интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Виды трансформаторов: для чего нужны эти устройства. Для чего нужен трансформатор


Виды и принцип работы трансформаторов

Трансформатор нужен для преобразования электрической энергии одного напряжения к электрической энергии другого напряжения. Используется для повышения или понижения напряжения. Нет разницы в понижении или повышении, так как трансформатор является обратимой электрической машиной (возможно преобразование электроэнергии как в большую, так и меньшую сторону). Однако производители выпускают трансформаторы для определенных целей – или повышающим или понижающим трансом.

На электрической станции турбогенератором вырабатывается электроэнергия с генераторным напряжением, например 15кВ, далее она трансформируется повышающими трансформаторами (описываемые элементы обозначены на схеме) до напряжения линии электропередач (например, 35кВ, 110кВ, 220кВ, 330кВ, 750кВ). Далее по ЛЭП электроэнергия передается к потребителям и снижается через понижающие трансформаторы до величины 10, 6, 0,4кВ.

Зачем передачу электроэнергии делают на высокие напряжения? Это необходимо для снижения потерь электроэнергии, что достигается увеличением напряжения. Какие бывают трансформаторы

По назначению:

  • самыми распространенными являются силовые трансформаторы, предназначенные для передачи и распространения электроэнергии
  • существуют силовые трансформаторы специального назначения – сварочные, печные
  • трансформаторы тока и напряжения (измерительные и релейные) тоже относятся к трансформаторам
  • испытательные трансформаторы – для подачи высокого напряжения для проверки прочности изоляции
  • а также радиотрансформаторы, импульсные трансформаторы, пик-трансформаторы

Трансформаторы подразделяются на разные виды в зависимости от числа обмоток на двухобмоточные и многообмоточные (одна первичная и одна или несколько вторичных обмоток).

В зависимости от числа фаз – однофазные, трехфазные, многофазные.

По способу охлаждения – масляные, сухие.

Принцип действия трансформатора

Принцип работы трансформатора основан на явлении электромагнитной индукции. Возьмем для примера двухобмоточный однофазный трансформатор. К первичной обмотке подключается источник переменного тока. Этот ток протекает по обмотке и создает переменный магнитный поток Ф, который пронизывает обмотки трансформатора и изменяясь наводит в них ЭДС. Так как обмотки имеют различное число витков, то и величина ЭДС будет в них различная.

В повышающих трансах вторичное напряжение будет больше первичного, а в понижающих – наоборот. К вторичной обмотке подключается нагрузка и возникает вторичный ток, созданный индуцируемой магнитным потоком ЭДС. Таким образом, в трансформаторе происходит передача электроэнергии из первичной обмотки с напряжением U1 и током I1 во вторичную обмотку с током I2 и напряжением U2 посредством магнитного потока.

Поделитесь с коллегами и сокурсниками

pomegerim.ru

устройство, принцип работы, назначение и применение

Люди, незнакомые с электрикой, могут и не знать, для чего нужен трансформатор и как он выглядит. Роль этого устройства для технического прогресса можно считать одной из самых недооценённых, хотя благодаря его изобретению человечество получило широкий доступ к электроэнергии. За более чем 100 лет эволюции трансформаторы стали ключевыми компонентами не только энергетических систем, но и самых разнообразных радиоэлектронных устройств.

Принцип работы и виды

Трансформатором называют электрическое устройство, предназначенное для переноса электроэнергии переменного тока от одной цепи к другой с сохранением первоначальной частоты. Основа его конструкции — ферромагнитный сердечник с несколькими обмотками провода. Входное напряжение подключается к так называемой первичной обмотке, а выходное снимается со вторичных.

Переменный ток в первичной катушке индуцирует переменный магнитный поток, который локализуется в сердечнике, изменяет своё направление в течение каждого электрического цикла. Он же индуцирует переменный ток в каждой из вторичных обмоток.

Различные виды трансформаторов классифицируются в зависимости от конструкции, типа питания, охлаждения и так далее. Подробнее:

  • По целям. Здесь различают два основных типа — повышающие и понижающие напряжение. Существуют также разделительные трансформаторы, задачей которых является гальваническая развязка цепей без изменения параметров.
  • По типу питания. Различают однофазные и трехфазные. Три отдельных однофазных, соединённых в общую электрическую схему, могут работать в качестве трёхфазного.
  • По способу охлаждения. Разделяют на естественное и принудительное, воздушное и масляное.

Большинство трансформаторов в мире — это однофазные устройства воздушного охлаждения, понижающие напряжение. Но самые массивные и мощные из них работают как раз на повышение напряжения.

Транспортировка электроэнергии

Генераторы электростанций вырабатывают электроэнергию до десятков киловольт. Теоретически её в неизменном виде можно передать потребителям. Но с ростом мощности источника и расстояния транспортировки растут и проблемы потерь на нагрев проводов. При определённых значениях сама передача энергии может терять всякий смысл. Уменьшить потери можно только двумя способами:

  • снижением сопротивления проводов;
  • повышением напряжения передаваемой электроэнергии.

Первый способ реализуется увеличением площади поперечного сечения проводов. Это крайне дорого и сложно технически, так как влечёт за собой не только удорожание и утяжеление самих линий, но и усиление конструкций, их удерживающих. На больших расстояниях это просто невыгодно экономически, а то и нереально.

