Содержание
Что необходимо знать о резисторах? / Хабр
Резистор: кусочек материала, сопротивляющийся прохождению электрического тока. К обоим концам присоединены клеммы. И всё. Что может быть проще?
Оказывается, что это совсем не просто. Температура, ёмкость, индуктивность и другие параметры играют роль в превращении резистора в довольно сложный компонент. И использовать его в схемах можно по-разному, но мы сконцентрируемся на разных видах резисторов фиксированного номинала, на том, как их делают и как они могут пригодиться в разных случаях.
Начнём с самого простого и старого.
Углеродный композит в проигрывателе
Их часто называют «старыми» резисторами. Они широко применялись в 1960-х, но с появлением других типов резисторов и благодаря достаточно большой себестоимости, их использование сейчас ограничено. Они состоят из смеси керамического порошка с углеродом, связанных при помощи смолы. Углерод хорошо проводит ток, и чем больше его в смеси, тем меньше сопротивление. Провода присоединяются с концов. Они покрываются краской или пластиком, служащими изоляцией, а сопротивление и допуск обозначаются цветными полосками.
Сопротивление таких резисторов можно перманентно изменить, подвергнув их высокой влажности, высокому напряжению или перегреву. Допуск составляет 5% или более. Это просто твёрдый цилиндр с хорошими высокочастотными характеристиками. Также они хорошо переносят перегрев, несмотря на свой малый размер, и всё ещё используются в блоках питания и сварочных контроллерах.
Однако их возраст не остановил меня от использования мешка таких резисторов, купленных мною в комиссионке с целью изготовления различных сопротивлений, которые были нужны мне для моего проекта муз. проигрывателя 555. На фото как раз моя поделка.
Производятся нанесением слоя чистого углерода на керамический цилиндр и последующего удаления углерода с целью формирования спирали. Итог покрывается кремнием. Толщина слоя и ширина оставшегося углерода управляют сопротивлением, а допуск таких резисторов бывает от 2%, лучше, чем у предыдущих. Благодаря чистому углероду сопротивление меньше меняется с температурой.
Температурный коэффициент сопротивления углеродно-плёночных резисторов составляет от 200 до 500 ppm/C – миллионных долей на градус Цельсия. 200 ppm/C значит, что с каждым градусом сопротивление не изменится больше, чем на 200 Ом на каждый МОм общего сопротивления. В процентах это можно выразить как 0,02%/C. Если температура изменится на 80 С, при показателе 200 ppm/C сопротивление резистора поменяется на 1,6%, или на 16 кОм.
Такие резисторы выпускаются номиналом от 1 Ом до 10 кОм, мощностью от 1/16 Вт до 5 Вт и выдерживают напряжения в несколько киловольт. Обычно используются в высоковольтных блоках питания, рентгеновских аппаратах, лазерах и радарах.
Металлическая плёнка делается схожим с углеродной образом, путём размещения металлического слоя (часто это никель хром) на керамике, с последующим вырезанием спирали. Согласно документации от производителя Vishay, после присоединения клемм спираль раньше обрабатывали шлифовкой, но сейчас для этого используют лазеры. Результат покрывается лаком и помечается цветовой кодировкой или текстом.
Сопротивление резисторов из металлической плёнки меняется меньше, чем у углеродно-плёночных. ТКС находится в районе 50-100 ppm/C. 50 ppm/C аналогичны 0,005%/C. Использовав аналогичный приведённому выше пример с резистором в 1 МОм, изменение температуры на 80 С приведёт в случае резистора 50 ppm/C к изменению сопротивления на 0,4%, или на 4 кОм.
Допуск у них меньше, порядка 0,1%. Также обладают хорошими шумовыми характеристиками, низкой нелинейностью и хорошей стабильностью по времени, и используются для множества целей.
