Где у диода катод: анод катод, подключение на схеме, где плюс и минус, полярность

Электровакуумный диод | Основы электроакустики

Главная » Электронные лампы

Электровакуумный диод

Электровакуумный диод — вакуумная двухэлектродная электронная лампа. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. При подаче на анод отрицательного относительно катода напряжения все эмитированные катодом электроны возвращаются на катод, при подаче на анод положительного напряжения часть эмитированных электронов устремляется к аноду, формируя его ток. Таким образом, диод выпрямляет приложенное к нему напряжение. Это свойство диода используется для выпрямления переменного тока и детектирования сигналов высокой частоты. Практический частотный диапазон традиционного вакуумного диода ограничен частотами до 500 МГц. Дисковые диоды, интегрированные в волноводы, способны детектировать частоты до 10 ГГц

Диод — двухэлектродный прибор, состоящий из катода и анода. Одна группа диодов предназначена для детектирования, т. е. для выделения напряжения низкой частоты из модулированных высокочастотных колебаний. Они выпускаются с катодами косвенного накала и имеют электроды небольшого размера, рассчитанные на малые анодные токи, малую допустимую мощность потерь на аноде и сравнительно невысокое обратное напряжение. Вторая группа диодов (диоды большой мощности) предназначена для выпрямления переменного напряжения, в основном, тока промышленной частоты.

Электровакуумный диод представляет собой сосуд (баллон), в котором создан высокий вакуум. В баллоне размещены два электрода — катод и анод. Катод прямого накала представляет собой прямую или W-образную нить, разогреваемую током накала. Катод косвенного накала — длинный цилиндр или короб, внутри которых уложена электрически изолированная спираль подогревателя. Как правило, катод вложен внутрь цилиндрического или коробчатого анода, который в силовых диодах может иметь рёбра или «крылышки» для отвода тепла. Выводы катода, анода и подогревателя (в лампах косвенного накала) соединены с внешними выводами (ножками лампы).
Принцип работы При разогреве катода электроны начнут покидать его поверхность за счёт термоэлектронной эмиссии. Покинувшие поверхность электроны будут препятствовать вылету других электронов, в результате вокруг катода образуется своего рода облако электронов. Часть электронов с наименьшими скоростями из облака падает обратно на катод. При заданной температуре катода облако стабилизируется: на катод падает столько же электронов, сколько из него вылетает. Уже при нулевом напряжении анода относительно катода (например, при коротком замыкании анода на катод) в лампе течёт ток электронов из катода в анод: относительно быстрые электроны преодолевают потенциальную яму пространственного заряда и притягиваются к аноду. Отсечка тока наступает только тогда, когда на анод подано запирающее отрицательное напряжение порядка ?1 В и ниже. При подаче на анод положительного напряжения в диоде возникает ускоряющее поле, ток анода возрастает. При достижении током анода значений, близких к пределу эмиссии катода, рост тока замедляется, а затем стабилизируется (насыщается). 2}} — универсальная термоэлектронная постоянная Зоммерфельда.
ВАХ анода зависит от напряжения накала — чем больше накал, тем больше крутизна ВАХ и тем больше ток насыщения. Чрезмерное увеличение напряжения накала приводит к уменьшению срока службы лампы.
К основным параметрам электровакуумного диода относятся:

  • Крутизна ВАХ: S={dI_a \over dU_a} — изменение анодного тока в мА на 1 В изменения напряжения.
  • Дифференциальное сопротивление: R_i={1 \over S}
  • Максимально допустимое обратное напряжение. При некотором напряжении, приложенном в обратном направлении (то есть изменена полярность катода и анода), происходит пробой диода — проскакивает искра между катодом и анодом, что сопровождается резким возрастанием силы тока.
  • Запирающее напряжение — напряжение, необходимое для прекращения тока в диоде.
  • Максимально допустимая рассеиваемая мощность.
  • Крутизна и внутреннее сопротивление являются функциями от анодного напряжения и температуры катода.

Если температура катода постоянна, то в пределах участка «трех вторых» крутизна равна первой производной от функции «трех-вторых».