Во втором случае, согласно закону Ома, при уменьшении силы тока потери снижаются пропорционально квадрату силы тока. Это очень привлекательно с позиции снижения капитальных затрат на строительство и содержание системы энергопередачи. Поднять напряжение и одновременно снизить ток при неизменной мощности — вот зачем нужны трансформаторы в этом случае.

Поскольку электроэнергия высокого напряжения не может быть распределена между потребителями непосредственно, её приводят к желаемым параметрам с помощью понижающих трансформаторов. Таким образом, транспортировка энергии не обходится без предварительного и последующего преобразования, поэтому без силовых трансформаторов передача электроэнергии на большие расстояния в современном мире невозможна.

Преобразователи напряжения в схемах питания

Бытовые электрические сети стандартизированы по напряжению и частоте переменного тока, а вот приборы, которые подключаются к ней, могут нуждаться в совсем иных параметрах питания. Например, процессоры и компоненты электроники работают только в низковольтных цепях постоянного тока. Для того чтобы универсальность источника не была преградой для работы техники, подключаемые устройства комплектуют встроенными или наружными преобразователями напряжения на основе трансформаторов.

В линейных или традиционных источниках питания используются силовые трансформаторы. Они великолепно справляются с большой нагрузкой, но обладают некоторыми недостатками:

  • Большие размеры, обусловленные частотой сети 50 Гц. Это сказывается на весе источников питания, например, при выходном напряжении 16 В на каждый ампер выходного тока требуется приблизительно 0,5 кг массы.
  • Сравнительно большие потери мощности на тепло и, как следствие, низкий КПД.
  • Заметное потребление на холостом ходу.

Из-за перечисленных недостатков они были вытеснены импульсными преобразователями в зарядных устройствах и компьютерной технике. В подобных блоках питания электроэнергия попадает на трансформатор через фильтр и электронную схему в виде тока с очень высокой частотой. Благодаря этому КПД передачи мощности резко возрастает. Таким образом, блоки питания, работающие на этом принципе, значительно меньше и легче традиционных аналогичной мощности.

Но если сравнивать силовые трансформаторы с импульсными преобразователями питания, то первые являются меньшими источником электромагнитных помех, особенно в диапазоне высоких частот. Это свойство важно для их применения в аудиофильской технике, лабораторном оборудовании и радиоаппаратуре.

Преобразование электроэнергии для передачи её от производителя до потребляющих приборов — очень ёмкая, но далеко не единственная область применения трансформаторов. Огромное разнообразие этих устройств можно встретить в самых непохожих местах — от звукоснимателя и микрофона до сварочного аппарата и мощных измерительных приборов. А в качестве преобразователя напряжения сети трансформаторы окружают человека повсюду.

220v.guru

Для чего нужен трансформатор - Всё о электрике в доме

Для чего нужен трансформатор тока?

Определение

В первую очередь необходимо понять, трансформатор тока — что это такое. На самом деле сделать это достаточно просто, ведь каждый хотя бы раз встречался с подобным устройством и примерно представляет, как именно оно работает.

В трансформаторе первичный ток пропорционален вторичному, а когда устройство включается и начинает работать, первичный ток сдвигается на угол (хотя в градусах величина угла равна практически нулю и даже не доходит до одной целой единицы).

Первичная обмотка включена последовательно, вторичная замыкается на нагрузку, именно поэтому получаются пропорциональные величины. Также стоит учитывать то, что вторичная заземляется, а обе они полностью изолированы друг от друга, значит, не могут передавать напряжение или какие-либо заряды.

Назначение ↑

С учетом представленной выше конструкции можно выделить ряд функций. Вот несколько основных сфер, где трансформатор тока незаменим:

  • он помогает измерить любым прибором подобные заряды. В первую очередь это касается силы тока, но — кроме амперметра — можно подключить и вольтметр, и другие приборы для измерения. Здесь переменный ток остается переменным, он просто становится более приемлемым для измерения, и с помощью данных приборов легко можно получить конкретное число единиц в определенной системе;
  • изолирование необходимо в том случае, когда электрическая система достаточно мощная. Трансформаторы здесь нужны для стабильной работы. Поэтому возможно производить ремонтные и профилактические работы, не опасаясь за жизнь и здоровье персонала;
  • преобразование переменного тока в такой же переменный ток подходящего значения Конкретные единицы подбираются таким образом, чтобы реле и защита устройства, которое будет подключено к конкретной электрической цепи, не перегорели и работали достаточно стабильно;
  • изолирование реле необходимо для того, чтобы защитить сотрудников, которые регулярно проверяют и ремонтируют технику. Напряжение способно нанести вред, даже если не нарушена изоляция или же не было серьезных ошибок в технологии установки, а также при эксплуатации.

Каждый понимает, что ответ на вопрос, для чего нужен трансформатор тока, неоднозначный. В зависимости от конкретной ситуации, а также от вида самого трансформатора, они могут выполнять разные функции, однако самое главное заключается в том, что необходимость этого устройства не требует доказательств.

Особенности ↑

Основная особенность данного прибора в его применении. Это всего лишь две функции. Первая ориентирована на защиту, а вторая — на измерение. Отличительная особенность таких аппаратов заключается в точности. Она обязательна в любой ситуации, чтобы измерения или же защита давала конкретные единицы.

Обеспечивается стабильная работа только максимально четким контролем. Любая, даже самая небольшая ошибка может быть очень трагичной.