Случай схож с металлической плёнкой, только обычно используется оксид олова с примесью оксида сурьмы. Ведут себя такие резисторы лучше, чем углеродные или металлические плёнки, если говорить о напряжении, перегрузках, скачках и высоких температурах. Резисторы на углеродной плёнке работают до 200 С, на металлической – до 250-300 С, а резисторы на плёнке из оксида – до 450 С. При этом их стабильность весьма хромает.
Производятся намоткой провода на пластиковый, керамический или стекловолоконный цилиндр. Поскольку провод можно отрезать довольно точно, номинал их сопротивления можно выбрать с большой точностью с допуском не хуже 0,1%. Чтобы получить резистор с высоким сопротивлением, нужно использовать очень тонкий и длинный провод. Провод можно сделать тоньше для меньшей мощности или толще для большей мощности. Его можно изготавливать из большого числа металлов и сплавов, включая никель хром, медь, серебро, хромистой стали и вольфрама.
Разрабатываются с прицелом на возможность работы при высоких температурах: вольфрамовые выдерживают температуры до 1700 С, серебряные – от 0 до 150 С. ТКС у высокоточных проволочных резисторов составляет порядка 5 ppm/C. У резисторов, предназначенных для высоких мощностей, ТКС выше.
Работают на мощностях от 0,5 Вт до 1000 Вт. Резисторы на несколько сотен Вт могут быть покрыты высокотемпературным кремнием или стекловидной эмалью. Для увеличения теплоотвода могут быть оборудованы алюминиевым кожухом с пластинами, работающими как радиатор.
Виды намотки
Поскольку это практически катушки, у них присутствует индуктивность и ёмкость, из-за чего на высоких частотах они ведут себя плохо. Для уменьшения этих эффектов применяются различные хитрые схемы намотки, например, бифилярная, намотка на плоском носителе, и намотка Аэртона-Перри.
У бифилярной намотки отсутствует индукция, но высокая ёмкость. Намотка на плоском и тонком носителе сближает провода и уменьшает индукцию. Намотка Аэртона-Перри, благодаря тому, что провода идут в разных направлениях и находятся близко друг от друга, уменьшает самоиндукцию и ёмкость, поскольку в местах пересечения напряжение одинаково.
Потенциометры делают на основе проволочных резисторов благодаря их надёжности. Также они используются в прерывателях и предохранителях. Их индукцию можно увеличить и использовать их как датчики тока, измеряя индуктивное сопротивление.
Используют фольгу толщиной в несколько микрон, обычно из никель хрома с добавлениями, расположенную на керамической подложке. Они наиболее стабильные и точные из всех, даром что существуют с 1960-х. Необходимое сопротивление достигается фототравлением фольги. Не имеют индуктивности, обладают низкой ёмкостью, хорошей стабильностью и быстрой тепловой стабилизацией. Допуск может быть в пределах 0,001%.
ТКС составляет 1 ppm/C. При изменении температуры на 80 С мегаомный резистор поменяет сопротивление всего на 0.008% или 80 Ом. Интересен способ, которым достигается подобная точность. При увеличении температуры увеличивается и сопротивление. Но резистор делается так, что увеличение температуры приводит к сжатию фольги, из-за чего сопротивление падает. Суммарный эффект приводит к тому, что сопротивление почти не меняется.
Хорошо подходят для аудиопроектов с токами высоких частот. Также подходят для проектов, требующих высокую точность, например, электронных весов. Естественно, используются в областях, где ожидаются большие колебания температуры.
В основном применяются для поверхностного монтажа. Плёнка в толстоплёночных резисторах в 1000 раз толще, чем в тонкоплёночных. Это самые дешёвые резисторы, так как толстая плёнка дешевле.
Тонкооплёночные резисторы изготавливаются ионным напылением никель хрома на изолирующую подложку. Затем применяется фототравление, абразивная или лазерная чистка. Толстоплёночные изготавливаются печатью по трафарету. Плёнка представляет собой смесь связующего вещества, носителя и оксида металла. В конце процесса применяется абразивная или лазерная чистка.
