Содержание
Как подключить светодиод параллельно, последовательно: схемы, описания, нюансы
Светодиоды (они же led) на протяжении многих лет активно применяются как в производстве телевизоров, так и в качестве основного освещения дома или квартиры, однако вопрос о том, как правильно выполнить подключение светодиодов актуален и по сей день.
На сегодняшний день их существует огромное количество, различной мощности (сверхяркие Пиранья), работающих от постоянного напряжения, которые можно подключать тремя способами:
- Параллельно.
- Последовательно.
- Комбинированно.
Также существуют специально разработанные схемы, позволяющие подключить светодиод к стационарной бытовой сети 220В. Давайте рассмотрим более детально все варианты подключения led, их преимущества и недостатки, а также как это выполнить своими руками.
Содержание
- Основные принципы подключения
- Как определить полярность?
- Способы подключения
- Подключение светодиодов к напряжению 220В
- Подключение светодиодов к сети 12В
- Последовательное подключение
- Недостатки последовательного подключения
- Параллельное подключение
- Недостатки параллельного подключения:
- Смешанное подключение
- Как подключить мощный светодиод?
- Ошибки при подключении
- Видео
Основные принципы подключения
Как было сказано ранее, конструкция светоизлучающего диода подразумевает их подключение исключительно к источнику постоянного тока. Однако, поскольку рабочая часть светодиода – это полупроводниковый кристалл кремния, то очень важно соблюдать полярность, в противном случае светодиод не будет излучать световой поток.
Каждый светодиод имеет техническую документацию, в которой содержатся инструкции и указания по правильному подключению. Если документации нет, можно посмотреть маркировку светодиода. Маркировка поможет узнать производителя, а зная производителя, Вы сможете найти нужный даташит, в котором и содержится информация по подключению. Вот, такой не хитрый совет.
Как определить полярность?
Для решения вопроса существует всего 3 способа:
- Конструктивно. Согласно нормам, принятым во всем мире, на обычном светодиоде (не SMD типа), длинная ножка всегда является «+» или же анодом. Для работы светодиода на него должна подаваться положительная полуволна. А короткая – катодом.
- С помощью мультиметра. Для проверки необходимо переключатель прибора поставить в режим «Прозвонка» и установить красный щуп мультиметра на анод, а черный – на катод.
В результате светодиод должен засветиться. Если этого не произошло, необходимо поменять полярность (черный на анод, а красный на катод). Если результат не меняется, тогда led вышел из строя (для установления более точного диагноза, читайте как проверить светодиод).
- Визуально. Если присмотреться к светодиоду, то можно увидеть 2 кончика возле кристалла. Тот, который больше – катод, тот, что меньше – анод.
С полярностью разобрались, теперь нам нужно определиться с тем, как подключить LED к сети. Для тех, кто не понял, читайте подробную и интересную статью определения полярности у светодиода. В ней мы собрали все возможные способы проверки, и даже при помощи батарейки.
Способы подключения
Условно, подключение происходит по 2 способам:
- К стационарной сети промышленной частоты (50Гц) напряжением 220В;
- К сети с безопасным напряжением величиной 12В.
Если необходимо подключить несколько led к одному источнику питания, тогда нужно выбрать последовательное или параллельное подключение.
Рассмотрим каждый из вышеприведенных примеров по отдельности.
Подключение светодиодов к напряжению 220В
Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:
в которой 0,75 – коэффициент надежности led, U пит – это напряжения источника питания, U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток, I – номинальный ток, проходящий через него, и R – номинал сопротивления для регулирования проходящего тока. После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.
Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:
Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.
После определения номинала и мощности сопротивления можно собрать схему для подключения одного светодиода к 220В. Для ее надежной работы необходимо ставить дополнительный диод, который будет защищать светоизлучающий диод от пробоя, при возникновении амплитудного напряжения на выводах светодиода в 315В (220*√2).
Схема практически не применяется, поскольку в ней возникают очень большие потери из-за выделения тепла в сопротивлении. Рассмотрим более эффективную схему подключения к 220 В:
На схеме, как видим, установлен обратный диод VD1, пропускающий обе полуволны на конденсатор C1 емкостью 220 нФ, на котором происходит падение напряжение до необходимого номинала.
Сопротивление R1 номиналом 240 кОм, разряжает конденсатор при выключенной сети, а во время работы схемы не играет никакой роли.