Нужно регулярно проверять эти устройства, а также понимать, для чего нужны трансформаторы тока.

Виды ↑

Есть несколько основных групп трансформаторов тока. Каждая из них имеет свои подгруппы.

По установке

Некоторые модели созданы специально для закрытых помещений, другие же применяются на открытом пространстве. Изначально конструкция подразумевает данные различия, которые необходимо учитывать. Есть модели для установки в проемах (это либо специальная полость в стене, либо любая, уже имеющаяся арка). Также есть и вторая группа приборов, которые устанавливаются только на опорную стену, иными словами, нужно найти достаточно прочную вертикальную поверхность.

В первую очередь это касается коэффициента. В зависимости от числа обмоток и некоторых других особенностей эта цифра может быть небольшой или же наоборот значительной. Также есть и ступени трансформатора тока.

По обмотке

Существуют одновитковые и многовитковые трансформаторы.

Для чего нужен трансформатор Инженерный центр «ПрофЭнергия» имеет все необходимые инструменты для качественного проведения испытания изоляции силовых трансформаторов, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать испытание изоляции силовых трансформаторов или задать вопрос, звоните по телефону: +7 (495) 181-50-34 .

Трансформаторы тока и напряжения

Основы электротехники Нет комментариев

Без электроснабжения невозможно представить нашу жизнь. Чтобы электрическая система работала без сбоев или не пришла в негодность из-за неисправности в кабеле или в силовом оборудовании, её параметры необходимо контролировать, замерять. Диагностика, заключающаяся в проведении электрических измерений, способна выявить причины сбоев и вовремя устранить их. Для этого применяются приборы, измеряющие величины токов, напряжений, мощности.

Но если в электроустановках с низким напряжением возможно подключение измерительных приборов напрямую, непосредственно к измеряемому узлу, то в высоковольтных цепях проблематично отследить параметры без применения измерительных трансформаторов. В электроустановках напряжение доходит до 750 кВ и выше, а токи устанавливаются в десятки килоампер и более. Для «прямого» измерения потребовались бы громоздкое и дорогое оборудование, а иногда измерения вообще не возможно было бы произвести. Также, при обслуживании приборов, напрямую подключенных к сети высокого напряжения, персонал подвергался бы опасности поражения током.

Измерительные трансформаторы тока (ТТ) и напряжения (ТН) способствуют расширению пределов измерений обычных измерительных устройств и одновременно изолируют их от цепей высокого напряжения. Измерительные трансформаторы создаются с высоким классом точности. Во время эксплуатации их метрологические характеристики подлежат первичной и периодической поверке на правильность работы.

Для чего нужен трансформатор

Для чего нужен трансформатор

Наиболее часто в сетях переменного тока применяются электромагнитные трансформаторы. Они состоят из магнитопровода, первичной и одной или нескольких вторичных обмоток. ТТ преобразовывает замеряемый высокий ток в малый, а ТН — измеряемое высшее напряжение в низшее. Измерительные трансформаторы включаются в цепи между высоковольтным оборудованием и контрольно-измерительными приборами: амперметрами, вольтметрами, ваттметрами, приборами релейной защиты, телемеханики и автоматики, счетчиками энергии.

Зачем нужны измерительные трансформаторы напряжения

Измерительные ТН относятся к преобразователям электрической энергии, которые:

  • трансформируют напряжение участка сети или установки в напряжение приемлемой величины для осуществления измерений с помощью стандартных измерительных устройств, питания релейной защиты, устройств сигнализации, автоматики, телемеханики;
  • изолируя вторичные приборы и цепи, защищают оборудование от высокого напряжения и персонал, имеющего доступ к обслуживанию электроустановок, от поражения током.

Подключение ТН к высоковольтной части электроустановки осуществляется соединением его первичной обмотки «в параллель» к цепи высокого напряжения. Номинал вторичных обмоток трансформатора напряжения составляет обычно 100 В. Так как сопротивление измерительных приборов, подключаемых к вторичной обмотке, велико, током можно пренебречь. Поэтому основной режим работы ТН подобен режиму холостого хода типового силового трансформатора.

Трансформаторы напряжения и их конструкция

Трансформаторы напряжения подразделяются:

  • по числу фаз: на одно- и трехфазные;
  • по числу вторичных обмоток: двухобмоточный ТН имеет одну вторичную обмотку, трехобмоточный — две: основную и дополнительную;
  • по назначению вторичных обмоток: с основной вторичной обмоткой, с дополнительной, со специальной компенсационной — для контроля изоляции цепи;
  • по особенностям исполнений — на трансформаторы защищенного типа, водозащищенного типа (защита от капель и влаги), герметичные, со встроенным предохранителем и с антирезонансной конструкцией;
  • по принципу действия и особенностям конструкций: на каскадные, ёмкостные, заземляемые и не заземляемые.

У каскадного ТН первичная обмотка разделена на несколько поочередно соединенных секций, передача энергии от которых к вторичным обмоткам происходит посредством связующих и выравнивающих обмоток. У ёмкостного ТН в конструкции имеется ёмкостный делитель. Заземляемый однофазный ТН — устройство, у которого один конец первичной обмотки должен быть заземлен. У заземляемого трехфазного ТН должна быть заземлена нейтраль первичной обмотки. Все части первичной обмотки не заземляемого ТН изолированы от земли.