Допуск тонкоплёночных резисторов находится на уровне 0,1%, а ТКС – от 5 до 50 ppm/C. У толстоплёночных допуск бывает 1%, а ТКС — 50 до 200 ppm/C. Тонкоплёночные резисторы меньше шумят.
Тонкоплёночные резисторы применяются там, где требуется высокая точность. Толстоплёночные можно использовать практически везде – в некоторых ПК можно насчитать до 1000 толстоплёночных резисторов поверхностного монтажа.
Существуют и другие виды резисторов постоянного номинала, но в ящичках для резисторов вы, скорее всего, встретите один перечисленных.
Сопротивление бесполезно — The virtual drink — LiveJournal
Всегда хотелось иметь размеры компонентов поменьше. Резисторов в том числе. Начинал с резисторов ВС, добытых из ламповых приемников. Позже стали доступны МЛТ. Долгое время, еще до эпохи SMD, самыми миниатюрными были МЛТ-0.125.
Было сложно найти некоторые номиналы таких резисторов, тогда более распространены были МЛТ-0.25. Но я постепенно собрал весь ряд именно 0.125, который хранил в кассетнице из спичечных коробков, которая до сих пор жива (уже более 30-ти лет). Такие резисторы я иногда паял на манер SMD просто к площадкам, не делая отверстий в плате. На фото ниже видна плата кварцевой стабилизации частоты вращения ведущего вала самодельной кассетной деки. Некоторые резисторы на ней запаяны именно так.
Очень редко можно было встретить в советской технике резисторы еще меньших габаритов, чем МЛТ-0.125. Они были тонкие продолговатые, обычно красного цвета, не имели никакой маркировки. Цветные кольца тогда у нас не применялись, а нанести цифры на такой маленький корпус было сложно. Что это за тип – точно не знаю. В советском справочнике были резисторы С2-23 мощностью 0.062 Вт диаметром 1.6 мм и длиной 4.6 мм. Возможно, это они. Но доступность их была нулевая. Вот они, на фото справа внизу.
Позже появились SMD-резисторы. Первыми для меня были P1-12, которые имели размер 1206 и не имели маркировки. В то время монтаж был в основном в отверстия, только резисторы иногда применялись SMD. Полной гаммы SMD- компонентов тогда не было. Позже появились импортные SMD-резисторы, а вместе с ними и все другие компоненты для поверхностного монтажа. Пришлось отвыкать от микросхем в корпусах DIP и привыкать к SOIC. Резисторы сразу стал применять размера 0805, планируя перейти на размер поменьше. Переход на 0603 у меня почти состоялся, сделал на них несколько проектов, но тут ухудшилось зрение, от перехода пришлось отказаться. Теперь почти всегда использую 0805, и только в очень тесных местах – 0603.
Одновременно с импортной комплектацией начала появляться импортная техника. В компьютерах очень быстро появился SMD-монтаж. А вот в бытовой технике, в частности, аудиотехнике, до сих пор много монтажа в отверстия. Мне он как-то близок, такой монтаж очень красив. Плата напоминает город с многочисленными разноцветными строениями, не то что плоская SMD-доска.
В бытовой импортной технике я начал постоянно видеть красивейшие резисторы. Они заметно меньше, чем МЛТ-0.125, имеют другие пропорции (они немного «пузатые»). На фото ниже приведен фрагмент печатной платы кассетной деки Technics RS-B965. Практически все резисторы на этой плате именно такие.
Несмотря на то, что уже вовсю использовался SMD-монтаж, обычные компоненты иногда тоже были нужны. Например, для макетов. А в некоторых случаях они использовались и в конечных платах. Хотелось иметь именно такие маленькие красивые резисторы. Но нигде в продаже я их ни разу не видел. Поэтому начал выпаивать их со старых плат от импортной техники.
