интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Эксперимент по извлечению энергии из поля постоянного магнита. Электричество из магнита


Электричество из магнита: виды магнитных двигателей

Содержание:
  1. Как получить электричество из магнита
  2. Основные виды магнитных двигателей
  3. Применение устройств на постоянных магнитах

Существует большое количество устройств, относящихся к так называемым «вечным двигателям». Среди них имеются многочисленные конструкции генераторов тока, позволяющие получать электричество из магнита. В этих устройствах применяются свойства постоянных магнитов, способных к совершению внешней полезной работы.

В настоящее время ведутся работы по созданию магнитного двигателя, способного приводить в движение устройство вырабатывающее ток. Исследования в этой области еще до конца не закончены, однако, на основе полученных результатов можно вполне представить себе его устройство и принцип действия.

Как получить электричество из магнита

Для того, чтобы понять как работают подобные устройства, необходимо точно знать, чем они отличаются от обычных электрических двигателей. Все электродвигатели, хотя и пользуются магнитными свойствами материалов, движение свое осуществляют исключительно под действием тока.

Для работы настоящего магнитного двигателя используется только лишь постоянная энергия магнитов, с помощью которой выполняются все необходимые перемещения. Основной проблемой этих устройств является склонность магнитов к статическому равновесию. Поэтому на первый план выходит создание переменного притяжения, с использованием физических свойств магнитов или механических приспособлений в самом двигателе.

Принцип действия двигателя на постоянных магнитах основан на крутящем моменте отталкивающих сил. Происходит действие одноименных магнитных полей постоянных магнитов, расположенных в статоре и роторе. Их движение осуществляется во встречном направлении по отношению друг к другу. Для того, чтобы решить проблему притяжения был использован медный проводник с пропущенным по нему электрическим током. Такой проводник начинает притягиваться к магниту, однако при отсутствии тока, притяжение прекращается. В результате, обеспечивается цикличное притяжение и отталкивание деталей статора и ротора.

Основные виды магнитных двигателей

За весь период исследований было разработано большое количество устройств, позволяющих получить электричество из магнита. Каждый из них имеет собственную технологию, однако все модели объединяет магнитное поле. Среди них не существует идеальных вечных двигателей, поскольку магниты через определенное время полностью утрачивают свои качества.

Наиболее простое устройство у антигравитационного магнитного двигателя Лоренца. В его конструкцию входят два диска с разноименными зарядами, подключенные к питанию. Половина этих дисков размещается в полусферическом магнитном экране, после чего начинается их постепенное вращение.

Самым реальным функционирующим устройством считается простейшая конструкция роторного кольцара Лазарева. Он состоит из емкости, которую разделяет пополам специальная пористая перегородка или керамический диск. Внутри диска устанавливается трубка, а сама емкость заполняется жидкостью. Вначале жидкость попадает в низ емкости, а затем под действием давления начинает пот трубке перемещаться вверх. Здесь жидкость начинает капать из загнутого конца трубки и вновь попадает в нижнюю часть емкости. Для того, чтобы это сооружение приняло форму двигателя, под каплями жидкости располагается колесико с лопастями.

Непосредственно на лопастях устанавливаются магниты, образующее магнитное поле. Вращение колесика ускоряется, вода перекачивается быстрее и, в конце концов, устанавливается определенная предельная скорость работы всего устройства.

Основой линейного двигателя Шкондина является система расположения одного колеса в другом колесе.Вся конструкция состоит из двойной пары катушек с разноименными магнитными полями. За счет этого обеспечивается их движение в разные стороны.

В альтернативном двигателе Перендева используется только магнитная энергия. Конструкция состоит из двух кругов – динамичного и статичного. На каждом из них с одинаковой последовательностью и интервалами расположены магниты. Свободная сила самоотталкивания приводит в бесконечное движение внутренний круг.

Применение устройств на постоянных магнитах

Результаты исследований в данной области уже сейчас заставляют задумываться о перспективах применения магнитных устройств.

В будущем отпадет надобность во всевозможных выпрямителях и зарядных устройствах. Вместо них будут использоваться магнитные двигатели самых разных размеров, приводящие в движение миниатюрные генераторы тока. Таким образом, множество ноутбуков, планшетов, смартфонов и прочей аналогичной аппаратуры будут непрерывно работать в течение продолжительного времени. Эти источники питания смогут переставляться со старых моделей на новые.

Магнитные устройства с более высокой мощностью смогут вращать такие генераторы, которые заменят оборудование современных электростанций. Они легко смогут работать вместо двигателей внутреннего сгорания. В каждой квартире или доме будет установлена индивидуальная система энергообеспечения.

electric-220.ru

Как собрать из двух магнитов, вечный фонарик с бесплатным электричеством?

Элементарно. Посмотрите подробную инструкцию по сборке универсального фонаря. И соберите его самостоятельно у себя дома.

Как собрать бестопливный генератор энергии? ФриТеслаЭнерджи поможет

Это одна из множества моделей в закрытом сообществе энтузиастов свободной энергии.

Все что понадобится – 2 магнита, кусок медной проволоки, клей , патрон под лампу и светодиодная лампа на 12 вольт.

Как собрать бестопливный генератор энергии? ФриТеслаЭнерджи поможет

1 — Собираем катушку

Можно обматывать на предмет круглой формы, баллон с дезодарантом или бутылку…

Как собрать бестопливный генератор энергии? ФриТеслаЭнерджи поможет

2 – Приклеиваем катушку к магниту №1

Чтобы зафиксировать проволоку.

Как собрать бестопливный генератор энергии? ФриТеслаЭнерджи поможет

Два одинаковых магнита.

Как собрать бестопливный генератор энергии? ФриТеслаЭнерджи поможет

Проволока.

Как собрать бестопливный генератор энергии? ФриТеслаЭнерджи поможет

Клей.

3 – Приклеиваем второй магнит

Нужно приклеивать так чтобы магниты отталкивали друг друга, создавая поле.

Как собрать бестопливный генератор энергии? ФриТеслаЭнерджи поможет

Гамбургер Тесла.))

Теперь начинаем снимать энергию.

5 – Прикручиваем к проволоке патрон

И все готово.

Как собрать бестопливный генератор энергии? ФриТеслаЭнерджи поможет

Бесплатное электричество по заветам Великого Н. Тесла.

Как собрать бестопливный генератор энергии? ФриТеслаЭнерджи поможет

В сообществе FreeTeslaEnergy вы можете получить доступ к сборникам инструкций, по сборке генераторов бесплатного электричества и других устройств, для экономии на энергии.

Вы можете стать частью сообщества, получить помощь в изготовлении БТГ. И помочь этому миру стать чуточку лучше.

 

Facebook

Twitter

Мой мир

Вконтакте

Одноклассники

Google+

Pinterest

freeteslaenergy.ru

Эксперимент по извлечению энергии из поля постоянного магнита

Идею, заложенную в ниже описываемом устройстве, пытаются реализовать многие. Суть ее такова: есть постоянный магнит (ПМ) — гипотетический источник энергии, выходная катушка (коллектор) и некий модулятор, изменяющий распределение магнитного поля ПМ, создавая тем самым переменный магнитный поток в катушке.Реализация (18.08.2004)Для реализации этого проекта (назовем его TEG, как производная от двух конструкций: VTA Флойда Свита и MEG Тома Бердена 🙂 ) я взял два ферритовых кольцевых сердечника марки М2000НМ размерами O40хO25х11 мм, сложил их вместе, скрепив изолентой, и намотал коллекторную (выходную) обмотку по периметру сердечника — 105 витков проводом ПЭВ-1 в 6 слоев, также закрепив каждый слой изолентой.

teg_sh01
teg01
Коллекторная обмотка на ферритовом сердечнике.

Далее оборачиваем это еще раз изолентой и поверх наматываем катушку модулятора (входную). Ее мотаем как обычно — тороидальную. Я намотал 400 витков в два провода ПЭВ-0.3, т.е. получилось две обмотки по 400 витков. Это было сделано с целью расширения вариантов эксперимента.

teg02
Обмотка модулятора.