Для чего нужен трансформатор

Зачем нужны трансформаторы тока

Трансформатор тока — базовый измерительный аппарат в электроэнергетике, применяемый для преобразования тока первичной сети во вторичный стандартный ток величиной 5 А или 1 А. Первичная обмотка соединяется непосредственно с цепью высокого напряжения последовательным способом подключения. Вторичная обмотка включается во вторичные цепи измерений, защиты и учета. 5А — часто встречающийся номинал вторичной обмотки.

Принцип действия и конструкция трансформаторов тока

Первичная обмотка ТТ включается в разрез линейного провода (последовательно с нагрузкой), в котором измеряется сила тока. Вторичная обмотка замкнута на измерительное устройство с малым сопротивлением. Поэтому, в отличие от силового трансформатора, для которого режим короткого замыкания является аварийным, нормальным режимом для измерительного ТТ являются условия, близкие к КЗ, так как сопротивление во вторичной цепи у него мало.

Через первичную обмотку, имеющую определённое количество витков, течет ток. Вокруг катушки наводится магнитный поток, который улавливается магнитопроводом. Пересекая перпендикулярно ориентированные витки вторичной обмотки, магнитный поток формирует электродвижущую силу. Под влиянием последней возникает ток, протекающий по катушке и нагрузке на выходе. Одновременно на зажимах вторичной цепи образуется падение напряжения.

По конструктиву и применению ТТ условно подразделяются на несколько разновидностей:

    • Опорные монтируются на опорной плоскости.
    • Проходные используются в качестве ввода и устанавливаются в металлических конструкциях, в проемах стен или потолков.
    • Встраиваемые размещаются в полости оборудования: электрических выключателей, генераторов и других электроаппаратов и машин.
    • Разъемные не имеют своей первичной обмотки. Их магнитопроводы из двух половинок, стягиваемых болтами, можно размыкать и закреплять вокруг проводников под током. Эти проводники исполняют роль первичных обмоток.
    • Шинные изготавливаются тоже без первичных обмоток — их роль выполняют пропущенные сквозь окна магнитопроводов ТТ токоведущие шины распредустройств.
    • Накладные надеваются сверху на проходной изолятор.
    • Переносные предназначаются для лабораторных и контрольных измерений.

По выполнению первичной обмотки ТТ подразделяются на одновитковые и многовитковые, а по числу вторичных обмоток — на устройства с одной обмоткой и с несколькими вторичными обмотками (до четырёх, пяти). По числу ступеней трансформации — на одноступенчатые и каскадные.

К общей классификации трансформаторов обоих типов относятся: количество коэффициентов трансформации (однодиапазонные и многодиапазонные), критерии по материалу диэлектрика между первичной и вторичной обмотками и по материалу внешней изоляции — маслонаполненные, газонаполненные, сухие, с литой, фарфоровой и прессованной изоляцией, с вязкими заливочными компаундами, комбинированные бумажно-масляные. ТТ и ТН устанавливаются на открытом воздухе, в закрытых и в подземных установках, на морских и речных судах, внутри оболочек электроустановок и связываются контрольными проводами и кабелями с оборудованием вторичных цепей. По диапазону рабочего напряжения выделяют трансформаторы, функционирующие в устройствах до 1000 В и выше 1000 B. Трансформаторы также классифицируются по классу точности.

Видео про трансформаторы тока

Кратко о назначении трансформатора тока, составе и особенностях конструкции, о схеме и принципе работы. Почему нельзя допускать размыкание вторичных цепей трансформатора тока без предварительного их замыкания накоротко? Почему на напряжение выше 330 кВ изготавливаются ТТ каскадного типа? Об этом и об измерительном трансформаторе тока для подстанции 750 кВ вы узнаете из видео.

Устройство трансформатора – разновидности конструкции, применение

При работе любой электрической схемы требуется изменение значений напряжения и тока. Если разница между величинами небольшая, задача решается с помощью резисторов.

Однако при сильном разбросе параметров, выделяется значительное количество тепла. К тому же такой способ приводит к потерям мощности, КПД прибора снижается.

Эффективным преобразователем тока или напряжения является трансформатор. Изменение величины напряжения происходит практически без потерь, энергия передается линейно, с сохранением входной и выходной мощности.

Важно! Преобразование может происходить в любую сторону. Существуют понижающие и повышающие трансформаторы.

Для чего нужен трансформатор?

  1. Основное назначение – снижение напряжения при организации питания электроприборов. Централизованное энергоснабжение дает на входе величину 220 или 380 вольт.

Строить электрические схемы при таких величинах нерационально и опасно. Требуется организация защиты, размер элементов и проводников будет слишком большим. Поэтому на входе в большинстве приборов монтируется блок питания с понижающим трансформатором.

  • Еще одно применение – транспортировка электроэнергии. По закону Ома, чем выше напряжение в проводнике, тем меньше величина тока, протекающего по цепи (при сохранении мощности). Меньше нагрев проводов, соответственно меньше потерь.

    По линиям электропередач передается напряжение в десятки киловольт. С помощью понижающих трансформаторов на подстанциях, эта величина снижается до приемлемых 600 В.

  • Затем происходит вторая ступень преобразования – три фазы 380 В и однофазное питание 220 В.

    С помощью трансформатора (снова вспоминаем закон Ома) можно работать с большими токами, при невысокой входной мощности. Пример – сварочный аппарат.