Постепенно накопился приличный запас таких резисторов. Регулярно их использую: когда макетирую, или когда вношу корректировки в платы с SMD. Такие резисторы вполне сносно влезают на площадки для SMD, а при необходимости за счет длины выводов можно что-то «перешагнуть». Рядом с этими резистрами некогда заветные МЛТ-0.125 смотрятся совсем не круто. Их использовать уже не поднимается рука.
Недостатка два: добывать красивые резисторы распайкой плат довольно трудоемко, и выпаянные резисторы имеют короткие выводы. Еще одной проблемой стало разбирать выпаянные резисторы по номиналам и раскладывать по коробкам.
Время шло, но таких резисторов как не было в продаже, так и нет. А в импортной технике они по прежнему массово применялись. Решил изучить вопрос – что это за резисторы, и где их можно взять. Возникли проблемы даже с определением типа. В некоторых источниках указывалось, что в таком корпусе (длина 3.2 мм, диаметр 1.5 мм) бывают наши резисторы С1-4 мощностью 0.062 Вт, или 0.125 Вт в варианте исполнения mini. Но где они бывают, так и не понял.
Еще встречается информация, что это резисторы серии CF мощностью 1/6 или 1/8 Вт. И опять же, есть исполнение резисторов мощностью 1/4 Вт в таком корпусе (тогда добавляется буква «S»).
Действительно, в datasheet на резисторы CF значится вариант CFS1/4 с такими размерами.
Но где их купить, по-прежнему непонятно. Они есть в каталогах типа Mouser, но ни на рынке, ни в магазинах их нет. В таких совершенно безнадежных ситуациях спасение может быть только одно – Aliexpress. Очень долго пришлось искать, чтобы по всем признакам резисторы были именно такими. Для одной и той же мощности бывают разные корпуса, что пришлют в итоге – лотерея. Все равно решил рискнуть.
Первый лот значился как «600 шт./компл. 30 видов 1/8 Вт 1/6 Вт Сопротивление 5% угольный осажденный резистор пакет Ассорти Комплект 1-10 K 100K 220ohm 1 м». Это углеродистые резисторы с корпусом коричневого цвета. 600 резисторов обойдутся 1.77$, плюс 0.20$ доставка.
Рядом нашел другой лот: «300 шт. 1/6 Вт и 1/8 Вт 1% Резистор для металлической пленки комплект 10 Ом-1 м Ом Сопротивление цветного кольца 10R-1MR резистор Ассорти набор 30 значений». Эти резисторы заявлены как металлопленочные и имеют корпус синего цвета. 300 резисторов обойдутся 1.43$ с бесплатной доставкой.
Все это дело я заказал, и вот сегодня они пришли (заглавное фото). Размер именно тот, что я хотел, ножки немного тоньше, чем у фирменных со старых плат, но не критично. Ножки магнитятся, чашки резисторов тоже. У фирменных ножки не магнитятся, но чашки тоже магнитятся. У МЛТ ни ножки, ни чашки не магнитятся. Низкоомные (до 1 кОм) не магнитятся вообще. А более высокоомные немного магнитятся (сам проводящий слой).
Имея не очень хороший опыт общения с китайскими резисторами (об этом тут был пост), я решил новые резисторы проверить. Проще всего оценить температурный коэффициент сопротивления (ТКС), по нему можно многое сказать. Для измерений взял несколько разных резисторов с номиналами 1 кОм, 10 кОм, 100 кОм и 1 МОм. Вот они, подопытные:
С помощью тестера UT71C решил сначала замерить сопротивление резисторов при комнатной температуре (20°C), а затем в струе горячего воздуха от фена. Чтобы получить реальную разницу температур примерно 100°C, установил фен на 150°C (с учетом комнатной температуры и разницы между термодатчиком фена и температурой проверяемого резистора). Эти измерения очень приблизительные, их даже измерениями назвать нельзя. Так, оценка. К тому же, каждого типа и номинала был взят всего один резистор. Накапливать нормальную статистику было выше моих сил.