Но это упрощенная модель для подключения LED, в большинстве светодиодных ламп уже встроенный драйвер (схема), который преобразует переменное напряжение 220В в постоянное с величиной 5-24В для их надежной работы. Схему драйвера Вы можете видеть на следующем фото:
Подключение светодиодов к сети 12В
12 вольт – это безопасное напряжение, которое применяется в особо опасных помещениях. Именно к таким и относятся ванные комнаты, бани, смотровые ямы, подземные сооружения и другие помещения.
Для подключения к источнику постоянного напряжения номиналом 12В, аналогично, подключению к сетям 220В необходимо гасящее сопротивление. В противном случае, если подключить его напрямую к источнику, из-за большего проходящего тока светодиод мгновенно сгорит.
Номинал этого сопротивления и его мощность рассчитываются по тем же формулам:
В отличии от цепей 220В, для подключения одного светодиода к сети 12В нам потребуется сопротивление со следующими характеристиками:
- R = 1,3 кОм;
- P = 0,125Вт.
Еще одним достоинством напряжения 12В, является то, что в большинстве случаев оно уже выпрямленное (постоянное), что значительно упрощает схему подключения. Рекомендуется дополнительно монтировать стабилизатор напряжения типа КРЭН или аналога.
Как мы уже знаем, светоизлучающий диод можно подключить как к цепям 12В, так и к цепям 220В, однако существует и несколько вариаций их соединения между собой:
- Последовательное.
- Параллельное.
Последовательное подключение
При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:
В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.
Падение напряжения – это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию (свечение).
Например, в схеме падение напряжения на одном светодиоде составит 3 Вольта. Всего в схеме 3 светодиода. Источник питания 12В. Считаем, 3 Вольта * 3 led = 9 В — падение напряжения.
После несложных расчетов, мы видим, что не сможем включить в схему параллельного подключения более 4 светодиодов (3*4=12В), запитывая их от обычного автомобильного аккумулятора (или другого источника с напряжением 12В).
Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом.
Данная схема довольно часто встречалась в елочных гирляндах, однако из-за одного существенного недостатка в современных светодиодных гирляндах применяют смешанное подключение. Что за недостаток, разберем ниже.
Недостатки последовательного подключения
- При выходе из строя хотя бы одного элемента, не рабочей становится вся схема;
- Для питания большого количества led нужен источник с высоким напряжением.
Параллельное подключение
В данной ситуации все происходит наоборот. На каждом светодиоде уровень напряжения одинаковый, а сила тока состоит из суммы токов, проходящих через них.
Следуя из вышесказанного делаем вывод, если у нас есть источник в 12В и 10 светодиодов, блок питания должен выдерживать нагрузку в 0,2А (10*0,002).
Исходя из вышеупомянутых расчетов — для параллельного подключения потребуется токоограничивающий резистор с номиналом 2,4 Ом (12*0,2).
Это глубокое заблуждение!!! Почему? Ответ Вы найдете ниже
Характеристики каждого светодиода даже одной серии и партии всегда разные. Если другими словами: чтобы засветился один, необходимо пропустить через него ток с номиналом 20 мА, а для другого этот номинал может составлять уже 25 мА.
Таким образом, если в схеме установить только одно сопротивление, номинал которого был рассчитан ранее, через светодиоды будет проходить разный ток, что вызовет перегрев и выход из строя светодиодов, рассчитанных на номинал в 18мА, а более мощные будут светить всего на 70% от номинала.
Исходя из вышесказанного, стоит понимать, что при параллельном подключении, необходимо устанавливать отдельное сопротивление для каждого.
Недостатки параллельного подключения:
- Большое количество элементов;
- При выходе одного диода из строя увеличивается нагрузка на остальные.
Смешанное подключение
Подобный способ подключения является самым оптимальным. По такому принципу собраны все светодиодные ленты. Он подразумевает комбинацию параллельного и последовательного подключения. Как он выполняется можно увидеть на фото:
Схема подразумевает включение параллельно не отдельных светодиодов, а последовательных цепочек из них. В результате этого даже при выходе из строя одной или нескольких цепочек, светодиодная гирлянда или лента будут по-прежнему одинаково светить.
Мы рассмотрели основные способы подключения простых светодиодов. Теперь разберем методы соединения мощных светодиодов, и с какими проблемами можно столкнуться при неправильном подключении.
Как подключить мощный светодиод?
Для работоспособности мощных светоизлучающих диодов, так же, как и простых нам потребуется источник питания. Однако в отличии от предыдущего варианта, он должен быть на порядок мощней.
Чтобы засветить мощный светодиод номиналом 1W, источник питания должен выдерживать не менее 350 мА нагрузки. Если номинал 5W, то источник питания постоянного тока должен выдержать нагрузку тока не менее 1,4А.