Теперь помещаем всю эту систему между двумя магнитами. В моем случае это были оксидно-бариевые магниты, материал марки М22РА220-1, намагничен в магнитном поле напряженностью не менее 640000 А/м,размеры 80х60х16 мм. Магниты взяты из магниторазрядного диодного насоса НМД 0,16-1 или ему подобных. Магниты ориентированы «на притяжение» и их магнитные линии пронизывают ферритовые кольца по оси.

teg_sh02
TEG в сборе (схема).

Работа ТЭГа заключается в следующем. Изначально напряженность магнитного поля внутри коллекторной катушки выше, чем снаружи из-за присутствия внутри феррита. Если же насытить сердечник, то егомагнитная проницаемость резко снизится, что приведет к уменьшению напряженности внутри катушки коллектора. Т.е. нам необходимо создать такой ток в модулирующей катушке, чтобы насытить сердечник. К моменту насыщения сердечника, напряжение на коллекторной катушке будет повышаться. При снятии напряжения с управляющей катушки, напряженность поля вновь возрастет, что приведет к выбросу обратной полярности на выходе. Идея в изложенном виде рождена где-то в середине февраля 2004 г.

teg05
Схема управления модулятором.

В принципе, достаточно одной модуляторной катушки. Блок управлениясобран по классической схеме на TL494. Верхний по схеме переменныйрезистор меняет скважность импульсов от 0 примерно до 45% на каждомканале, нижний — задает частоту в диапазоне примерно от 150 Гц до 20кГц. При использовании одного канала, частота, соответственно,снижается вдвое. В схеме также предусмотрена защита по току черезмодулятор примерно в 5А.

teg03
ТЭГ в сборе (внешний вид).

Параметры ТЭГа (измерено мультиметром MY-81):сопротивления обмоток:коллектора — 0,5 Оммодуляторов — 11,3 Ом и 11,4 Оминдуктивности обмоток без магнитов:коллектора — 1,16 мГнмодуляторов — 628 мГн и 627 мГниндуктивности обмоток с установленными магнитами:коллектора — 1,15 мГнмодуляторов — 375 мГн и 374 мГнЭксперимент №1 (19.08.2004)Модуляторные катушки соединены последовательно, получилась как бы бифилярка. Использовался один канал генератора. Индуктивность модулятора 1,52 Гн, сопротивление — 22,7 Ом. Питание блока управленияздесь и далее 15 В, осциллограммы снимались двухлучевым осциллографом С1-55. Первый канал (нижний луч) подключен через делитель 1:20 (Cвх 17 пФ, Rвх 1 Мом), второй канал (верхний луч) — напрямую (Cвх 40 пФ, Rвх 1 Мом). Нагрузка в цепи коллектора отсутствует.Первое на что было обращено внимание: после снятия импульса с управляющей катушки, в ней возникают резонансные колебания, и если следующий импульс подать в момент противофазы резонансному всплеску,то в этот момент возникает импульс на выходе коллектора. Также это явление было замечено и без магнитов, но в гораздо меньшей степени. Т.е., скажем так, в данном случае важна крутизна смены потенциала на обмотке. Амплитуда импульсов на выходе могла достигать 20 В. Однако ток таких выбросов очень мал, и с трудом удается заряжать емкость на 100 мкФ, подключенную к выходу через выпрямительный мост. Никакую другую нагрузку выход не тянет. На высокой частоте генератора, когда ток модулятора предельно мал, и форма импульсов напряжения на нем сохраняет прямоугольную форму, выбросы на выходе также присутствуют, хотя магнитопровод еще очень далек от насыщения.

teg06
Напряжение на модуляторе (верхний) и коллекторе (нижний). Амплитуду выхода следует умножить на 20.

Выводы:Пока ничего существенного не произошло. Просто отметим для себя некоторые эффекты. 🙂Здесь же, думаю, будет справедливым отметить, что есть, по крайней мере, еще один человек — некий Сергей А, экспериментирующий с такой же системой.  Клянусь, до этой идеи мы дошли совершенно независимо :). На сколько далеко прошли его исследования, мне не известно, я с ним не связывался. Но он также отмечал подобные эффекты.Эксперимент №2 (19.08.2004)Модуляторные катушки разъединены и подключены к двум каналам генератора, причем подключены встречно, т.е. поочередно создается магнитный поток в кольце в разных направлениях. Индуктивности катушек даны выше в параметрах ТЭГа. Замеры велись как и в предыдущем эксперименте. Нагрузка на коллекторе отсутствует.Ниже на осциллограммах представлены напряжение на одной из обмоток модулятора и ток через модулятор (слева) и также напряжение на модуляторной обмотке и напряжение на выходе коллектора (справа) приразной длительности импульсов. Я пока не стану указывать амплитуды и временные характеристики, во-первых, я их не все сохранил, а во-вторых, это пока не важно, пока попытаемся качественно отследить поведение системы.

teg07teg08
Скважность заполнения импульсов на канале около 11%, т.е. общая — 22%.
teg09teg11
Скважность заполнения импульсов на канале 17,5%, общая — 35%.

Поясню картинку напряжения на модуляторе (верхний луч). Напряжение измерялось относительно плюса питания. Начальная полочка — это есть включение модулятора, далее обратный всплеск при снятии напряжения и возбуждение осцилляций из-за паразитных емкостей ключа. Снова всплеск, но спадающий — это работает второй модулятор. Еще раз обращу внимание, что второй модулятор включен «встречно». Следующая полочка — отключение второго модулятора и снова осцилляции. Второй луч на левыхрисунках — это ток через модуляторы. Ток измерялся путем снятия напряжения с низкоомного резистора, включенного последовательно с ключами, т.е. потенциал на выводе 16 TL494 (см. схему генератора). Нарисунках справа второй луч — напряжение на выходе коллектора в тех же режимах.На первой серии осциллограмм видно, что при определенном токе модулятора напряжение на выходе коллектора достигает максимума — это промежуточный момент перед переходом сердечника в насыщение, его магнитная проницаемость начинает падать. В этот момент происходит отключение модулятора и магнитное поле восстанавливается в коллекторной катушке, что сопровождается отрицательным броском навыходе. На следующей серии осциллограмм длительность импульса увеличена, и сердечник доходит до полного насыщения — изменение магнитного потока прекращается и напряжение на выходе равно нулю (спадв положительной области). Далее снова следует обратный выброс при отключении обмотки модулятора.Теперь попытаемся исключить из системы магниты, сохранив режим работы.

teg11teg12
Удален один магнит.
teg13teg14
Удалены оба магнита.

При удалении одного магнита, амплитуда выхода снизилась почти в 2 раза. Заметим так же, что снизилась частота осцилляций, поскольку увеличилась индуктивность модуляторов. При удалении второго магнита,сигнала на выходе нет.Выводы:Похоже, идея, в том виде как она была заложена, работает.Эксперимент №3 (19.08.2004)Модуляторные катушки вновь соединены последовательно, как в 1-ом эксперименте. Встречное последовательное соединение абсолютно никакого эффекта не дает. Ничего другого я и не ожидал :). Соединены как положено. Проверяется работа, как в холостом режиме, так и с нагрузкой. Ниже на осциллограммах показаны ток модулятора (верхний луч) и напряжение выхода (нижний луч) при различных длительностях импульса на модуляторе. Здесь и далее я решил привязываться к току модуляторов,как к наиболее подходящему в роли опорного сигнала. Осциллограммы снимались относительно общего провода. Первые 3 рисунка — в холостом режиме, последний — с нагрузкой.

teg15teg16
teg17teg18

Рисунки слева направо и сверху вниз: 1) малая длительность импульса, 2) увеличение длительности с подходом к области насыщения, 3) оптимальная длительность, полное насыщение и максимальное выходноенапряжение (при холостом ходе), 4) последний режим работы, но с подключенной нагрузкой.Нагрузкой служила лампа накаливания 6,3 В, 0,22 А. Свечением этоконечно назвать нельзя… 🙂

teg19

Замеры мощности в нагрузке не проводились, интересно другое:

teg20
Потребление с отключенной нагрузкой 127,2 мА.
teg21
Потребление с подключенной нагрузкой 126,8 мА.