Вот какие типы резисторов участвовали в сравнении:
1. Обычный дешевый толстопленочный SMD размера 0805.
2. МЛТ-0.125
3. С2-29
4. Выпаянные со старых плат миниатюрные резисторы синего цвета.
5. Выпаянные со старых плат миниатюрные резисторы коричневого цвета.
6. Китайский резистор синего цвета с размером примерно как у МЛТ-0.125.
7. Китайский миниатюрный резистор синего цвета (новый).
8. Китайский миниатюрный резистор коричневого цвета (новый).
Резистор С2-29 номиналом 1 кОм я не нашел, взял 1.01 кОм. Миниатюрного резистора синего цвета со старых плат номиналом 1 МОм у меня не оказалось.
Результаты измерения сведены в таблицу:
На результаты для номинала 1 МОм можно особо не смотреть, там показания сильно прыгали из-за наводок.
Сначала о хорошем. Самые обычные резисторы SMD 0805 показали себя очень хорошо, практически на уровне металлопленочных МЛТ-0.125.
А вот китайские резисторы – все без исключения плохие. Причем независимо от цвета корпуса. Внутри находится одинаковая ерунда типа очень посредственного углеродистого резистора. Они проигрывают SMD 0805 по ТКС раз в 5, как коричневые, так и синие. Синие китайские резисторы совсем не похожи на металлопленочные. А вот выпаянные со старых плат – все четко, если синий, значит металлопленочный. Это хорошо видно по результатам, в таблице металлопленочные под номером 2, 3 и 4. Но даже углеродистые со старых плат в два раза лучше китайских. Поэтому распаивайте платы, господа!
сопротивление | Мультиметры | Система обучения Adafruit
Сопротивление
Сохранить
Подписаться
Пожалуйста, войдите, чтобы подписаться на это руководство.
После входа в систему вы будете перенаправлены обратно к этому руководству и сможете подписаться на него.
Что такое сопротивление?
Сопротивление — это то, на что это похоже, это характеристика, которая заставляет компонент сопротивляться протеканию тока. Чем больше значение сопротивления (в Ом Ω ) тем больше он бьется. Большинство резисторов, которые вы увидите, находятся в диапазоне от 1 Ом до 1 мегаом (1,0 МОм). Они часто имеют допуск 5%, но вы можете купить резисторы с точностью 1% или даже 0,1%.
Как правило, измерение сопротивления лучше всего подходит для измерения резисторов, но вы можете измерять сопротивление и других устройств, например датчиков и динамиков.
Код резистора
Резисторы имеют цветовую маркировку, поначалу это кажется плохим способом печатать значения, но со временем это становится быстрее, потому что вам не нужно читать какие-либо числа, а полосы видны независимо от того, как он вращается. Вы можете использовать этот калькулятор, чтобы поиграть с цветовыми кодами резисторов.
Таблица цветовых кодов резисторов предоставлена журналом Make Magazine
Изображение резистора предоставлено Digikey
На этом изображении показан резистор 1,0 кОм 5% (коричневый черный красный золотой).
Для чего нужны испытания на сопротивление?
Проверка сопротивления очень полезна
- Если у вас нет тестера непрерывности, его можно использовать как один
- Проверьте резисторы, номиналы которых неясны, если вы плохо разбираетесь в цветовых кодах или если маркировка сошла
- Измерение входного и выходного сопротивления цепей
- Проверка и определение характеристик датчиков и потенциометров (см. ниже)
Помните!
Вы можете проверить сопротивление, только если тестируемое устройство обесточено . Проверка сопротивления проводится путем подачи небольшого напряжения в цепь и наблюдения за протекающим током, это совершенно безопасно для любого компонента, но если на него подается питание, в цепи уже есть напряжение, и вы получите неверные показания
Вы можете проверить резистор только до того, как он будет впаян/вставлен в цепь . Если вы измерите его в цепи, вы также будете измерять все, что к нему подключено. В некоторых случаях это нормально, но я бы сказал, что в подавляющем большинстве случаев это не так. Если вы попробуете, вы получите неверные показания, а это хуже, чем отсутствие показаний вообще.