Для корректной работы мощного светодиода обязательно необходимо использовать интегральный стабилизатор напряжения типа LM, который защищает его от скачков напряжения.
Если необходимо подключить не один, а несколько мощных LED, рекомендуем ознакомиться с правилами последовательного и параллельного подключения, которые были описаны выше.
Ошибки при подключении
- Прямое подключение к источнику питания. В данном случае светодиод моментально сгорит, поскольку отсутствует ограничивающий ток резистор.
- Параллельное подключение через один резистор. Светодиоды постепенно будут выходить из строя, поскольку рабочий ток у каждого разный.
- Последовательное подключение с различным током потребления.
При такой схеме подключения есть 2 варианта: либо просто одни будут светить тусклее других, либо те, что рассчитаны на меньший ток – сгорят.
- Неправильно подобранный ограничивающий резистор. При неправильно подобранном сопротивлении через светодиоды будет проходить большой ток, в результате чего, они будут перегреваться и со временем перегорят. При большом сопротивлении они будут светить не в полную силу.
- Подключение к сети переменного напряжения номиналом 220В без диода или других компонентов защиты. Если при подключении с сети 220В, если не установить дополнительный диод, то на светодиоде возникнет амплитудное значение напряжения в 315В, которое моментально выведет его из строя.
Видео
Ошибки подключения могут повлечь за собой неприятные последствия, от банальной поломки светодиодов, до нанесения себе повреждений. Поэтому, настоятельно рекомендуем посмотреть видео, где разбирают часто встречающиеся ошибки.
youtube.com/embed/xUQgbQmOfoM» frameborder=»0″ allowfullscreen=»allowfullscreen»>
Заключение
Прочитав статью можно сделать вывод, что все светодиоды, вне зависимости от рабочего напряжения, всегда подключаются параллельно или последовательно — школьный курс физики. Еще стоит помнить, что никакой светодиод не подключается напрямую в сеть 220В, всегда нужно использовать защитные элементы в схеме подключения. Тип применяемых защитных элементов зависит от вида подключаемого светоизлучающего диода.
Правильное подключение светодиода. Схемы подключения.
- Подключение светодиода к низковольтному напряжению постоянного тока.
Если у Вас появилась задача подключения светодиода, то постараюсь Вам в этом помочь в этой статье. При подключении светодиодов необходимо правильно подключать светодиод, соблюдать полярность. Что бы узнать, где у светодиода плюс (+) , а где минус (-) достаточно посмотреть на светодиод одна из ножек светодиода длиннее, чем вторая, соответственно самая длинная ножка будет плюс (+), а короткая минус (-). Начнем с подключения одинарных обычных светодиодов с рабочим напряжением 2-3В с рабочим током 10-20мА, как правило, напряжение светодиодов 2 вольта и что бы подключить светодиод, скажем к 12 вольтам постоянного напряжения (схема подключения светодиода к 12 вольтам представлена на рисунке 1), нам необходимо подобрать резистор.
Рисунок 1 — Схема подключения светодиода
Чтобы подобрать резистор для светодиода, будем пользоваться следующим способом: нам известно, что напряжение светодиода 2В, соответственно при подключении светодиода к 12 вольтам (например, светодиод будем использовать в автомобиле) нам надо ограничить 10В, в принципе в случаях светодиодов правильней говорить ограничить ток светодиода, но мы при выборе резистора будем пользоваться простым проверенным многими годами способом без всяких математических формул. На каждый вольт необходим резистор сопротивлением 100 Ом, т.е. если светодиод с рабочим напряжением 2В, и мы подключаем к 12 вольтам, нам нужен резистор 100Ом х 10В=1000 Ом или 1кОм обычно на схемах обозначается 1К, мощность резистора зависит от тока светодиода, но если мы используем обычный не мощный светодиод, как правило, его ток 10-20мА и в этом случае достаточно резистора на 0,25Вт самого маленького резистора по размеру.
Резистор с большей мощностью нам понадобится в 2х случаях: 1) если ток светодиода будет больше и 2) если напряжение будет выше, чем 24В и соответственно в случаях подключения светодиода к напряжению 36-48В и выше нам понадобится резистор с большей мощностью 0,5 – 2Вт, а в случае подключения светодиода к сети 220В лучше использовать резистор на 2Вт, но при подключении светодиода к сети переменного тока нам потребуется еще ряд элементов, но об этом чуть позже.