Выводы:Не знаю, что и думать… Потребление снизилось на 0,3%. Сам генератор без ТЭГа потребляет 18,5 мА. Возможно, нагрузка косвенно через изменение распределения магнитного поля повлияла на индуктивностьмодуляторов. Хотя, если сравнить осциллограммы тока через модулятор в холостом режиме и с нагрузкой (например, при листании туда-сюда в ACDSee), то можно заметить слабый завал верхушки пика при работе снагрузкой. Увеличение же индуктивности привело бы к уменьшению ширины пика. Хотя все это очень призрачно…Эксперимент №4 (20.08.2004)Поставлена цель: получить максимальный выход на том что есть. В прошлом эксперименте уперся в предел частоты, на которой обеспечивалась оптимальная длительность импульса при максимально возможном уровне заполнения импульса ~45% (скважность минимальна). Так что необходимо было уменьшить индуктивность модуляторной обмотки (ранее были соединены две последовательно), однако в этом случаепридется увеличить ток. Так что теперь модуляторные катушки подключены раздельно к обоим выходам генератора, как во 2-м эксперименте, однако в этот раз они включены в одном направлении (как указано напринципиальной схеме генератора). Осциллограммы при этом изменились (снимались относительно общего провода). Выглядят гораздо приятнее :). Кроме того, мы теперь имеем две обмотки, которые работают поочередно. Значит при той же максимальной длительности импульса мы можем удвоить частоту (для данной схемы).Выбран определенный режим работы генератора по максимальной яркости лампы на выходе. Итак, как обычно, сразу перейдем к рисункам…

teg22teg23
Верхний луч — ток модулятора. Нижний слева — напряжение на одном из модуляторов, справа — управляющий импульс этого же канала с выхода TL494.

Здесь слева явно видим повышение напряжения на обмотке модулятора в период работы второго (второй полупериод, логический «0» на правой осциллограмме). Выбросы при отключении модулятора в 60 вольт ограничиваются диодами, входящими в состав полевых ключей.

teg24teg25
Верхний луч — ток модулятора. Нижний слева — напряжение выхода с нагрузкой, справа — напряжение выхода на холостом ходу.

Нагрузка — все та же лампа 6,3 В, 0,22 А. И снова повторяется картина с потреблением…

teg26
Потребление с отключенной нагрузкой 0,62 А.
teg27
Потребление с подключенной нагрузкой 0,61 А.

Снова имеем снижение потребления при подключенной к коллектору нагрузке. Измерения конечно на пороге точности прибора, но, тем не менее, повторяемость 100%. Мощность в нагрузке составила около 156мВт. На входе — 9,15 Вт. А про «вечный двигатель» пока никто и не говорил 🙂Здесь можно полюбоваться на горящую лампочку:

teg28

Выводы:Эффект налицо. Что мы сможем от этого получить — время покажет. На что следует обратить внимание? Первое, увеличить количество витков коллектора, возможно, добавив еще пару колец, а лучше бы подобратьоптимальные размеры магнитопровода. Кто бы занялся расчетами? 😉 Возможно, имеет смысл увеличить магнитную проницаемость магнитопровода. Это должно увеличить разность напряженностей магнитного поля внутри и снаружи катушки. Одновременно снизить бы индуктивность модулятора. Думалось также, что нужны зазоры между кольцом и магнитом, чтобы, скажем так, было место для изгибания магнитных линий при смене свойств среды — магнитной проницаемости. Однако на практике это приводит только к спаду напряжения на выходе. В настоящий момент зазоры определяются 3 слоями изоленты и толщиной модуляторной обмотки, на глаз это максимум по 1,5 мм с каждой стороны.Эксперимент №4.1 (21.08.2004)Предыдущие эксперименты проводились на работе. Принес блок управления и «трансформатор» домой. Такой же набор магнитов у меня давно валялся и дома. Собрал. С удивлением обнаружил, что могу поднять еще частоту. Видимо мои «домашние» магниты были чуть посильнее, вследствие чего индуктивность модуляторов снизилась. Радиаторы уже грелись сильнее, однако ток потребления схемы составил 0,56 А и 0,55 А без нагрузки и с нагрузкой соответственно, при том же питании 15 В. Возможно, имел место сквозной ток через ключи. В данной схеме на высокой частоте такое не исключено. На выход подключил галогенную лампочку на 2,5 В, 0,3А. В нагрузке получил 1,3 В, 200 мА. Итого вход 8,25 Вт, выход 0,26 Вт — КПД 3,15%. Но заметьте, опять же без ожидаемого традиционного влияния на источник !Эксперимент №5 (26.08.2004)Собран новый преобразователь (версия 1.2) на кольце с большей проницаемостью — М10000НМ, размеры те же: O40хO25х11 мм. К сожалению, кольцо было только одно. Чтобы уместить больше витков на коллекторной обмотке, провод взят потоньше. Итого: коллектор 160 витков проводом O 0,3 и так же два модулятора по 235 витков, так же проводом O 0,3. А так же найден новый блок питания аж до 100 В и током до 1,2 А. Напряжение питания тоже может сыграть роль, поскольку оно обеспечивает скорость нарастания тока через модулятор, а тот, в свою очередь, скорость изменения магнитного потока, что напрямую связано с амплитудой выходного напряжения.Пока нечем измерить индуктивности и запечатлеть картинки. Поэтому без излишеств изложу голые цифры. Было проведено несколько измерений при разных напряжениях питания и режимах работы генератора. Ниже приведены некоторые из них.без выхода в полное насыщение\

Вход: 20 В x 0,3 А = 6 ВтВыход: 9 В x 24 мА = 0,216 ВтКПД: 3,6 %

Вход: 10 В x 0,6 А = 6 ВтВыход: 9 В x 24 мА = 0,216 ВтКПД: 3,6 %Вход: 15 В x 0,5 А = 7,5 ВтВыход: 11 В x 29 мА = 0,32 ВтКПД: 4,2 %с полным насыщением

Вход: 15 В x 1,2 А = 18 ВтВыход: 16 В x 35 мА = 0,56 ВтКПД: 3,1 %Выводы:Оказалось, что в режиме полного насыщения, идет спад КПД, поскольку резко возрастает ток модулятора. Оптимального режима работы (по КПД) удалось достичь при напряжении питания 15 В. Влияния нагрузки на источник питания не обнаружено. Для приведенного 3-го примера с КПД 4,2, ток схемы с подключенной с нагрузкой должен увеличиваться примерно на 20 мА, но повышения так же не зафиксировано.Эксперимент №6 (2.09.2004)Убрана часть витков модулятора с целью повышения частоты и уменьшения зазоров между кольцом и магнитом. Теперь имеем две обмотки модулятора по 118 витков, намотанных в один слой. Коллектор  оставлен без изменений — 160 витков. Кроме того, измерены электрические характеристики нового преобразователя.

teg29
Модулятор ТЭГа (версия 1.21)

Параметры ТЭГа (версия 1.21), измерено мультиметром MY-81:сопротивления обмоток:коллектора — 8,9 Оммодуляторов — по 1,5 Оминдуктивности обмоток без магнитов:коллектора — 3,37 мГнмодуляторов — по 133,4 мГнпоследовательно соединенных модуляторов — 514 мГниндуктивности обмоток с установленными магнитами:коллектора — 3,36 мГнмодуляторов — по 89,3 мГнпоследовательно соединенных модуляторов — 357 мГнНиже представляю результаты двух измерений работы ТЭГа в разных режимах. При более высоком напряжении питания частота модуляции выше. В обоих случаях модуляторы соединены последовательно.