Вы можете убедиться, что ваш измеритель работает хорошо, имея для проверки эталонный резистор . Резистор 1% 1кОм или 10кОм идеален! Низкий заряд батареек может сделать ваш мультиметр неустойчивым.
Сопротивление ненаправленное , вы можете переключать датчики, и показания будут такими же.
Если у вас есть дальномер (как и большинство недорогих), вам нужно будет отслеживать, в каком диапазоне вы находитесь. В противном случае вы получите странные показания, такие как OL или аналогичные, или вы можете Думайте, что вы в кОм, когда на самом деле вы в МОм. Это большая проблема для новичков, поэтому будьте осторожны!
Войдите в режим.
Ищите символ ома (Ω), если это дальномер, там будет куча разделенных режимов. Если его автоматический диапазон будет только один.
Этот измеритель имеет символ Ω, а затем 7 подрежимов в диапазоне от 200 Ом до 2000 МОм (вау!)
Этот измеритель имеет символ Ω, а затем 5 подрежимов в диапазоне от 200 Ом до 2 МОм
Этот измеритель имеет многорежимный режим (вам нужно нажать отдельную кнопку РЕЖИМ, чтобы переключаться между измерением конденсатора, проверкой диода, проверкой резистора и непрерывностью!) Однако он не имеет пронумерованных подрежимов, так как он автоматически выбирает диапазон.
Ранжирование по сравнению с автоматическим ранжированием
Пока это работает, не имеет значения, какой у вас тип. Но счетчики с автоматическим выбором диапазона немного медленнее.
Сравните эти два видео, как я измеряю резистор 1 кОм с помощью измерителя с автоматическим выбором диапазона:
, что занимает около 4 секунд, чтобы установить окончательное значение, и резистор 10 кОм с помощью измерителя диапазона:
, который получает первое значение значащая цифра мгновенно, вторая цифра через 1 секунду и последняя цифра через 2 секунды. чтение этого учебника.
Диапазоны почти всегда будут примерно такими: 200 Ом, 2 кОм, 20 кОм, 200 кОм, 2 МОм и т. д. Почему двойки вместо 100, 1 кОм, 10 кОм и т. д.? Ну, вот мое предположение.
Поскольку подавляющее большинство резисторов имеют номинал 5 %, номиналы резисторов различаются на 5 % (или около того). Например, «стандартные» значения 5% между 1K и 10K:
1.0K, 1.1K, 1.2K, 1.3K, 1.5K, 1.6K, 1.8K, 2.0K, 2.2K, 2.4K, 2.7K. , 3.0K, 3.3K, 3.6K, 3.9K, 4.3K, 4.7K, 5.1K, 5.6K, 6.2K, 6.8K, 7.5K, 8.2K, 9.1K
Значений между 1KΩ и 2KΩ гораздо больше чем между 2 кОм и 3 кОм и т. д. Выбирая 2 кОм в качестве максимального диапазона, вы получаете наилучшую точность для наиболее вероятных значений.
Пример 1: Проверка резистора
С автоматическим измерителем диапазонов это легко, просто поместите два щупа на резистор и прочитайте число. Например, этот резистор 1 кОм 5% на самом деле 0,988 кОм.
А эти 10 кОм на самом деле 9,80 кОм. Обратите внимание, что числа выглядят одинаково, но десятичная точка сместилась.
Этот измеритель диапазона требует, чтобы вы набрали диапазон. Мы предположим, что этот резистор менее 2 кОм, а затем измерим его. Получаем 0,992, значит 0,9.92 кОм (или резистор 1 кОм).