А если нам надо будет подключить светодиод к напряжению 24В, то резистор нужен будет 100Ом х 22В = 2,2кОм. Т.е. при помощи данного способа можно рассчитать резистор для подключения 2-3 вольтового светодиода и с током 5-20мА на любое напряжение постоянного тока. Для удобства приведу ряд номиналов резисторов (рисунок 2) для разных напряжений постоянного тока:
5В – R1 = 300 Ом; 9В – R1 = 750 Ом; 12В – R1 = 1 кОм; 15В – R1 = 1,3кОм; 18В – R1 = 1,6 кОм; 24В – R1 =2,2 кОм; 28В – 2,6 кОм
Рисунок 2 — Подключение светодиодов к различному напряжению
Если требуется светодиод подключить к батарейке, скажем на 3В, то можно поставить резистор последовательно на 100 Ом, а если батарейка пальчиковая на 1,5В, то можно подключить и без резистора.
При расчете мы можем выбрать только резисторы из стандартных номиналов, поэтому нет ничего страшного, если сопротивление резистора, будет чуть больше или меньше расчетного.
Если вы используете очень яркий светодиод, а светодиод используется, к примеру, для индикации в каких-либо устройствах, то можно сопротивление резистора увеличить, и тем самым яркость светодиода уменьшится, и светодиод не будет ослеплять. Но лучше всего в таких случаях если не требуется большая яркость светодиода, то при покупке в магазине или заказе в Китае можно выбрать матовый светодиод нужного цвета и током, как правило, 6-20мА, угол обзора у данных светодиодов, как правило, составляет 60 градусов, они отлично подходят для индикации, не ослепляют и от них не устают глаза, даже если долго на них смотреть. Прозрачные белые светодиоды для данных целей, как правило, не подходят.
В случае подключения светодиода к микроконтроллеру или плате ARDUINO, как правило, рабочее напряжение составляет 5В, соответственно резистор можно взять 300-470 Ом можно и еще с большим сопротивлением. Главное учитывать, что ток не может превышать предельного тока вывода микроконтроллера, как правило, не более 10мА, поэтому сопротивление резистора 300-470 Ом для подключения светодиода является золотой серединой. Схема подключения светодиода к микроконтроллеру или плате ARDUINO представлена на рисунке 3. Стоит обратить Ваше внимание, что светодиод может быть подключен как анодом, так и катодом к микроконтроллеру и от этого будет зависеть программный способ управления светодиодом.
Рисунок 3 — Подключение светодиода к плате ARDUINO
3. Последовательное подключение нескольких светодиодов
При последовательном соединении светодиодов чтобы их яркость не отличалась, друг от друга надо, чтобы светодиоды были одного типа. При последовательном соединении светодиодов сопротивление резистора будет меньше в отличие от случая, когда мы подключаем один светодиод. Для расчета резистора мы так же можем использовать ранее рассмотренный способ.
К примеру, нам необходимо последовательно подключить четыре светодиода к напряжению постоянного тока 12В, соответственно рабочее напряжение светодиодов 2В при последовательном соединении будет 2В х 4шт. = 8В. Тогда мы можем выбрать резистор из стандартного ряда на 470-510 Ом. При последовательном соединении светодиодов ток, протекающий через все светодиоды, будет одинаковым.
Рисунок 5 — Последовательное соединение светодиодов
Одним из недостатков последовательного соединения светодиодов является тот факт, что в случае выхода одного из светодиодов из строя, все светодиоды перестанут светится. Ниже приведена схема с последовательным соединением двух, трех и четырех светодиодов.
4.Параллельное подключение светодиодов
При параллельном подключении светодиодов резистор выбираем так же, как в случае одиночного светодиода. На каждый светодиод должен быть свой резистор при этом, если резисторы по сопротивлению будут отличаться или светодиоды будут различных марок, то будет очень заметно неравномерность свечения одного светодиода от другова. Ток при параллельном соединении будет складываться в зависимости от количества светодиодов.
Рисунок 6 — Параллельное соединение светодиодов
5. Подключение мощных светодиодов с большим рабочим током, как правило, применяемых для освещения. При использовании мощных светодиодов лучше всего не использовать обычные резисторы, а применять специальные импульсные источники питания для светодиодов в них, как правило, уже установлены цепи стабилизации тока, данные источники питания обеспечивают равномерность свечения светодиодов и более долговечный срок службы. Светодиоды, применяемые для освещения необходимо устанавливать на теплоотвод (радиатор).
6. Подключение светодиода к переменному напряжению 220В.
(Внимание!!! Опасное напряжение все работы по подключению к сети 220В необходимо производить только при выключенном, снятом напряжении и при этом необходимо убедится, что напряжение отсутствует. Будьте внимательны. Ко всем элементам схемы не должно быть прямого доступа).