Вход: 15 В x 0,55 А = 8,25 ВтВыход: 1,88 В x 123 мА = 0,231 ВтКПД: 2,8 %

Вход: 19,4 В x 0,81 А = 15,714 ВтВыход: 3,35 В x 176 мА = 0,59 ВтКПД: 3,75 %Выводы:Первое и самое печальное. После внесения изменений в модулятор, зафиксировано увеличение потребления при работе с новым преобразователем. Во втором случае потребление возросло примерно на 30 мА. Т.е. без нагрузки потребление составляло 0,78 А, с нагрузкой — 0,81 А. Помножаем на питающие 19,4 В и получим 0,582 Вт — ту самую мощность, что сняли с выхода. Однако я повторюсь со всей ответственностью, что раньше такого не наблюдалось. При подключении нагрузки в данном случае явно прослеживается более крутое нарастание тока через модулятор, что является следствием уменьшения индуктивности модулятора. С чем это связано, пока не известно.И еще ложка дегтя. Боюсь, в данной конфигурации не удастся получить КПД более 5% из-за слабого перекрытия магнитного поля. Другими словами, насыщая сердечник, мы ослабляем поле внутри коллекторной катушки лишь в области прохождения этого самого сердечника. Но магнитные линии идущие из центра магнита через центр катушки ничем не перекрываются. Более того, часть магнитных линий «вытесненных» из сердечника при его насыщении также обходит последний с внутренней стороны кольца. Т.е. таким образом модулируется лишь малая часть магнитного потока ПМ. Необходимо изменить геометрию всей системы. Возможно, следует ожидать некоторого прироста КПД, используя кольцевые магниты от динамиков. Так же не отпускает мысль о работе модуляторов в режиме резонанса. Однако в условиях насыщения сердечника и, соответственно, постоянно меняющейся индуктивности модуляторов это сделать весьма не просто.Исследования продолжаются…Если хотите обсудить, заходите на «увлеченный форум», — мой ник Armer.Или пишите на [email protected], но думаю, лучше в форум.

х х хDragons’ Lord : Во первых, огромное спасибо Armer’у за то, что предоставил отчёт о проведённых экспериментах с великолепными иллюстрациями. Думаю, скоро нас ожидают новые работы Владислава. А пока я выскажу свои мысли на счёт этого проекта и его возможного пути усовершенствования. Предлагаю изменить схему генератора следующим образом:
teg_sh03
Схемотехника нового TEG’а (предложение).

Вместо плоских внешних магнитов (плит) предлагается использовать кольцевые магниты. Причём, внутренний диаметр магнита должен быть приблизительно равным аналогичному диаметру кольца магнитопровода, а внешний диаметр магнита больше, чем внешний диаметр кольца магнитопровода.В чём проблема низкого КПД ? Проблема в том, что магнитные линии, вытесняемые из магнитопровода по-прежнему пересекают площадь витков вторичной обмотки (отжимаются и концентрируются в центральной области). Указанное соотношение колец создаёт асимметричность и принуждает большую часть магнитных линий, при насыщенном до предела центральном магнитопроводе, огибать его по ВНЕШНЕМУ пространству. Во внутренней области магнитных линий будет меньше, чем в базовом варианте. Вообще-то, эту «болезнь» полностью излечить нельзя, по прежнему используя кольца. Как поднять общий КПД сказано ниже.Также предлагается использовать дополнительный внешний магнитопровод, который концентрирует силовыелинии в рабочей области устройства, делая его мощнее (здесь важно не переборщить, т.к. используем идею с полным насыщением центрального сердечника). Конструктивно, внешний магнитопровод представляет собой точённые ферромагнитные детали осесимметричной геометрии (что-то наподобие трубы с фланцами). Горизонтальную линию разъёма верхней и нижней «чашек» вы видите на картинке. Либо, это могут быть дискретные независимые магнитопроводы (скобы).Далее стоит подумать над усовершенствованием процесса с «электрической» точки зрения. Понятно, — первое, что нужно сделать, это раскачать первичную цепь в резонанс. Ведь у нас отсутствует вредное обратное влияние со вторичной цепи. Предлагается использовать резонанс ТОКА по понятным причинам (ведь цель, — насытить сердечник). Второе замечание, быть может, не такое очевидное на первый взгляд. Предлагается в качестве вторичной обмотки использовать не стандартную соленоидную намотку катушки, а сделать несколько плоских бифилярных катушек Тесла и поместить их на внешнем диаметре магнитопровода «слоённым пирожком», соединив последовательно. Чтобы вообще убрать существующее минимальное взаимодействие друг с другом в осевом направлении соседних бифилярных катушек, — нужно соединить их так же ЧЕРЕЗ ОДНУ, вернувшись с последней на вторую (повторное использование смысла бифилярки).Таким образом, за счёт максимальной разницы потенциала в двух соседних витках запасённая энергия вторичной цепи будет максимально возможная, что на порядок превосходит вариант с обычным соленоидом.Как видно из схемы, в виду того, что «пирожок» из бифилярок имеет довольно приличную протяжённость вгоризонтальном направлении, — предлагается мотать первичку не поверху вторички, а под ней. Непосредственно на магнитопровод.Как я уже сказал, используя кольца, невозможно превозмочь определённый предел КПД. И уверяю, что сверхеденичностью там и не пахнет. Вытесненные из центрального магнитопровода магнитные линии будутогибать его вдоль самой поверхности (по кратчайшему пути), тем самым, по прежнему пересекая площадь,ограниченную витками вторички. Анализ конструкции принуждает отказаться от текущей схемотехники. Нужен центральный магнитопровод БЕЗ отверстия. Взглянем на следующую схему:

teg_sh04
Более совершенная схемотехника нового TEG’а.

Основной магнитопровод набирается из отдельных пластин или стержней прямоугольного сечения, ипредставляет из себя параллелепипед. Первичка кладётся непосредственно на него. Её ось горизонтальнаи по схеме смотрит на нас. Вторичка, по-прежнему «слоённый пирожок» из бифилярок Тесла. Теперьзаметим, что мы ввели дополнительный (вторичный) магнитопровод, представляющий из себя «чашки» сотверстиями в их донцах. Зазор между краем отверстия и основным центральным магнитопроводом (первичной катушкой) должен быть минимален, для того, чтобы эффективно перехватывать вытесненные магнитные линии и оттягивать их на себя, не давая им проходить сквозь бифиляры. Конечно, следует заметить, что магнитная проницаемость центрального магнитопровода должна быть на порядок выше, чемвспомогательного. Например: центрального параллелепипеда — 10000, «чашек» — 1000. В нормальном (не насыщенном) состоянии центральный сердечник, за счёт своей большей магнитной проницаемости, будет втягивать магнитные линии в себя.А теперь самое интересное 😉 . Внимательно приглядимся, — что же мы получили ?… А получили мы самый обычный MEG, только в «недоделанном» варианте. Другими словами, я хочу сказать, что классическоеисполнение генератора MEG v.4.0 в пару раз обгоняет нашу лучшую схему, в виду его возможности перераспределяя магнитные линии (качая «качели») снимать полезную энергию на всём цикле своей работы.Причём, с обоих плеч магнитопровода. В нашем же случае имеем одноплечую конструкцию. Половину возможного КПД просто не используем.Выражаю надежду, что Владислав в самое ближайшее время проведёт эксперименты над MEG v.4.0, темболее, что таковая машинка (в исполнении v.3.0) у него уже имеется ;). И конечно, нужно обязательноиспользовать резонанс тока на первичных управляющих катушках, установленных не непосредственно на плечах магнитопровода, а на ферритовых вставках-пластинах, перпендикулярно таковому (в разрыв магнитопровода). Отчёт, по поступлению ко мне, я сразу же сверстаю и предоставлю нашим читателям.

 

«Новосибирский генератор TEG»

Владислав АРМБРИСТЕР

Источник

www.glubinnaya.info

энергии из поля постоянного магнита

Энергия из поля постоянного магнита

Идею, заложенную в ниже описываемом устройстве, пытаются реализовать многие. Суть ее такова: есть постоянный магнит (ПМ) - гипотетический источник энергии, выходная катушка (коллектор) и некий модулятор, изменяющий распределение магнитного поля Постоянного Магнита, создавая тем самым переменный магнитный поток в катушке.

       Реализация (18.08.2004)

       Для реализации этого проекта (назовем его TEG, как производная от двух конструкций: VTA Флойда Свита и MEG Тома Бердена :) ) я взял два ферритовых кольцевых сердечника марки М2000НМ размерами O40хO25х11 мм, сложил их вместе, скрепив изолентой, и намотал коллекторную (выходную) обмотку по периметру сердечника - 105 витков проводом ПЭВ-1 в 6 слоев, также закрепив каждый слой изолентой.