Теперь тестируем другой резистор, мы снова предположим, что он менее 2 кОм. Однако на этот раз мы получаем странный ответ: 1. , что означает «вне диапазона». Некоторые измерители будут отображать OL , который, как вы, возможно, помните из раздела непрерывности, означает «разомкнутый контур», здесь это означает «измерение выше диапазона».
Пробуем еще раз, изменив диапазон на 20КОм
Ага! Это резистор 9,82 кОм (10 кОм)
Это немного неуклюже, чем автоматический выбор диапазона, но если вы уверены, что знаете, какое сопротивление вы ожидаете, это очень быстро.
Пример 2: Проверка потенциометра
Вы можете проверить максимальное значение потенциометра, измерив два «конца», как показано здесь, с вращающимся потенциометром 10 кОм. Чтобы найти «диапазон», посмотрите на циферблат.
Вы также можете использовать мультиметр, чтобы определить, является ли потенциометр линейным или логарифмическим (аудио) потенциометром. Когда горшок расположен по центру, если сопротивление между стеклоочистителем и одним концом составляет половину общего значения, оно линейно. (Я использовал зажимы вместо пробников, чтобы было легче делать эти фотографии).
Это линейный потенциометр 10 кОм.
Минимальное сопротивление потенциометра, 0 Ом (короткое замыкание), как и ожидалось.
Потенциометр по центру, около 5 кОм
Максимальное значение 9,5 кОм (должно быть около 10 кОм)
В этом видео показано сопротивление линейного потенциометра 10 кОм во время его настройки. В конце оно установлено примерно на середине, что составляет 4,7 кОм, что довольно близко к «идеальному» значению в 5 кОм.
youtube.com/embed/Yxk6o0RPbsI?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»» title=»Multimeter 10k Potentiometer Test»>
Вот фотографии аудиопотенциометра 50 кОм:
Минимум 0 Ом, как и ожидалось
Средний 8 кОм
Максимум 54,2 кОм, близко к идеальным 50 кОм
Если при центрировании сопротивление больше похоже на 85% или 15% от общего сопротивления, то это логарифмический потенциометр. Это аналоговый потенциометр на 50 кОм. В центрированном состоянии сопротивление составляет около 8 кОм.
Пример 3: Проверка датчика
Потенциометры представляют собой резисторы, значения которых изменяются при перемещении. Светозависимый резистор (LDR) — это резистор, значение которого меняется в зависимости от количества света, которое он получает. У этого есть диапазон около 20K макс.
Во-первых, установите диапазон, в данном случае 20 кОм кажется довольно хорошим. При ярком свете его сопротивление составляет около 610 Ом
.
Слегка затененный, это 5,84 кОм (помните, что это все еще хорошо освещенная фотография)
После установки диапазона экспериментирую с его затенением на видео:
Непрерывность
Напряжение
Это руководство было впервые опубликовано 29 июля 2012 г. Оно было последним.
обновлено 29 июля 2012 г.
Эта страница (сопротивление) последний раз обновлялась 16 июля 2012 г.
Текстовый редактор на базе tinymce.
Почему сопротивление увеличивается, когда я измеряю с помощью мультиметра?
Задай вопрос
спросил
Изменено
2 года, 1 месяц назад
Просмотрено
15 тысяч раз
\$\начало группы\$
У меня есть две медные полоски с резистором в один мегаом между ними. Это делает сопротивление между двумя полосками равным 1 МОм. Я измеряю сопротивление между двумя медными полосками с помощью мультиметра.
При таком расположении показание мультиметра показывает 985 кОм.
Теперь я помещаю одну каплю воды между полосками, а так как она параллельна одномегаомному, и поскольку вода имеет некоторое сопротивление, эквивалентное сопротивление между этими двумя медными полосками уменьшится.
Вот что происходит, и показания мультиметра показывают 473 Ом; это верно. Но проблема в том, что оно начинает медленно увеличиваться, например, с 475, 478, 482…. до 736 кОм примерно через 5-10 минут, прежде чем я выключу мультиметр.