    При входной мощности 5 кВт (это достаточно много) и напряжении 220 вольт, сила тока может достигать 20 ампер. Для сварочных работ этого недостаточно.

    Если преобразовать напряжение до величины 18-24 вольта, сила тока (при сохранении мощности) достигнет 200 ампер. Такие токи могут образовывать сварочную дугу и плавить металл.

    Устройство и назначение силового трансформатора — видео.

    Зачем еще нужен трансформатор?

    Для поддержания заданной величины напряжения. Всем знакомо такое явление, как «просады» электроэнергии. При увеличении нагрузки, генерирующая система снижает величину выходного напряжения. Это можно скомпенсировать автотрансформатором.

    Наглядное видео — как работает трансформатор.

    Устройство и принцип действия трансформатора

    Прибор работает исключительно по законам физики, на основе простых явлений. Никаких сложных схем управления и контроллеров, чистая механика. Именно простота физических процессов делает это устройство таким надежным.

    Из чего состоит трансформатор?

    • Магнитопровод. Фактически он является рамой, или корпусом прибора. Представляет собой замкнутую структуру из ферромагнитного материала, в которой можно индуцировать магнитное поле.

  • Обмотка. Для работы прибора их требуется минимум две. На одну подается исходное напряжение, со второй (или с нескольких) снимается преобразованная величина (величины).
  • Важно! Исходное напряжение может быть только переменным. Постоянные токи не могут возбудить в магнитопроводе магнитное поле.

    Разберем компоненты подробнее:

    Магнитопровод

    Для его изготовления требуется материал с хорошей магнитной проводимостью. Это может быть сталь с высоким содержанием кремния, либо феррит.Конструктивно этот элемент может быть:

    • Пластинчатым. Сечение набирается из тонких пластин одинакового размера.

    В зависимости от инженерных расчетов, пластины могут иметь электрический контакт между собой, или быть изолированными с помощью электрокартона или лака. Для прочности листы стягиваются с помощью шпилек, или просто склеиваются между собой. Конструкция позволяет перебрать блок, меняя конфигурацию.

    • Ленточным. Для создания объема, стержни магнитопровода наматываются из непрерывных полос железа.

    Конструкция получается очень прочной, магнитный поток более стабильный, в сравнении с пластинами.

    • Монолитным. Изготавливается из т.н. феррита – материала, состоящего из окислов железа в сочетании с другими материалами.

    Метод изготовления – порошковое прессование. Высочайшая магнитопроводимость, хорошее рассеивание тепла.

    По форме исполнения магнитопроводы бывают:

    • Броневые. Выполнены в форме восьмерки закругленной формы, либо с прямыми углами

    • Обмотки располагаются на центральном стержне. Отличное взаимодействие между витками, высокая мощность и громоздкие размеры. Магнитопровод такой формы является разборным, что упрощает установку обмоток.
    • Стержневые. Выполнены в виде прямоугольника, квадрата или буквы «О» с прямыми стенками.

    Обмотки могут наматываться как одна на другую, так и порознь – на разные стороны магнитопровода. Также бывают разборными, более компактные и менее мощные.

    • Тороидальные. Неразборный сердечник выполнен в виде тора. Для обмоток используется вся площадь, за счет чего размеры поскромнее, при той же мощности. Потерь в магнитопроводе практически нет. Обеспечивают хороший теплоотвод с обмоток.

    Единственный недостаток – трудно мотать обмотки. Для этого необходимо использовать специальные станки.

    На первый взгляд все просто. Берем обычные провода, формируем катушку, надеваем на сердечник. Такие схемы применяются, на мощных трансформаторах. Проводник покрыт изоляцией, как правило бумажной, или с применением иного материала, который не размягчается при нагреве.Например, в сварочных аппаратах, вторичная обмотка сильно нагревается, и пластиковая изоляция может расплавиться. Однако такие обмотки очень громоздкие, да и не всегда требуется такая высокая мощность. Чаще всего на первом месте стоит компактность.

    Самый распространенный проводник – тонкая медная проволока, покрытая лаком. Отличная изоляция (при условии отсутствия повреждений) и размер обмотки зависит лишь от сечения проводника, толщина лака минимальна.Система работает следующим образом:

    На первичную обмотку подается переменное напряжение. Переменный ток возбуждает в сердечнике магнитное поле, которое в свою очередь индуцирует переменный ток на вторичной обмотке.

    Преобразование происходит по закону Максвелла: разница величин напряжения прямо пропорциональна количеству витков. То есть, если на первичной обмотке 1000 витков и напряжение 220 вольт, то на вторичной обмотке в 100 витков индуцируется напряжение 22 вольта.

    Это условная величина, работающая лишь в теории. На практике необходимо делать поправку на потери (тепло, сопротивление, несовершенство магнитопровода).

    Обозначение трансформатора на схеме как раз демонстрирует его конструкцию.Существуют варианты изготовления с несколькими вторичными обмотками, для экономии места.

    Что из себя представляет трансформатор и как его проверить. Подробности в этом видео материале.

    Итог:Назначение трансформатора определяет его устройство. Универсальных конструкций нет, поэтому при выборе готового (или самостоятельном изготовлении) трансформатора, в первую очередь рассчитайте параметры и согласуйте их с условиями применения. Невозможно собрать мощный сварочник из компактного тора, равно как и мощный броневой преобразователь не уместится в блок питания для ноутбука.