Коллекторная обмотка на ферритовом сердечнике.

       Далее обворачиваем это еще раз изолентой и поверх наматываем катушку модулятора (входную). Ее мотаем как обычно - тороидальную. Я намотал 400 витков в два провода ПЭВ-0.3, т.е. получилось две обмотки по 400 витков. Это было сделано с целью расширения вариантов эксперимента.

Обмотка модулятора.

       Теперь помещаем всю эту систему между двумя магнитами. В моем случае это были оксидно-бариевые магниты, материал марки М22РА220-1, намагничен в магнитном поле напряженностью не менее 640000 А/м, размеры 80х60х16 мм. Магниты взяты из магниторазрядного диодного насоса НМД 0,16-1 или ему подобных. Магниты ориентированы "на притяжение" и их магнитные линии пронизывают ферритовые кольца по оси.

TEG в сборе (схема).

       Работа ТЭГа заключается в следующем. Изначально напряженность магнитного поля внутри коллекторной катушки выше, чем снаружи из-за присутствия внутри феррита. Если же насытить сердечник, то его магнитная проницаемость резко снизится, что приведет к уменьшению напряженности внутри катушки коллектора. Т.е. нам необходимо создать такой ток в модулирующей катушке, чтобы насытить сердечник. К моменту насыщения сердечника, напряжение на коллекторной катушке будет повышаться. При снятии напряжения с управляющей катушки, напряженность поля вновь возрастет, что приведет к выбросу обратной полярности на выходе. Идея в изложенном виде рождена где-то в середине февраля 2004 г.

Схема управления модулятором.

       В принципе, достаточно одной модуляторной катушки. Блок управления собран по классической схеме на TL494. Верхний по схеме переменный резистор меняет скважность импульсов от 0 примерно до 45% на каждом канале, нижний - задает частоту в диапазоне примерно от 150 Гц до 20 кГц. При использовании одного канала, частота, соответственно, снижается вдвое. В схеме также предусмотрена защита по току через модулятор примерно в 5А.

ТЭГ в сборе (внешний вид).

       Параметры ТЭГа (измерено мультиметром MY-81):

       сопротивления обмоток:коллектора - 0,5 Оммодуляторов - 11,3 Ом и 11,4 Ом

       индуктивности обмоток без магнитов:коллектора - 1,16 мГнмодуляторов - 628 мГн и 627 мГн

       индуктивности обмоток с установленными магнитами:коллектора - 1,15 мГнмодуляторов - 375 мГн и 374 мГн

       Эксперимент №1 (19.08.2004)

       Модуляторные катушки соединены последовательно, получилась как бы бифилярка. Использовался один канал генератора. Индуктивность модулятора 1,52 Гн, сопротивление - 22,7 Ом. Питание блока управления здесь и далее 15 В, осциллограммы снимались двухлучевым осциллографом С1-55. Первый канал (нижний луч) подключен через делитель 1:20 (Cвх 17 пФ, Rвх 1 Мом), второй канал (верхний луч) - напрямую (Cвх 40 пФ, Rвх 1 Мом). Нагрузка в цепи коллектора отсутствует.

       Первое на что было обращено внимание: после снятия импульса с управляющей катушки, в ней возникают резонансные колебания, и если следующий импульс подать в момент противофазы резонансному всплеску, то в этот момент возникает импульс на выходе коллектора. Также это явление было замечено и без магнитов, но в гораздо меньшей степени. Т.е., скажем так, в данном случае важна крутизна смены потенциала на обмотке. Амплитуда импульсов на выходе могла достигать 20 В. Однако ток таких выбросов очень мал, и с трудом удается заряжать емкость на 100 мкФ, подключенную к выходу через выпрямительный мост. Никакую другую нагрузку выход не тянет. На высокой частоте генератора, когда ток модулятора предельно мал, и форма импульсов напряжения на нем сохраняет прямоугольную форму, выбросы на выходе также присутствуют, хотя магнитопровод еще очень далек от насыщения.

Напряжение на модуляторе (верхний) и коллекторе (нижний). Амплитуду выхода следует умножить на 20.

       Выводы:

       Пока ничего существенного не произошло. Просто отметим для себя некоторые эффекты. :)

       Здесь же, думаю, будет справедливым отметить, что есть, по крайней мере, еще один человек - некий Сергей А, экспериментирующий с такой же системой. Его описание вскользь было на www.skif.biz/phpBB2/viewtopic.php?t=48&postdays=0&postorder=asc&start=15 . Клянусь, до этой идеи мы дошли совершенно независимо :). На сколько далеко прошли его исследования, мне не известно, я с ним не связывался. Но он также отмечал подобные эффекты.

       Эксперимент №2 (19.08.2004)

       Модуляторные катушки разъединены и подключены к двум каналам генератора, причем подключены встречно, т.е. поочередно создается магнитный поток в кольце в разных направлениях. Индуктивности катушек даны выше в параметрах ТЭГа. Замеры велись как и в предыдущем эксперименте. Нагрузка на коллекторе отсутствует.

       Ниже на осциллограммах представлены напряжение на одной из обмоток модулятора и ток через модулятор (слева) и также напряжение на модуляторной обмотке и напряжение на выходе коллектора (справа) при разной длительности импульсов. Я пока не стану указывать амплитуды и временные характеристики, во-первых, я их не все сохранил, а во-вторых, это пока не важно, пока попытаемся качественно отследить поведение системы.

  
Скважность заполнения импульсов на канале около 11%, т.е. общая - 22%.
  
Скважность заполнения импульсов на канале 17,5%, общая - 35%.

       Поясню картинку напряжения на модуляторе (верхний луч). Напряжение измерялось относительно плюса питания. Начальная полочка - это есть включение модулятора, далее обратный всплеск при снятии напряжения и возбуждение осцилляций из-за паразитных емкостей ключа. Снова всплеск, но спадающий - это работает второй модулятор. Еще раз обращу внимание, что второй модулятор включен "встречно". Следующая полочка - отключение второго модулятора и снова осцилляции. Второй луч на левых рисунках - это ток через модуляторы. Ток измерялся путем снятия напряжения с низкоомного резистора, включенного последовательно с ключами, т.е. потенциал на выводе 16 TL494 (см. схему генератора). На рисунках справа второй луч - напряжение на выходе коллектора в тех же режимах.

       На первой серии осциллограмм видно, что при определенном токе модулятора напряжение на выходе коллектора достигает максимума - это промежуточный момент перед переходом сердечника в насыщение, его магнитная проницаемость начинает падать. В этот момент происходит отключение модулятора и магнитное поле восстанавливается в коллекторной катушке, что сопровождается отрицательным броском на выходе. На следующей серии осциллограмм длительность импульса увеличена, и сердечник доходит до полного насыщения - изменение магнитного потока прекращается и напряжение на выходе равно нулю (спад в положительной области). Далее снова следует обратный выброс при отключении обмотки модулятора.

       Теперь попытаемся исключить из системы магниты, сохранив режим работы.

  
Удален один магнит.
  
Удалены оба магнита.

       При удалении одного магнита, амплитуда выхода снизилась почти в 2 раза. Заметим так же, что снизилась частота осцилляций, поскольку увеличилась индуктивность модуляторов. При удалении второго магнита, сигнала на выходе нет.

       Выводы:

       Похоже, идея, в том виде как она была заложена, работает.

       Эксперимент №3 (19.08.2004)

       Модуляторные катушки вновь соединены последовательно, как в 1-ом эксперименте. Встречное последовательное соединение абсолютно никакого эффекта не дает. Ничего другого я и не ожидал :). Соединены как положено. Проверяется работа, как в холостом режиме, так и с нагрузкой. Ниже на осциллограммах показаны ток модулятора (верхний луч) и напряжение выхода (нижний луч) при различных длительностях импульса на модуляторе. Здесь и далее я решил привязываться к току модуляторов, как к наиболее подходящему в роли опорного сигнала. Осциллограммы снимались относительно общего провода. Первые 3 рисунка - в холостом режиме, последний - с нагрузкой.