При подключении светодиода к переменному напряжению 220В нам понадобится не только резистор, но и диод для выпрямления напряжения, так как светодиод работает от постоянного тока. Без диода на переменное напряжение лучше не включать. Схема подключения светодиода к сети 220В представлена на рисунке 7. Благодаря тому что мы используем два резистора вместо одного, мы можем использовать резисторы мощностью 1Вт. Так же лучше всего установить конденсатор особено если будет заметно мерцание светодиода. Конденсатор может быть керамический или пленочный главное нельзя использовать электролитический конденсатор.
Рисунок 7 — Схема подключения светодиода к сети 220В.
7. Подключение двухцветных светодиодов.
Если мы возьмем двухцветный светодиод, то увидим, что у данного светодиода не два, а три вывода, соответственно, один вывод по центру является общим, а два вывода по бокам каждый отвечает за свой цвет.
Немного математики :
Расчет сопротивления ограничивающего резистора при 5В и токе светодиода 20мА:
R = U / Imax = 5 / 0.020 = 250 Ом — соответственно сопротивление резистора при 5В должно быть не меньше 250 Ом
Теги:
подключение светодиода, подключение светодиода к 12В, подключение светодиода к сети 220в, схемы подключения светодиода
Как подключить диоды | Наука
Вы можете задаться вопросом, что позволяет электронным устройствам в вашем доме использовать электричество по-своему. Электрики, которые создают эти приборы, а также другие инструменты, используемые в промышленности, должны знать, как подключать диоды для этих целей.
Установка диода
При подключении диода в электрическую цепь убедитесь, что анод и катод соединены в цепи таким образом, чтобы заряд протекал от положительно заряженного анода к отрицательно заряженному катоду.
Вы можете запомнить это, вспомнив, что на схеме диода вертикальная линия рядом с треугольником выглядит как отрицательный знак, указывающий на то, что конец диода заряжен отрицательно. Вы можете себе представить, что это означает, что заряды текут от положительного конца к отрицательному. Это позволяет вам вспомнить, как электроны текут в переходе диода.
Помните о потенциале и токе цепи и о том, как это влияет на размещение диода. Вы можете представить диод как переключатель, который размыкается или замыкается, замыкая цепь. Если имеется достаточный потенциал для протекания заряда через диод, переключатель замыкается, и через него протекает ток. Это означает, что диод смещен в прямом направлении.
Затем вы можете использовать Закон Ома
V=IR
для расчета напряжения В , тока I и сопротивления R для измерения разницы между напряжением и напряжением. источник и сам диод.
Если вы подключите диод в другом направлении, это приведет к обратному смещению диода, поскольку ток будет течь от катода к аноду. В этом сценарии вы бы увеличили обедненную область диода, область на одной стороне диодного перехода, на которой нет ни электронов, ни дырок (области без электронов).
Движение электронов в отрицательно заряженной области заполнило бы дыры в положительно заряженной области. При создании диодных соединений обратите внимание на то, как диод будет меняться в зависимости от направления, в котором он подключен.
Диодная цепь
При использовании в электрических цепях диоды обеспечивают протекание тока в одном направлении. Они построены с использованием двух электродов, анода и катода, разделенных материалом.
Электроны перетекают от анода, где происходит окисление или потеря электронов, к катоду, где происходит восстановление или присоединение электронов. Обычно диоды изготавливаются из полупроводников, пропускающих заряд в присутствии электрического тока или путем управления их сопротивлением с помощью процесса, известного как легирование.
Легирование — это метод добавления примесей в полупроводник для создания дырок и получения полупроводника либо n-типа (как в «отрицательном заряде»), либо p-типа (как в «положительный заряд»).
Полупроводник n-типа содержит избыток электронов, расположенных таким образом, что заряд может свободно течь, оставаясь при этом контролируемым. Обычно их производят из мышьяка, фосфора, сурьмы, висмута и других элементов, имеющих пять валентных электронов. С другой стороны, полупроводник p-типа имеет положительный заряд из-за дырок и состоит из галлия, бора, индия и других элементов.
Распределение электронов и дырок позволяет протекать заряду между полупроводниками p-типа и n-типа, и, когда они соединяются вместе, они создают PN-переход . Электроны из полупроводника n-типа устремляются в полупроводник p-типа в диодах, пропускающих ток в одном направлении.
Диоды обычно изготавливаются из кремния, германия или селена. Инженеры, создающие диоды, могут использовать металлические электроды в камере без какого-либо другого газа или с газом низкого давления.