    Поделиться с друзьями:

    Источники: http://energiatrend.ru/news/dlja-chego-nuzhen-transformator-toka, http://electricity-help.ru/osnovy-yelektrotekhniki/transformatory-toka-i-napryazheniya/, http://obinstrumente.ru/dlya-doma/poleznye-sovety/ustrojstvo-transformatora.html

    electricremont.ru

    Устройство трансформатора зависит от его предназначения и режима работы

    При работе любой электрической схемы требуется изменение значений напряжения и тока. Если разница между величинами небольшая, задача решается с помощью резисторов. Однако при сильном разбросе параметров, выделяется значительное количество тепла. К тому же такой способ приводит к потерям мощности, КПД прибора снижается.

    Эффективным преобразователем тока или напряжения является трансформатор. Изменение величины напряжения происходит практически без потерь, энергия передается линейно, с сохранением входной и выходной мощности.

    Важно! Преобразование может происходить в любую сторону. Существуют понижающие и повышающие трансформаторы.

    Для чего нужен трансформатор?

    1. Основное назначение – снижение напряжения при организации питания электроприборов. Централизованное энергоснабжение дает на входе величину 220 или 380 вольт.Строить электрические схемы при таких величинах нерационально и опасно. Требуется организация защиты, размер элементов и проводников будет слишком большим. Поэтому на входе в большинстве приборов монтируется блок питания с понижающим трансформатором.
    2. Еще одно применение – транспортировка электроэнергии. По закону Ома, чем выше напряжение в проводнике, тем меньше величина тока, протекающего по цепи (при сохранении мощности). Меньше нагрев проводов, соответственно меньше потерь.По линиям электропередач передается напряжение в десятки киловольт. С помощью понижающих трансформаторов на подстанциях, эта величина снижается до приемлемых 600 В.

    маслянный трансформатор на электростанции

    Затем происходит вторая ступень преобразования – три фазы 380 В и однофазное питание 220 В.

    С помощью трансформатора (снова вспоминаем закон Ома) можно работать с большими токами, при невысокой входной мощности. Пример – сварочный аппарат.

    При входной мощности 5 кВт (это достаточно много) и напряжении 220 вольт, сила тока может достигать 20 ампер. Для сварочных работ этого недостаточно.

    Если преобразовать напряжение до величины 18-24 вольта, сила тока (при сохранении мощности) достигнет 200 ампер. Такие токи могут образовывать сварочную дугу и плавить металл.

    Устройство и назначение силового трансформатора — видео.

    Зачем еще нужен трансформатор?

    Для поддержания заданной величины напряжения. Всем знакомо такое явление, как «просады» электроэнергии. При увеличении нагрузки, генерирующая система снижает величину выходного напряжения. Это можно скомпенсировать автотрансформатором.

    Наглядное видео — как работает трансформатор.

    Устройство и принцип действия трансформатора

    Прибор работает исключительно по законам физики, на основе простых явлений. Никаких сложных схем управления и контроллеров, чистая механика. Именно простота физических процессов делает это устройство таким надежным.

    Из чего состоит трансформатор?

    • Магнитопровод. Фактически он является рамой, или корпусом прибора. Представляет собой замкнутую структуру из ферромагнитного материала, в которой можно индуцировать магнитное поле.состав трансформатора
    • Обмотка. Для работы прибора их требуется минимум две. На одну подается исходное напряжение, со второй (или с нескольких) снимается преобразованная величина (величины).

    Важно! Исходное напряжение может быть только переменным. Постоянные токи не могут возбудить в магнитопроводе магнитное поле.

    Разберем компоненты подробнее:

    Магнитопровод

    Для его изготовления требуется материал с хорошей магнитной проводимостью. Это может быть сталь с высоким содержанием кремния, либо феррит.Конструктивно этот элемент может быть:

    • Пластинчатым. Сечение набирается из тонких пластин одинакового размера.

    пластины трансформатораВ зависимости от инженерных расчетов, пластины могут иметь электрический контакт между собой, или быть изолированными с помощью электрокартона или лака. Для прочности листы стягиваются с помощью шпилек, или просто склеиваются между собой. Конструкция позволяет перебрать блок, меняя конфигурацию.

    • Ленточным. Для создания объема, стержни магнитопровода наматываются из непрерывных полос железа.

    полосы трансформатораКонструкция получается очень прочной, магнитный поток более стабильный, в сравнении с пластинами.

    • Монолитным. Изготавливается из т.н. феррита – материала, состоящего из окислов железа в сочетании с другими материалами.

    феррит Метод изготовления – порошковое прессование. Высочайшая магнитопроводимость, хорошее рассеивание тепла.

    По форме исполнения магнитопроводы бывают:

    • Броневые. Выполнены в форме восьмерки закругленной формы, либо с прямыми углами

    броневой магнитопровод

    • Обмотки располагаются на центральном стержне. Отличное взаимодействие между витками, высокая мощность и громоздкие размеры. Магнитопровод такой формы является разборным, что упрощает установку обмоток.
    • Стержневые. Выполнены в виде прямоугольника, квадрата или буквы «О» с прямыми стенками.

    стержневой магнитопровод трансформатораОбмотки могут наматываться как одна на другую, так и порознь – на разные стороны магнитопровода. Также бывают разборными, более компактные и менее мощные.