Я думал, что капля воды может быть не в одном и том же месте, и может быть небольшое растекание, что может быть причиной изменения сопротивления, но вопрос в том, почему оно всегда увеличивается, а не уменьшается, и почему так много изменений, например, от 475 до 736, — это огромное изменение примерно на 200 кОм. Я верю, что есть какая-то другая причина. Может ли кто-нибудь дать решение этой проблемы?
- сопротивление
- мультиметр
\$\конечная группа\$
3
\$\начало группы\$
После того, как вы проведете этот тест в течение 10 минут, вытрите воду и внимательно посмотрите на медь, где была капля воды. Вы увидите некоторое обесцвечивание. По сути, медь была немного проржавела там, где была капля воды. Как вы, наверное, заметили, голая медь, оставшаяся в элементах, через некоторое время уже не имеет такого яркого медного цвета. То же самое произошло и с вашими медными электродами, за исключением того, что электрический ток ускорил процесс.
Причина повышения сопротивления заключается в том, что коррозионный слой имеет значительно большее удельное сопротивление, чем медь. Это одна из причин, по которой сопрягаемые поверхности электрических разъемов не сделаны из меди. Обычно они сделаны из материала, который не окисляется, как золото или никель, или образует проводящий оксид, как олово.
\$\конечная группа\$
5
\$\начало группы\$
Здесь может происходить несколько вещей.
Во-первых, возможно испарение капли.
Второй связан с утверждением Олина о «коррозии», но более конкретен. Электроны не проходят через каплю воды, а ионы (именно поэтому дистиллированная вода — плохой проводник). Ионные реакции на стыке вода/медь необратимы, поэтому у вас есть так называемый «поляризующий» электрод. Таким образом, ваша капля воды постепенно достигает состояния, когда она перестает проводить электричество. «Коррозия» является побочным продуктом этих электрохимических процессов.
Я не думаю, что вы наблюдаете сильный электролиз воды — это еще одна возможность. Вода бурлит?
\$\конечная группа\$
1
\$\начало группы\$
Моя личная интерпретация.
Чистая вода, напр. дестилированная, является плохим проводником, поэтому я предполагаю, что вы использовали водопроводную или минеральную воду, которая является гораздо лучшим проводником. Соли, растворенные в обычной воде, обеспечивают носители заряда в виде свободных ионов, которые позволяют течь току.
Имея это в виду, я могу предположить две возможности, почему сопротивление повышается:
- Происходит электролиз и освобождаются элементы солей, например хлор. Это уменьшит количество доступных носителей заряда.
- В электрическом поле между двумя медными полосками ионы разделятся и больше не смогут свободно плавать в воде. Это также ограничило бы текущую пропускную способность.
В конце концов, кто-то с (электро)химическим образованием может сказать больше.
\$\конечная группа\$
3
\$\начало группы\$
Я думаю, что ответ Олина правильный, но есть еще один фактор, который может объяснить, по крайней мере, частично эффект, который вы видите.
Я почти уверен, что вода имеет более высокую адгезию к чистой меди, чем к эпоксидной смоле (из которой состоит поверхность большинства печатных плат). Когда вы впервые капнете водой на доску, она сформирует относительно круглую каплю на поверхности из-за своего сцепления. Однако через короткое время более высокая адгезия к меди приведет к тому, что она «растянется» на медь в виде двух капель. По мере того, как вода мигрирует к медным дорожкам, между дорожками будет оставаться все меньше и меньше воды, поэтому у вас будет более тонкое соединение, что приведет к увеличению сопротивления (и, в конце концов, вся вода будет мигрировать к дорожкам, и вы останется с исходным резистором в качестве единственного соединения между дорожками).
\$\конечная группа\$
1
\$\начало группы\$
Вопрос, который привел меня сюда, касался растущей устойчивости чашек Петри с агарозным гелем с течением времени. По предложению Олина я попытался заменить электроды с меди на другой материал, но не увидел никакой разницы.