Особенности диодов
Эти особенности диодов, транспортирующих электроны в одном направлении, делают их идеальными для выпрямителей, ограничителей сигналов, регуляторов напряжения, переключателей, модуляторов сигналов, смесителей сигналов и генераторов. Выпрямители преобразуют переменный ток в постоянный. Ограничения сигнала позволяют пропускать сигналы определенной мощности.
Регуляторы напряжения поддерживают постоянное напряжение в цепях. Модуляторы сигналов изменить фазовый угол входного сигнала. Смесители сигналов изменяют частоту, которая проходит, и генераторы сами производят сигнал.
Диодная установка для защиты
Вы также можете использовать диоды для защиты чувствительных или важных компонентов электронных устройств. Вы можете использовать диод, который не проводит ток в нормальных условиях, когда происходит внезапный всплеск напряжения, известный как переходное напряжение, или какое-либо другое резкое изменение сигнала, которое может причинить вред, диод будет подавлять напряжение, чтобы не повредить остальная часть цепи. В противном случае эти удары электрическим током из-за пиков могут повредить цепь из-за слишком большого напряжения, не позволяя цепи должным образом адаптироваться к нему.
Эти диоды представляют собой диоды для подавления переходного напряжения (TVS), и вы можете использовать их либо для уменьшения переходного напряжения, либо для направления его в другое место от схемы. PN-переход на основе кремния может выдерживать переходное напряжение и после этого возвращаться в нормальное состояние после прохождения скачка напряжения. В некоторых TVS используются радиаторы, способные выдерживать скачки напряжения в течение длительных периодов времени.
Типы диодных схем
Схемы, преобразующие мощность от переменного тока (AC) до постоянного тока (DC) можно использовать либо один диод, либо группу из четырех диодов. В то время как устройства постоянного тока используют заряд, который течет в одном направлении, мощность переменного тока переключается между прямым и обратным направлениями через равные промежутки времени.
Это необходимо для преобразования электроэнергии постоянного тока от электростанций в мощность переменного тока, которая принимает форму синусоиды, используемой в большинстве бытовых приборов. Выпрямители, которые делают это, либо используют один диод, который пропускает только одну половину волны, либо используют подход двухполупериодного выпрямителя, который использует обе половины формы волны переменного тока.
Диодная схема демонстрирует, как происходит такое поведение. Когда демодулятор удаляет половину сигнала переменного тока от источника питания, он использует два основных компонента. Первый — это сам диод или выпрямитель, увеличивающий сигнал на половину периода переменного тока.
Второй фильтр нижних частот, который избавляет от высокочастотных составляющих источника питания. Он использует резистор и конденсатор, устройство, которое накапливает электрический заряд с течением времени, и использует частотную характеристику самой схемы, чтобы определить, какие частоты пропускать.
Эти диодные схемы обычно удаляют отрицательную составляющую сигнала переменного тока. Он имеет приложения в радио, которые используют систему фильтров для обнаружения определенных радиосигналов от обычных несущих волн.
Другие типы применения диодов
Диоды также используются для зарядки электронных устройств, таких как сотовые телефоны или ноутбуки, путем переключения с питания от аккумулятора электронного устройства на питание от внешнего источника питания. Эти методы отводят ток от источника, а также гарантируют, что, если батарея устройства разрядится, вы сможете принять другие меры для зарядки своих устройств.
Этот метод применим и к автомобилям. Если аккумулятор вашего автомобиля разрядился, вы можете использовать соединительные кабели, чтобы изменить распределение красных и черных кабелей, чтобы использовать диоды, чтобы предотвратить протекание тока в неправильном направлении.
Компьютеры, использующие двоичную информацию в виде нулей и единиц, также используют диоды для работы с двоичными деревьями решений. Они имеют форму логических вентилей , основных блоков цифровых схем, которые пропускают информацию на основе сравнения двух разных значений. Они построены с использованием любых типов диодных элементов, которые намного мельче, чем диоды в других приложениях.
Полное руководство по диодам
Диод — это специализированный электронный компонент, который действует как односторонний переключатель. Он проводит электрический ток только в одном направлении и ограничивает ток в противоположном направлении. Диод смещен в обратном направлении, когда он действует как изолятор, и смещен в прямом направлении, когда через него протекает ток. Диод имеет два вывода, анод и катод. Использование диодов включает переключатели, модуляторы сигналов, смесители сигналов, выпрямители, ограничители сигналов, регуляторы напряжения, генераторы и демодуляторы сигналов.