Они выпускаются как с катодами прямого, так и подогревного (косвенного) накала и делятся на два класса: низковольтные и высоковольтные. К маломощным высокочастотным диодам, предназначенным для детектирования высокочастотных колебаний, относятся диоды типа 6Х6С, 6Х2П, 6Х7Б, а также диоды в комбинации с триодами и пентодами: 1Б1П, 1Б2П, 6Б2П, 6Б8С, 6Г2 и 6Г7. К кенотронам, предназначенным для выпрямления напряжения промышленной частоты в выпрямителях радиоаппаратуры, относятся: 5Ц3С, 5Ц4С, 5Ц9С, 6Ц4П и 6Ц5С.

Обозначения диодов

  • Первый элемент — число, обозначающее (округленно) напряжение накала.
  • Второй элемент — буква, обозначающая тип лампы: Д — одинарные диоды. Х — двойные диоды. Ц — кенотроны (назависимо от числа анодов).
  • Третий элемент — число, указывающее порядковый номер типа прибора с одинаковыми остальными элементами обозначения.
  • Четвертый элемент — буква, указывающая на конструктивное оформление. Лампы в металлическом баллоне этой буквы не имеют. С — стеклянный баллон; П- пальчиковая лампа; Б — миниатюрная лампа диаметром 6 мм; Ж — лампы типа «желудь», специально для УКВ; Л — лампы с замковым цоколем, устраняющим возможность выпадения из гнезда при тряске.

Электронные лампы (диоды, триоды, тетроды и пентоды)

Применение диодов для выпрямления переменного тока

Условные обозначения электровакуумных ламп

Тетрод

Комбинированные вакуумные лампы

Полупроводниковые диоды Параметры и характеристики

Импульсные стабилизаторы напряжения

Усилители напряжения модулирующей частоты

PhysBook:Электронный учебник физики — PhysBook

Содержание


  • 1 Учебники

  • 2 Механика


    • 2. 1 Кинематика

    • 2.2 Динамика

    • 2.3 Законы сохранения

    • 2.4 Статика

    • 2.5 Механические колебания и волны

  • 3 Термодинамика и МКТ


    • 3.1 МКТ

    • 3.2 Термодинамика

  • 4 Электродинамика


    • 4. 1 Электростатика

    • 4.2 Электрический ток

    • 4.3 Магнетизм

    • 4.4 Электромагнитные колебания и волны

  • 5 Оптика. СТО


    • 5.1 Геометрическая оптика

    • 5.2 Волновая оптика

    • 5.3 Фотометрия

    • 5.4 Квантовая оптика

    • 5. 5 Излучение и спектры

    • 5.6 СТО

  • 6 Атомная и ядерная


    • 6.1 Атомная физика. Квантовая теория

    • 6.2 Ядерная физика

  • 7 Общие темы

  • 8 Новые страницы

Здесь размещена информация по школьной физике:

  1. материалы из учебников, лекций, рефератов, журналов;
  2. разработки уроков, тем;
  3. flash-анимации, фотографии, рисунки различных физических процессов;
  4. ссылки на другие сайты

и многое другое.

Каждый зарегистрированный пользователь сайта имеет возможность выкладывать свои материалы (см. справку), обсуждать уже созданные.

Учебники

Формулы по физике – 7 класс – 8 класс – 9 класс – 10 класс – 11 класс –

Механика

Кинематика

Основные понятия кинематики – Прямолинейное движение – Криволинейное движение – Движение в пространстве

Динамика

Законы Ньютона – Силы в механике – Движение под действием нескольких сил

Законы сохранения

Закон сохранения импульса – Закон сохранения энергии

Статика

Статика твердых тел – Динамика твердых тел – Гидростатика – Гидродинамика

Механические колебания и волны

Механические колебания – Механические волны


Термодинамика и МКТ

МКТ

Основы МКТ – Газовые законы – МКТ идеального газа

Термодинамика

Первый закон термодинамики – Второй закон термодинамики – Жидкость-газ – Поверхностное натяжение – Твердые тела – Тепловое расширение


Электродинамика

Электростатика

Электрическое поле и его параметры – Электроемкость

Электрический ток

Постоянный электрический ток – Электрический ток в металлах – Электрический ток в жидкостях – Электрический ток в газах – Электрический ток в вакууме – Электрический ток в полупроводниках

Магнетизм

Магнитное поле – Электромагнитная индукция

Электромагнитные колебания и волны

Электромагнитные колебания – Производство и передача электроэнергии – Электромагнитные волны


Оптика.