  
  

       Рисунки слева направо и сверху вниз: 1) малая длительность импульса, 2) увеличение длительности с подходом к области насыщения, 3) оптимальная длительность, полное насыщение и максимальное выходное напряжение (при холостом ходе), 4) последний режим работы, но с подключенной нагрузкой.

       Нагрузкой служила лампа накаливания 6,3 В, 0,22 А. Свечением это конечно назвать нельзя... :)

       Замеры мощности в нагрузке не проводились, интересно другое:

Потребление с отключенной нагрузкой 127,2 мА.
Потребление с подключенной нагрузкой 126,8 мА.

       Выводы:

       Не знаю, что и думать... Потребление снизилось на 0,3%. Сам генератор без ТЭГа потребляет 18,5 мА. Возможно, нагрузка косвенно через изменение распределения магнитного поля повлияла на индуктивность модуляторов. Хотя, если сравнить осциллограммы тока через модулятор в холостом режиме и с нагрузкой (например, при листании туда-сюда в ACDSee), то можно заметить слабый завал верхушки пика при работе с нагрузкой. Увеличение же индуктивности привело бы к уменьшению ширины пика. Хотя все это очень призрачно...

       Эксперимент №4 (20.08.2004)

       Поставлена цель: получить максимальный выход на том что есть. В прошлом эксперименте уперся в предел частоты, на которой обеспечивалась оптимальная длительность импульса при максимально возможном уровне заполнения импульса ~45% (скважность минимальна). Так что необходимо было уменьшить индуктивность модуляторной обмотки (ранее были соединены две последовательно), однако в этом случае придется увеличить ток. Так что теперь модуляторные катушки подключены раздельно к обоим выходам генератора, как во 2-м эксперименте, однако в этот раз они включены в одном направлении (как указано на принципиальной схеме генератора). Осциллограммы при этом изменились (снимались относительно общего провода). Выглядят гораздо приятнее :). Кроме того, мы теперь имеем две обмотки, которые работают поочередно. Значит при той же максимальной длительности импульса мы можем удвоить частоту (для данной схемы).

       Выбран определенный режим работы генератора по максимальной яркости лампы на выходе. Итак, как обычно, сразу перейдем к рисункам...

  
Верхний луч - ток модулятора. Нижний слева - напряжение на одном из модуляторов, справа - управляющийимпульс этого же канала с выхода TL494.

       Здесь слева явно видим повышение напряжения на обмотке модулятора в период работы второго (второй полупериод, логический "0" на правой осциллограмме). Выбросы при отключении модулятора в 60 вольт ограничиваются диодами, входящими в состав полевых ключей.

  
Верхний луч - ток модулятора. Нижний слева - напряжение выхода с нагрузкой, справа - напряжение выходана холостом ходу.

       Нагрузка - все та же лампа 6,3 В, 0,22 А. И снова повторяется картина с потреблением...

Потребление с отключенной нагрузкой 0,62 А.
Потребление с подключенной нагрузкой 0,61 А.

       Снова имеем снижение потребления при подключенной к коллектору нагрузке. Измерения конечно на пороге точности прибора, но, тем не менее, повторяемость 100%. Мощность в нагрузке составила около 156 мВт. На входе - 9,15 Вт. А про "вечный двигатель" пока никто и не говорил :)

       Здесь можно полюбоваться на горящую лампочку:

 

       Выводы:

       Эффект налицо. Что мы сможем от этого получить - время покажет. На что следует обратить внимание? Первое, увеличить количество витков коллектора, возможно, добавив еще пару колец, а лучше бы подобрать оптимальные размеры магнитопровода. Кто бы занялся расчетами? ;) Возможно, имеет смысл увеличить магнитную проницаемость магнитоаровода. Это должно увеличить разность напряженностей магнитного поля внутри и снаружи катушки. Одновременно снизить бы индуктивность модулятора. Думалось также, что нужны зазоры между кольцом и магнитом, чтобы, скажем так, было место для изгибания магнитных линий при смене свойств среды - магнитной проницаемости. Однако на практике это приводит только к спаду напряжения на выходе. В настоящий момент зазоры определяются 3 слоями изоленты и толщиной модуляторной обмотки, на глаз это максимум по 1,5 мм с каждой стороны.

       Эксперимент №4.1 (21.08.2004)

       Предыдущие эксперименты проводились на работе. Принес блок управления и "трансформатор" домой. Такой же набор магнитов у меня давно валялся и дома. Собрал. С удивлением обнаружил, что могу поднять еще частоту. Видимо мои "домашние" магниты были чуть посильнее, вследствие чего индуктивность модуляторов снизилась. Радиаторы уже грелись сильнее, однако ток потребления схемы составил 0,56 А и 0,55 А без нагрузки и с нагрузкой соответственно, при том же питании 15 В. Возможно, имел место сквозной ток через ключи. В данной схеме на высокой частоте такое не исключено. На выход подключил галогенную лампочку на 2,5 В, 0,3А. В нагрузке получил 1,3 В, 200 мА. Итого вход 8,25 Вт, выход 0,26 Вт - КПД 3,15%. Но заметьте, опять же без ожидаемого традиционного влияния на источник !

       Эксперимент №5 (26.08.2004)

       Собран новый преобразователь (версия 1.2) на кольце с большей проницаемостью - М10000НМ, размеры те же: O40хO25х11 мм. К сожалению, кольцо было только одно. Чтобы уместить больше витков на коллекторной обмотке, провод взят потоньше. Итого: коллектор 160 витков проводом O 0,3 и так же два модулятора по 235 витков, так же проводом O 0,3. А так же найден новый блок питания аж до 100 В и током до 1,2 А. Напряжение питания тоже может сыграть роль, поскольку оно обеспечивает скорость нарастания тока через модулятор, а тот, в свою очередь, скорость изменения магнитного потока, что напрямую связано с амплитудой выходного напряжения.

       Пока нечем измерить индуктивности и запечатлеть картинки. Поэтому без излишеств изложу голые цифры. Было проведено несколько измерений при разных напряжениях питания и режимах работы генератора. Ниже приведены некоторые из них.

       без выхода в полное насыщение

Вход: 20 В x 0,3 А = 6 ВтВыход: 9 В x 24 мА = 0,216 ВтКПД: 3,6 %

Вход: 10 В x 0,6 А = 6 ВтВыход: 9 В x 24 мА = 0,216 ВтКПД: 3,6 %

Вход: 15 В x 0,5 А = 7,5 ВтВыход: 11 В x 29 мА = 0,32 ВтКПД: 4,2 %

       с полным насыщением

Вход: 15 В x 1,2 А = 18 ВтВыход: 16 В x 35 мА = 0,56 ВтКПД: 3,1 %

       Выводы:

       Оказалось, что в режиме полного насыщения, идет спад КПД, поскольку резко возрастает ток модулятора. Оптимального режима работы (по КПД) удалось достичь при напряжении питания 15 В. Влияния нагрузки на источник питания не обнаружено. Для приведенного 3-го примера с КПД 4,2, ток схемы с подключенной с нагрузкой должен увеличиваться примерно на 20 мА, но повышения так же не зафиксировано.

       Эксперимент №6 (2.09.2004)

       Убрана часть витков модулятора с целью повышения частоты и уменьшения зазоров между кольцом и магнитом. Теперь имеем две обмотки модулятора по 118 витков, намотанных в один слой. Коллектор оставлен без изменений - 160 витков. Кроме того, измерены электрические характеристики нового преобразователя.

Модулятор ТЭГа (версия 1.21)

       Параметры ТЭГа (версия 1.21), измерено мультиметром MY-81:

       сопротивления обмоток:коллектора - 8,9 Оммодуляторов - по 1,5 Ом

       индуктивности обмоток без магнитов:коллектора - 3,37 мГнмодуляторов - по 133,4 мГнпоследовательно соединенных модуляторов - 514 мГн

       индуктивности обмоток с установленными магнитами:коллектора - 3,36 мГнмодуляторов - по 89,3 мГнпоследовательно соединенных модуляторов - 357 мГн

       Ниже представляю результаты двух измерений работы ТЭГа в разных режимах. При более высоком напряжении питания частота модуляции выше. В обоих случаях модуляторы соединены последовательно.