Диод в прямом смещении
Напряжение, подаваемое на анод, положительно по отношению к катоду. Кроме того, напряжение на диоде выше порогового напряжения, поэтому он действует как короткое замыкание и позволяет протекать току.
Диод в обратном смещении
Если катод сделан положительным по отношению к аноду, диод смещен в обратном направлении. Затем он будет действовать как разомкнутая цепь, что приводит к отсутствию тока.
Для чего используются диоды?
Защита от обратного тока
Блокировочный диод используется в некоторых цепях для защиты на случай случайной проблемы с обратным подключением, например неправильное подключение источника постоянного тока или изменение полярности. Поток тока в неправильном направлении может повредить другие компоненты схемы.
Диод для защиты от обратного тока
На приведенном выше рисунке показано, что блокировочный диод подключен последовательно с нагрузкой и с положительной стороной источника питания. В случае обратного подключения ток не будет течь, потому что диод будет находиться в обратном смещении. Тогда нагрузка будет защищена от обратного тока. Однако, если полярность правильная, диод будет находиться в прямом смещении, поэтому через него может протекать ток нагрузки.
Простые регуляторы напряжения
Регулятор напряжения используется для понижения входного напряжения до требуемого уровня и поддерживает его на неизменном уровне, несмотря на колебания напряжения питания. Его также можно использовать для регулирования выходного напряжения. Зенеровский диод обычно используется в качестве регулятора напряжения, поскольку он предназначен для работы в условиях обратного смещения. Он ведет себя как обычный сигнальный диод при прямом смещении. С другой стороны, напряжение остается постоянным для широкого диапазона тока при приложении к нему обратного напряжения.
Стабилитрон в качестве регулятора напряжения
На приведенном выше рисунке ток в диоде ограничен последовательным резистором, подключенным к цепи. Поскольку диод подключен к положительной клемме источника питания, он работает как устройство обратного смещения, которое также может работать в условиях пробоя. Обычно используется диод с высокой номинальной мощностью, поскольку он может выдерживать обратное смещение выше напряжения пробоя. Ток стабилитрона всегда будет минимальным, если применяется минимальное входное напряжение и максимальный ток нагрузки. Учитывая входное напряжение и необходимое выходное напряжение, мы можем использовать стабилитрон с напряжением, примерно равным напряжению нагрузки.
Стабилизаторы напряжения
Ток, протекающий через стабилитрон, уменьшается в пользу тока нагрузки, когда нагрузочный резистор подключен параллельно стабилитрону. Величина тока, протекающего в нем, важна, потому что это ключ к стабилизации. Глядя на вольтамперную кривую для стабилитронов, вы заметите резкое увеличение напряжения пробоя, что доказывает, что они лучше всего стабилизируют небольшие постоянные напряжения. Ток увеличивается, а сопротивление диода уменьшается. Поэтому напряжение на стабилитроне почти такое же. Обычно резистор подключают, чтобы убедиться, что максимально допустимая мощность рассеяния не превышена.
Преобразование переменного тока в постоянный
Диоды обычно используются для построения различных типов схем выпрямителей, таких как однополупериодные, двухполупериодные, с отводом от средней точки и мостовые выпрямители. Одним из его основных применений является преобразование переменного тока в постоянный.
Во время положительного полупериода входного питания анод становится положительным по отношению к катоду. Диод будет находиться в прямом смещении, что приведет к протеканию тока на нагрузку. Однако во время отрицательного полупериода входной синусоидальной волны анод становится отрицательным по отношению к катоду. Таким образом, диод будет находиться в обратном смещении, и ток в нагрузку не пойдет. Выходное напряжение будет пульсирующим постоянным током, когда и напряжение, и ток на стороне нагрузки имеют одну полярность. Нагрузка резистивная в положительном полупериоде, и напряжение на нагрузочном резисторе будет таким же, как напряжение питания. Ток нагрузки будет пропорционален приложенному напряжению, а входное синусоидальное напряжение будет на нагрузке.
Как работает диод?
Диод считается полупроводниковым устройством, имеющим два вывода и функционирующим как односторонняя дверь для электрического тока. Полупроводники могут быть проводниками или изоляторами. Их сопротивление можно контролировать, увеличивая или уменьшая его сопротивление, называемое легированием. Легирование – это процесс добавления в материал примесных атомов.
Существует два типа полупроводниковых материалов:
- Материал N-типа — добавление количества мышьяка, фосфора, сурьмы, висмута и других пятивалентных элементов может привести к получению полупроводникового материала N-типа. У него есть дополнительные электроны. Его дополнительные отрицательно заряженные частицы перемещаются из отрицательно заряженной области в положительно заряженную область.