СТО

Геометрическая оптика

Прямолинейное распространение света. Отражение света – Преломление света – Линзы

Волновая оптика

Свет как электромагнитная волна – Интерференция света – Дифракция света

Фотометрия

Фотометрия

Квантовая оптика

Квантовая оптика

Излучение и спектры

Излучение и спектры

СТО

СТО


Атомная и ядерная

Атомная физика. Квантовая теория

Строение атома – Квантовая теория – Излучение атома

Ядерная физика

Атомное ядро – Радиоактивность – Ядерные реакции – Элементарные частицы


Общие темы

Измерения – Методы решения – Развитие науки- Статья- Как писать введение в реферате- Подготовка к ЕГЭ — Репетитор по физике

Новые страницы

Запрос не дал результатов.

p-n диод или разделительный диод

 

Соединение
Диод

А
диод
двухполюсное электронное устройство, состоящее из
одиночный p-n переход. Этот p-n переход обычно создается на одном блоке кремния путем легирования
блок с донорной и акцепторной примесями на противоположных концах.
Диод – это
выпрямитель,
позволяет току проходить в одном направлении, но не в противоположном
направление.

Когда
анод (сторона p-типа) диода подключен к положительному
клемме аккумулятора, говорят, что диод находится в
прямое смещение, позволяющее
ток, проходящий через него.
Говорят, что диод находится в
обратное смещение, если его катод (n-типа
сторона) — это тот, который подключен к положительной клемме аккумулятора.
Диод не проводит ток при обратном смещении.

А
диод становится смещенным в прямом направлении только тогда, когда потенциал на аноде
больше потенциала катода на

0,7 В, потенциал
барьер.
При этом условии потенциальный барьер эффективно
«преодолевать» приложенное напряжение, позволяя носителям диода
двигаться через перекресток.
Это означает, что электроны со стороны n-типа теперь могут перейти на
сторону p-типа так же, как отверстия на стороне p-типа могут
теперь перейдите на сторону n-типа.

ток через диод увеличивается
экспоненциально, как прямое смещение
напряжение на диоде увеличивается.
Таким образом, увеличение тока, протекающего через диод, очень
резкий, как только диод начинает проводить.
С физической точки зрения, увеличение напряжения прямого смещения
вводит
больше электронов на сторону n-типа диода. Эти электроны
немедленно пересечь перекресток при отсутствии потенциального барьера.
Как только они достигают материала р-типа, они возвращаются к
положительную клемму аккумулятора снова.
Отверстия на стороне p-типа также перемещаются таким же образом при
условие прямого смещения, хотя и в направлении, противоположном
электроны. Этот непрерывный поток зарядов через диод будет продолжаться.
пока диод находится в прямом смещении.

Когда
диод ставится под обратное смещение, отверстия p-стороны закрыты
притягивается к отрицательной клемме батареи, в то время как электроны
на стороне n-типа тянутся к положительному выводу
батарея.
По сути, мобильные заряды отрываются от соединения.
в противоположных направлениях,
препятствуя прохождению зарядов через
диод.
Это тоже по существу
расширение
потенциальный барьер диода, что затрудняет
транспортные средства для перемещения через перекресток.

В
в действительности, однако, очень небольшое количество тока все еще протекает через
диод с обратным смещением.
Этот ток, известный как
обратный ток насыщения, обусловленный

термическая генерация дырок и электронов вблизи перехода
диод.
Следовательно, это зависит только от температуры, а не от
потенциальный барьер диода.


См. также: 

Что такое полупроводник?; p-n переход;
биполярный транзистор;

МОП-транзистор; JFET;

ИС Производство

ДОМ

Авторские права

2001-2006 гг.

www.EESemi.com
.
Все права защищены.

Двойные переключающие диоды с общим катодом

%PDF-1.