    • Тороидальные. Неразборный сердечник выполнен в виде тора. Для обмоток используется вся площадь, за счет чего размеры поскромнее, при той же мощности. Потерь в магнитопроводе практически нет. Обеспечивают хороший теплоотвод с обмоток.

    обмотка трансформатора Единственный недостаток – трудно мотать обмотки. Для этого необходимо использовать специальные станки.станок для намотки обмотки трансформатора

    Обмотка

    На первый взгляд все просто. Берем обычные провода, формируем катушку, надеваем на сердечник. Такие схемы применяются, на мощных трансформаторах. Проводник покрыт изоляцией, как правило бумажной, или с применением иного материала, который не размягчается при нагреве.обсотка трансформатораНапример, в сварочных аппаратах, вторичная обмотка сильно нагревается, и пластиковая изоляция может расплавиться. Однако такие обмотки очень громоздкие, да и не всегда требуется такая высокая мощность. Чаще всего на первом месте стоит компактность.

    Самый распространенный проводник – тонкая медная проволока, покрытая лаком. Отличная изоляция (при условии отсутствия повреждений) и размер обмотки зависит лишь от сечения проводника, толщина лака минимальна.проволока покрытая лакомСистема работает следующим образом:

    На первичную обмотку подается переменное напряжение. Переменный ток возбуждает в сердечнике магнитное поле, которое в свою очередь индуцирует переменный ток на вторичной обмотке.

    Преобразование происходит по закону Максвелла: разница величин напряжения прямо пропорциональна количеству витков. То есть, если на первичной обмотке 1000 витков и напряжение 220 вольт, то на вторичной обмотке в 100 витков индуцируется напряжение 22 вольта.

    Это условная величина, работающая лишь в теории. На практике необходимо делать поправку на потери (тепло, сопротивление, несовершенство магнитопровода).

    Обозначение трансформатора на схеме как раз демонстрирует его конструкцию.Обозначение трансформатора на схеме Существуют варианты изготовления с несколькими вторичными обмотками, для экономии места.схема вторичной обмотки

    Что из себя представляет трансформатор и как его проверить. Подробности в этом видео материале.

    Итог:Назначение трансформатора определяет его устройство. Универсальных конструкций нет, поэтому при выборе готового (или самостоятельном изготовлении) трансформатора, в первую очередь рассчитайте параметры и согласуйте их с условиями применения. Невозможно собрать мощный сварочник из компактного тора, равно как и мощный броневой преобразователь не уместится в блок питания для ноутбука.

    obinstrumente.ru

    Что такое и для чего нужен трансформатор тока 

    При использовании различных энергетических систем возникает необходимость в преобразовании определенных величин в аналоги с пропорционально измененными значениями.

    Такая операция позволяет воссоздавать процессы в электронных устройствах, гарантируя безопасные учет их потребления. Для этого используется специальное оборудование — трансформатор тока наружной установки.

    трансформаторы тока

    Когда нужны трансформаторы тока?

    Измерительные трансформаторы тока предназначены для замера характеристик, ограниченных номинальным напряжением. Последняя величина варьируется от 0.66 до 750 кВ. ТТ широко используются для различных целей:

    1. При отделении низковольтных учетных приборов и реле от первичного напряжения в сети, что обеспечивает безопасность электрослужбам во время ремонта и диагностики.
    2. Силами трансформаторов тока релейные защитные цепи получают питание. В случае короткого замыкания или проблем с режимами работы электроприборов ТТ обеспечивает корректную и оперативную активацию релейной защиты.
    3. Используются для учета электроэнергии с помощью счетчика.

    На практике встречаются различные модели измерительных трансформаторов и в компактных электроприборах с малым корпусом, и в полноценных энергетических установках с огромными габаритами.

    Классификация и расчет

    Расчет и выбор трансформаторов тока следует начинать с изучения классификации представленных на рынке устройств. Все ТТ в первую очередь подразделяются на две категории в зависимости от целевого назначения:

    1. Для измерения показателя счетчика.
    2. Для защиты электрооборудования.

    Эти же категории, в свою очередь, классифицируются на виды в зависимости от типа подключения:

    • предназначенные для работы на открытом воздухе;
    • функционирующие в закрытом помещении;
    • используемые в качестве встроенных элементов электрооборудования;
    • накладные, предназначенные для для проходного изолятора;
    • переносные, дают возможность осуществлять расчет в любом месте;

    Все трансформаторы тока могут иметь различный коэффициент трансформации, который получают при изменений количества витков первичной или вторичной обмотки. Также эти устройства различаются по количеству ступеней работы на одноступенчатые и каскадные.

    Если рассматривать конструктивные особенности, то ТТ могут иметь различную по типу изоляцию:

    • сухую, изготовленную из фарфора, бакелита или литой эпоксидной изоляции;
    • бумажно-масляную;
    • газонаполненную;
    • залитую компаундом;

    Также исходя из характеристик конструкции, выделяют катушечные, одновитковые и многовитковые ТТ с литой изоляцией.

    Как выбрать трансформатор тока наружной установки для счетчика электроэнергии?