Вход: 15 В x 0,55 А = 8,25 ВтВыход: 1,88 В x 123 мА = 0,231 ВтКПД: 2,8 %

Вход: 19,4 В x 0,81 А = 15,714 ВтВыход: 3,35 В x 176 мА = 0,59 ВтКПД: 3,75 %

       Выводы:

       Первое и самое печальное. После внесения изменений в модулятор, зафиксировано увеличение потребления при работе с новым преобразователем. Во втором случае потребление возросло примерно на 30 мА. Т.е. без нагрузки потребление составляло 0,78 А, с нагрузкой - 0,81 А. Помножаем на питающие 19,4 В и получим 0,582 Вт - ту самую мощность, что сняли с выхода. Однако я повторюсь со всей ответственностью, что раньше такого не наблюдалось. При подключении нагрузки в данном случае явно прослеживается более крутое нарастание тока через модулятор, что является следствием уменьшения индуктивности модулятора. С чем это связано, пока не известно.

       И еще ложка дегтя. Боюсь, в данной конфигурации не удастся получить КПД более 5% из-за слабого перекрытия магнитного поля. Другими словами, насыщая сердечник, мы ослабляем поле внутри коллекторной катушки лишь в области прохождения этого самого сердечника. Но магнитные линии идущие из центра магнита через центр катушки ничем не перекрываются. Более того, часть магнитных линий "вытесненных" из сердечника при его насыщении также обходит последний с внутренней стороны кольца. Т.е. таким образом модулируется лишь малая часть магнитного потока ПМ. Необходимо изменить геометрию всей системы. Возможно, следует ожидать некоторого прироста КПД, используя кольцевые магниты от динамиков. Так же не отпускает мысль о работе модуляторов в режиме резонанса. Однако в условиях насыщения сердечника и, соответственно, постоянно меняющейся индуктивности модуляторов это сделать весьма не просто.

       Исследования продолжаются…

       Если хотите обсудить, заходите на "увлеченный форум", - мой ник Armer. Или пишите на [email protected], но думаю, лучше в форум.

х х х

       Dragons' Lord : Во первых, огромное спасибо Armer'у за то, что предоставил отчёт о проведённых экспериментах с великолепными иллюстрациями. Думаю, скоро нас ожидают новые работы Владислава. А пока я выскажу свои мысли на счёт этого проекта и его возможного пути усовершенствования. Предлагаю изменить схему генератора следующим образом:

Схемотехника нового TEG'а (предложение).

       Вместо плоских внешних магнитов (плит) предлагается использовать кольцевые магниты. Причём, внутренний диаметр магнита должен быть приблизительно равным аналогичному диаметру кольца магнитопровода, а внешний диаметр магнита больше, чем внешний диаметр кольца магнитопровода. В чём проблема низкого КПД ? Проблема в том, что магнитные линии, вытесняемые из магнитопровода по-прежнему пересекают площадь витков вторичной обмотки (отжимаются и концентрируются в центральной области). Указанное соотношение колец создаёт асимметричность и принуждает большую часть магнитных линий, при насыщенном до предела центральном магнитопроводе, огибать его по ВНЕШНЕМУ пространству. Во внутренней области магнитных линий будет меньше, чем в базовом варианте. Вообще-то, эту "болезнь" полностью излечить нельзя, по прежнему используя кольца. Как поднять общий КПД сказано ниже.

       Также предлагается использовать дополнительный внешний магнитопровод, который концентрирует силовые линии в рабочей области устройства, делая его мощнее (здесь важно не переборщить, т.к. используем идею с полным насыщением центрального сердечника). Конструктивно, внешний магнитопровод представляет собой точённые ферромагнитные детали осесимметричной геометрии (что-то наподобие трубы с фланцами). Горизонтальную линию разъёма верхней и нижней "чашек" вы видите на картинке. Либо, это могут быть дискретные независимые магнитопроводы (скобы).

       Далее стоит подумать над усовершенствованием процесса с "электрической" точки зрения. Понятно, - первое, что нужно сделать, это раскачать первичную цепь в резонанс. Ведь у нас отсутствует вредное обратное влияние со вторичной цепи. Предлагается использовать резонанс ТОКА по понятным причинам (ведь цель, - насытить сердечник). Второе замечание, быть может, не такое очевидное на первый взгляд. Предлагается в качестве вторичной обмотки использовать не стандартную соленоидную намотку катушки, а сделать несколько плоских бифилярных катушек Тесла и поместить их на внешнем диаметре магнитопровода "слоённым пирожком", соединив последовательно. Чтобы вообще убрать существующее минимальное взаимодействие друг с другом в осевом направлении соседних бифилярных катушек, - нужно соединить их так же ЧЕРЕЗ ОДНУ, вернувшись с последней на вторую (повторное использование смысла бифилярки).

       Таким образом, за счёт максимальной разницы потенциала в двух соседних витках запасённая энергия вторичной цепи будет максимально возможная, что на порядок превосходит вариант с обычным соленоидом. Как видно из схемы, в виду того, что "пирожок" из бифилярок имеет довольно приличную протяжённость в горизонтальном направлении, - предлагается мотать первичку не поверху вторички, а под ней. Непосредственно на магнитопровод.

       Как я уже сказал, используя кольца, невозможно превозмочь определённый предел КПД. И уверяю, что сверхеденичностью там и не пахнет. Вытесненные из центрального магнитопровода магнитные линии будут огибать его вдоль самой поверхности (по кратчайшему пути), тем самым, по прежнему пересекая площадь, ограниченную витками вторички. Анализ конструкции принуждает отказаться от текущей схемотехники. Нужен центральный магнитопровод БЕЗ отверстия. Взглянем на следующую схему:

Более совершенная схемотехника нового TEG'а.

       Основной магнитопровод набирается из отдельных пластин или стержней прямоугольного сечения, и представляет из себя параллелепипед. Первичка кладётся непосредственно на него. Её ось горизонтальна и по схеме смотрит на нас. Вторичка, по-прежнему "слоённый пирожок" из бифилярок Тесла. Теперь заметим, что мы ввели дополнительный (вторичный) магнитопровод, представляющий из себя "чашки" с отверстиями в их донцах. Зазор между краем отверстия и основным центральным магнитопроводом (первичной катушкой) должен быть минимален, для того, чтобы эффективно перехватывать вытесненные магнитные линии и оттягивать их на себя, не давая им проходить сквозь бифиляры. Конечно, следует заметить, что магнитная проницаемость центрального магнитопровода должна быть на порядок выше, чем вспомогательного. Например: центрального параллелепипеда - 10000, "чашек" - 1000. В нормальном (не насыщенном) состоянии центральный сердечник, за счёт своей большей магнитной проницаемости, будет втягивать магнитные линии в себя.

       А теперь самое интересное ;) . Внимательно приглядимся, - что же мы получили ?... А получили мы самый обычный MEG, только в "недоделанном" варианте. Другими словами, я хочу сказать, что классическое исполнение генератора MEG v.4.0 в пару раз обгоняет нашу лучшую схему, в виду его возможности перераспределяя магнитные линии (качая "качели") снимать полезную энергию на всём цикле своей работы. Причём, с обоих плеч магнитопровода. В нашем же случае имеем одноплечую конструкцию. Половину возможного КПД просто не используем.

 Свободная энергия, альтернативная энергия

 

www.ecotoc.ru

Получение электрической энергии из магнитного поля постояных магнитов

ScreenShot034Уважаемые участники проекта Заряд, хочу поделиться с вами результатами своих исследований в области свободной энергии. Я занимаюсь этой проблемой с 2009 года. Мое направление, это получение электрической энергии из магнитного поля постоянных магнитов. В то время, да и сейчас, имеется много мнений о самой возможности такого получения энергии, якобы нарушающего закон сохранения энергии и понятие КПД. Поэтому и у меня были такие сомнения, прежде чем приступить к изготовлению генератора такой энергии.

