление части цепи.

Позвольте мне сказать это снова по-другому. Когда цепь находится под напряжением, напряжение, приложенное к цепи, вместе с общим сопротивлением всех компонентов в цепи вызывает протекание определенного количества тока. Вы можете измерить напряжение и ток в цепи под напряжением и использовать эти цифры для расчета сопротивления (закон Ома), но на самом деле вы не можете измерить сопротивление цепи под напряжением. По ряду причин нужно отключить питание и измерить сопротивление отдельных отрезков цепи. Или, если использовать формулировку, которую мы предложили на прошлой неделе, измерение сопротивления проводится с цепью без питания , в серии с частью цепи.

И, действительно, большую часть времени нас не интересует само значение сопротивления. Вместо этого мы обычно заинтересованы в проверке преемственности. (Есть исключения, такие как проверка датчика температуры, сопротивление которого зависит от температуры, или проверка правильности сопротивления катушки или балластного резистора.)

Так в чем же разница между сопротивлением и непрерывностью? Подумайте об этом так: Непрерывность — это бинарная версия сопротивления. Если сопротивление объекта, который мы тестируем, — провода, в котором мы хотим убедиться, что он не поврежден, соединения, в котором мы хотим убедиться, действительно замыкается на землю, переключателя, который мы хотим проверить, работает, — низкое (например, менее 1 Ом), мы говорим, что он имеет непрерывность.

Хорошо, давайте измерим сопротивление.

Настройка мультиметра для измерения сопротивления . Существует три шага настройки:

  1. Поместите черный щуп в гнездо с надписью «COM» для «общего», что означает, что он является общим для всех измерений. Как только он появится, его никогда не нужно будет перемещать.
  2. Вставьте красный щуп в гнездо, помеченное греческим символом омега (Ω) для обозначения сопротивления. Почти наверняка это тот же разъем с буквой V для напряжения. Это означает, что вы можете оставить выводы пробников в одних и тех же разъемах для измерения напряжения и сопротивления. Вам нужно только изменить разъем, к которому подключается провод считывающего датчика, если вам нужно измерить ток.
  3. Поверните большую поворотную ручку на значение сопротивления, обозначенное символом омега (Ω). Если у вас нет измерителя с автоматическим выбором диапазона, выберите наиболее чувствительную настройку сопротивления. Это действительно не будет иметь большого значения, если вы просто ищете преемственность. Измеритель должен сказать «OL», что означает «превышение предела», что означает, что, когда кончики датчиков не соприкасаются, сопротивление бесконечно.


Мультиметр, настроенный для измерения сопротивления (красный щуп в гнезде «VΩ», поворотный регулятор повернут на настройку сопротивления)

Настройка звукового сигнала . Если вы проверяете непрерывность (а вы почти всегда это делаете), «звуковой сигнал» очень удобен, так как он позволяет вам проверять, даже не глядя на измеритель. Способ включения варьируется от метра к метру. На некоторых измерителях это отдельная настройка на поворотном диске. На других, например на моем стареньком Fluke 85, это кнопка над циферблатом с символом, который выглядит примерно как усиливающиеся звуковые волны или мегафон.


Настройка звукового сигнала непрерывности (красный прямоугольник) зависит от метража. В данном случае это кнопка 9.0131

Проверка счетчика . Теперь коснитесь кончиков зондов вместе. Показание сопротивления должно упасть с «OL» почти до нуля (что означает менее одного ома), и должен прозвучать звуковой сигнал. Это то, что вы должны увидеть, когда поместите щупы на что-то, что имеет непрерывность, например, неповрежденный провод или замкнутый переключатель.


Показание менее одного Ома, указывающее на непрерывность

Отключите питание! Измерение сопротивления должно выполняться при выключенном питании. То, как измеритель измеряет сопротивление, заключается в том, что он пропускает небольшой ток через щупы и измеряет результирующее напряжение. Показания сопротивления бессмысленны, если на измеряемом объекте уже есть напряжение.

Изолируйте объект, сопротивление или непрерывность которого вы хотите проверить . Например, если вы измеряете сопротивление между клеммами «+» и «-» на катушке, сначала отсоедините от них все провода. Таким образом, вы можете быть уверены, что проверяете сопротивление катушки, а не проводов, проходящих через остальную часть автомобиля, которые могут быть подключены к другим устройствам и к земле. Если вы проверяете непрерывность между клеммой на устройстве и землей, рекомендуется отсоединить провод от устройства и подключить мультиметр к отсоединенному проводу. Кроме того, таким образом, если цепь фактически включается без вашего ведома, отсоединение провода разрывает цепь и гарантирует, что вы получите правильное значение сопротивления.

Вот несколько конкретных примеров. Первый — тот, который мы только что упомянули: проверка сопротивления катушки зажигания. Обратите внимание, что мы удалили провода, чтобы убедиться, что мы не получаем ложных показаний от остальной проводки в автомобиле.


Сопротивление этой катушки зажигания составляет 1,3 Ом

Далее мы проверяем, что провод заземления к фаре действительно является заземлением (что он действительно подключен к кузову автомобиля, а оттуда к аккумулятора), используя красный щуп для проверки провода заземления на разъеме фары и подключив черный щуп к отрицательной клемме аккумулятора. Показания менее одного Ома и звуковой сигнал указывают на непрерывность цепи на землю.


Проверка целостности заземления

Наконец, мы используем мультиметр, чтобы проверить, действительно ли работает переключатель, проверяя, что в положении «выключено» сопротивление бесконечно:

», есть непрерывность (сопротивление менее одного Ома и звуковой сигнал):

Теперь вы можете удивиться, узнав, что только потому, что измеритель проверяет непрерывность, это не означает, что провод или переключатель повреждены. способный пропускать ток, достаточный для работы цепи. Мы узнаем об этом на следующей неделе, когда будем говорить об измерении тока.

Роб Сигел ведет колонку Взломщик ™ для журнала BMW CCA Roundel уже 30 лет. Его новая книга « Ran When Parked: How I Road-Tripped BMW 2002tii 2002tii, умершего за десятилетие, за тысячу миль до дома и How You Can, Too » доступна здесь, на Amazon. Кроме того, он является автором Memoirs of a Hack Mechanic и The Hack Mechanic Руководство по европейским автомобильным электрическим системам .