- Материал P-типа — добавление некоторого количества алюминия, галлия, бора, индия и других материалов может привести к получению полупроводникового материала P-типа. Имеет дополнительные отверстия.
Наличие дырок означает отсутствие электрона и наличие положительного заряда. Каждый раз, когда электрон движется в дырку, он создает за собой еще одну дырку, поскольку они движутся в направлении, противоположном электронам. Сочетание материалов N-типа и P-типа образует соединение P-N. Вы можете увидеть область истощения по обе стороны от диодного перехода. Эта область обеднена свободными электронами и дырками. Электроны со стороны N-типа заполняют дырки на стороне P-типа.
Что такое зона истощения?
Область истощения образуется, когда на диод не подается напряжение, поэтому электроны из материала N-типа заполняют отверстия в материале P-типа вдоль соединения между слоями. В этой области материал N-типа или P-типа возвращается в исходное изолирующее состояние. Электричество не может течь в обедненную область, так как все дыры заполнены и нет свободных электронов или пустых мест для электричества.
Вы увидите соединение P-N, когда отверстия перемещаются со стороны P на материал N-типа и обнажают отрицательные заряды. Затем вы увидите, как дырки и электроны диффундируют на другую сторону. После этого начинает формироваться область истощения.
Диоды с прямым смещением и диоды с обратным смещением
Диоды специального назначения
Стабилитроны
Стабилитроны состоят из сильно легированного PN-перехода, который проводит ток в обратном направлении, когда определенное указанное напряжение является проводящим в обратном направлении. Он также позволяет току течь в прямом или обратном направлении. Он обычно используется для ограничителей перенапряжения, регулирования напряжения, опорных элементов и любых других коммутационных приложений и цепей ограничителя.
Диоды Шоттки
Диоды Шоттки имеют низкое прямое падение напряжения, но очень быстрое переключение. Между металлом и полупроводником образуется переход полупроводник-металл, который создает барьер Шоттки. Когда через диод протекает ток, на клеммах диода возникает небольшое падение напряжения. Чем ниже падение напряжения, тем выше КПД системы и выше скорость переключения. Чаще всего диод Шоттки применяется в радиочастотах, в выпрямителях в некоторых силовых приложениях и в смесителях.
Выпрямительные диоды
Выпрямительные диоды могут быть смещенными или несмещенными. Выпрямительный диод становится несмещенным, когда на него не подается напряжение. В это время на стороне P находится большинство дырок-носителей заряда и очень мало электронов, в то время как на стороне N больше всего электронов и очень мало дырок. С другой стороны, он становится смещенным в прямом направлении, когда положительный вывод источника напряжения подключен к стороне P-типа, а отрицательный вывод подключен к стороне N-типа. Это будет обратное смещение, когда положительный вывод источника напряжения подключен к концу N-типа, а отрицательный вывод источника подключен к концу P-типа диода. Через диод не будет протекать ток, кроме обратного тока насыщения, потому что обедненный слой перехода становится шире с увеличением напряжения обратного смещения. Выпрямительные диоды обычно используются в качестве компонента в источниках питания, которые преобразуют напряжение переменного тока в напряжение постоянного тока.
Сигнальные диоды
Сигнальные диоды обычно используются для обнаружения сигналов. Обычно они имеют низкий максимальный номинальный ток и средне-высокое прямое напряжение. Одним из наиболее распространенных применений сигнального диода является базовый диодный переключатель.
Германиевые диоды
Германиевые диоды имеют изначально низкое прямое падение напряжения, обычно 0,3 В. Низкое прямое падение напряжения приводит к низким потерям мощности и более эффективному диоду, который во многих отношениях лучше, чем кремниевый диод. Это более важно в средах с очень низким уровнем сигнала, например, при обнаружении сигнала от аудио до частот FM и в логических схемах низкого уровня. Германиевые диоды имеют больший ток утечки для германия при обратном напряжении, чем для кремния.
Диоды-переходники
Диоды-переходники — одни из самых простых полупроводниковых устройств. Но в отличие от других диодов, они не ведут себя линейно по отношению к приложенному напряжению. Диоды имеют экспоненциальную зависимость тока от напряжения. Он образуется, когда полупроводник P-типа соединяется с полупроводником N-типа, создавая потенциальный барьер на диодном переходе.
Три возможных условия «смещения» для стандартного диода перехода
1. Прямое смещение — потенциал напряжения соединен отрицательно с материалом N-типа и положительно с материалом N-типа на диоде, что уменьшает ширину диода PN-перехода .