В интернете я не нашел экспериментально — теоретических доказательств возможности получения такой свободной энергии из магнитного поля. Как первый шаг в этом направлении, я решил провести прямые измерения входной механической и выходной электрической мощностей первого маленького генератора на постояных магнитах. Для этого был изготовлен специальный испытательный стенд, оснащенный измерительными приборами и проведены испытания. После обработки результатов этих испытаний я написал первую научную статью, которую и предлагаю вашему вниманию. Затем у меня возник вопрос, а почему серийно выпускаемые генераторы на постояных магнитах не способны к самовращению и получению свободной энергии? Для его решения я взял такой стандартный генератор и испытал его на стенде — в результате появилась и вторая научная статья. По результатам этой статьи стали ясны причины непригодности существующей конструкции генераторов для получения свободной энергии. В результате и родилась конструкция большого генератора, специально предназначенного для получения свободной энергии. Такой генератор уже изготовлен, но говорить о его испытаниях пока рано, поскольку еще не установлены магниты. Они стоят дорого, а денег на них пока нет. Данные устройства найдут широкое применение как в индивидуальном использование, так и в промышленности, например очень неплохо было бы внедрить их в собственное, высокотехнологичное производство светопрозрачных конструкций, которое  готово решить все Ваши задачи на любом этапе, от проектирования до монтажа.

А с моими статьями вы можете познакомиться. Первую статью прилагаю к этому письму, а вторую пришлю отдельным файлом. Хотел бы обсуждать проблему получения свободной энергии из магнитного поля. Поэтому пишите мне на имэйл — [email protected],  Игорю Васильевичу. Читайте статьи и думайте.

Пока, жду ваших писем!

 

Основная статьи Игоря Васильевича по данной теме представлены ниже

Статья первая  Экспериментальные исследования энергетической эффективности получения электрической энергии из магнитного поля постоянных магнитов.

Статья вторая  Экспериментальные исследования электро-механических характеристик системы двигатель-генератор с возбуждением от постоянных магнитов 

Продолжение следует.

zaryad.com

электричество из магнита

Фонарь из магнита и медной проволоки

В этом видео вы узнаете, как сделать вечный фонарь из магнита и медной проволоки! Такой фонарь поможет вам...

Бесплатное электричество из магнита. Подключение энергосберегающих ламп при помощи магнитов

Как добыть бесплатное электричество из магнита? Как подключить энергосберегающую лампу при помощи магнита...

Электричество из магнита и медной проволоки

Это опровержение, в ютубе гуляет видео, что можно получить бесконечное электричество. Так вот это ложь и...

Свободная,бесплатная энергия из магнитов и кулера. Электричество внутри магнита и медной проволоки

Измерили напряжение внутри магнита и медной проволоки. сколько же там вольтаж.

Получаем электричество из атмосферы, при помощи черных магнитов.

Free Energy Light Bulbs Получение свободной энергии из магнитного поля ...

Вечный двигатель из магнитов который от нас скрывают, смотрим.

Вечный двигатель из магнитов можно легко сделать достаточно провести математический расчет что бы не было...

Free energy. Генератор электричества из консервной банки.

Динамо машина из консервной банки своими руками. Вы можете удивиться как это просто - сделать самодельный...

Электричество из магнита это просто супер!

Магниттен ток алуу жолу!

Катушка и магнит, генерация переменного тока. Часть 1. Magnet and coil, alternator. Part 1

Катушка индуктивности и магнит. Переменный ток вырабатываемый катушкой в магнитном поле. Генератор переме...

Free Energy Light Bulbs - 220v Using Magnet

Free Energy Light Bulbs - 220v Using Magnet 220 V light bulb with magnet and motor.

Энергия из магнита. Фольга, неодимовый магнит через бумагу равно электричество. ZikValera

Энергия из магнита. Фольга, неодимовый магнит через бумагу равно батарейка. ZikValera Подсмотрел в интернете...

Электричество из магнита Free energy magnet

А также многое другое!!!! https://www.youtube.com/channel/UC7YsJjpo1bRt4wiWlHXquOw http://www.youtube.com/channel/UCfRDrgL00xfeARDSJtSETBA ...

Электричество из медной проволоки и магнита

Ещё одно видео, но уже с другой лампочкой, и снова подтверждение что нет бесплатного электричества.

халявное электричество-правда или фокус ? / free energy fake

проверка бесплатной энергии из магнита.Повтор опытов роликов с инета. Халявы не бывает ! тем более с магнит...

Бесплатное Электричество Разоблачение вечного фонаря, из советского магнита.

Группа в ВКонтакте. https://vk.com/urban__kr.

Бесплатная энергия протестирован на лампочку

Мой улучшенный генератор свободной энергии продемонстрирована на 12 вольт / 5 Вт гирлянда автомобиля лампоч...

Вечное электричество из постоянного магнита

С постоянного магнита - 0,5 Вольт. Есть смысл собрать батарею для мобильника, или ноутбука, и навсегда забыть...

Лампа и Магнит — Это Подтверждено

Дополнение к выпуску: http://goo.gl/gq2ClS Канал Славы: http://www.youtube.com/HalfHeadTV Канал Макса: https://www.youtube.com/TheUnusualNews ...

Электричество из магнита Free energy magnet Неодимовый магнит вырабатывает электричество

Постоянный магнит выработка электроэнергии. Если Вам понравились мои экспери...

Если в деревне нет света, но есть хороший урожай картошки

Если в вашей деревне или на даче сегодня нет света, но вырос хороший урожай картошки...

Генератор свободной энергии из магнита идея бесплатного электричества

Генератор свободной энергии из магнита.

Свободная и бесплатная энергия из черных магнитов

free energy generator вечный фонарик из магнитов https://youtu.be/9zkCVMXcG28.

Вечное электричество из неодимового магнита HDd

Успешный повтор опыта "Академии изобретений"! Спасибо, работает! Правда как увеличить вольтаж пока не понят...

Реально работающий вечный двигатель на магнитах

Реально работающий вечный двигатель на магнитах. Проверять обязательно!

ПРОВОДИТ ЛИ МАГНИТ ЭЛЕКТРИЧЕСКИЙ ТОК

В этом видео вы узнаете о 4 видах постоянного магнита, их свойства и проводимость электрического тока.

Вот что будет, если бросить магнит в медную трубу...

Магнит в медной трубе.

Вечный двигатель из двух магнитов Самый простой способ.

Видео о магнитах и вечном двигателе. https://www.youtube.com/watch?v=afvEjP3nxVY.

Вечный двигатель из неодимовых магнитов смотрим и делаем

Эксперимент с неодимовыми магнитами (-видео 2-) https://www.youtube.com/watch?v=qw8uPFmIwfg Вечный двигатель из магнитов который...

Лампа и магниты

Зависимость свечения лампы от магнитов. Из-за чего это происходит? https://vk.com/club126644606.

Шок! Получение бесплатного электричества при помощи магнита.

Сборка самодельного магнита для получения бесплатной электроэнергии. Возможно ли это? Проект FreeTeslaEnergy...

Свободная Энергия из магнитов. Подробное видео.

В данном видео показан принцип извлечения Свободной Энергии из магнитов и макет устройства это осуществля...

Халявное электричество Свободная, бесплатная энергия из неодимовых магнитов и кулера.

Свободная энергия из неодимовых магнитов и кулера. Для изготовления генератора свободной энергии, нам...

Лампа и магнит

влияние магнита на лампу.

магнит - батарейка

Как добыть электричество из магнита! Самые низкие цены на неодимовые магниты здесь https://goo.gl/HJpOJM.

Халявное электричество часть 2

Свободная энергия.

respostas amor doce ep 7 nathaniel lista de jogos que o lucky patcher funciona textura para minecraft sem lag como tirar triangulo amarelo do hamachi como deixar a voz grossa no sony vegas como criar um server de minecraft hamachi emulador de ps2 para pc fraco 2016 h2z1 pc fraco boss auto som cadastrar senha supervisor cielo

debojj.net


Каталог товаров
    .