    Расчет и выбор трансформаторов тока для счетчика следует начинать с анализа базовых параметров номинального тока:

    • номинальное напряжение сети;
    • параметр номинального тока первичной и вторичной обмотки;
    • коэффициент трансформации;
    • класс точности;
    • особенности конструкции;

    При выборе номинального напряжения устройства необходимо подбирать значение превышающие или идентичное максимальному рабочему напряжению. Если рассматривать вариант счетчика 0.4 кВ, то здесь потребуется измерительный трансформатор на 0.66 кВ.

    Подключение счетчика через трансформаторы тока представлено на это фото

    Значение номинального тока вторичной обмотки для того же счетчика, как правило, составляет 5 А. А вот с параметром для первичной обмотки нужно быть осторожнее. От этого значения зависит практически все подключение. Номинальный ток первичной обмотки формуется относительно коэффициента трансформации.

    Последний следует выбирать по нагрузке с учетом работы в аварийных ситуациях. Согласно официальным правилам устройства электроустановок, допустимо подключение и использование трансформаторных устройств с завышенным коэффициентом трансформации.

    Класс точности следует выбирать в зависимости от целевого назначения счетчика электричества. Коммерческий учет требует высокий класса точности — 0.5S, а технический учет потребления допускает параметр точности в 1S.

    Говоря о конструкции ТТ, нужно учесть, что для счетчика с напряжением до 18 кВ используются однофазные или трехфазные ТТ. Для более высоких значений подойдут только однофазные конфигурации.

    Как осуществляется подключение измерительного ТТ тока для счетчика?

    Обозначение на схеме

    Специалисты не рекомендуют осуществлять подключение счетчика с помощью трехфазного ТТ. Это обусловлено его несимметричной магнитной системой и увеличенной погрешностью. В этом случае оптимальным вариантом будет группа из 2 однофазных приборов, соединенных в неполный треугольник.

    Подробнее изучить классификацию, базовые параметры и технические требования на подключение и расчет ТТ для счетчика электроэнергии можно в ГОСТ 7746-2001.

    Похожие статьи

    infoelectrik.ru

    Трансформатор тока. Принцип действия, назначение и основные понятия

    Для измерения токов в силовых цепях переменного напряжения применяют трансформаторы тока. Они применяются как в цепях до 1000 В так и выше 1000 В. Они имеют стандартные токи вторичной цепи – 1 А или 5 А и измерительные приборы и реле выполняют на этот ток. Вторичная обмотка трансформатора обязательно заземляется, чтоб в случае пробоя изоляции измерительные устройства не оказались под напряжением первичной цепи.

    Схема такого трансформатора показана ниже:

    Схема включения трансформатора тока

    Главной особенностью таких устройств является то, что ток, протекающий в первичной цепи абсолютно независим от режимов работы вторичной цепи. Во вторичной цепи трансформатора предохранитель не ставят, так как обрыв вторичной цепи трансформатора тока – это аварийный режим работы. Почему так мы рассмотрим в следующих статьях.

    Трансформаторы тока1

     Основные параметры трансформаторов тока

    Номинальное напряжение

    Это напряжение линейное сети, в которой должен работать трансформатор. Именно это напряжение будет определять изоляцию между обмотками, одна из которых будет находится под высоким потенциалом, а вторая заземлена.

    Номинальные токи

    Токи, при которых устройство может работать в длительном режиме не перегреваясь. Как правило, такие трансформаторы имеют большой запас по нагреву и могут работать нормально с перегрузкой в 20%.

    Коэффициент трансформации

    Отношение первичного и вторичного тока определяемый формулой:

    Коэффициент трансформации трансформатора тока

    Коэффициент  трансформации действительный будет иметь отличия от номинального ввиду потерь в трансформаторе.

    Токовая погрешность

    В процентах имеет вид:

    Токовая погрешность трансформаторов тока

    Где I2 – вторичный, I1‘ — первичный приведенный токи.

    Угловая погрешность

    В реальном трансформаторе первичная составляющая по фазе сдвинута от вторичной на угол отличный от 1800. Для отсчета угловой погрешности вектор вторичной составляющей поворачивают на 1800. Угол между вектором первичной составляющей и этим вектором носит название угловой погрешности. Если перевернутый вектор вторичной составляющей опережает первичную – то погрешность будет положительной, если отстает – отрицательной. Измеряется такой вид погрешности в минутах.

    Соответственно трансформаторы тока имеют свой класс точности согласно ГОСТ – 0,2;0,5;1;3;10. Класс точности говорит о допустимой погрешности в процентах Z2 = Z2н.

    Полная погрешность

    Определяется в процентах %, и имеет формулу:

    Полная погрешность трансформаторов тока

    Где: I1 – действующее первичное значение, i1, i2 – мгновенные значения первичных и вторичных токов, Т – период частоты напряжения переменного.

    Номинальная нагрузка

    Нагрузка, определяемая в Омах, при которой трансформатор будет работать в пределах своего класса точности и с cosφ2н=0,8. Иногда могут применять понятие номинальной мощности Р:

    Мощность трансформатора тока

    Поскольку значение I2н строго нормировано, то мощность трансформатора будет зависеть только от нагрузки Z2н.

    Номинальная предельная кратность

    Кратность первичного тока к значению его номинальному, при котором погрешность его может достигать примерно 10%. При этом нагрузка и ее коэффициенты мощности должны быть номинальными.

    Максимальная кратность вторичного тока

    Отношение максимального вторичного тока, к  номинальному его значению при действующей вторичной нагрузке равной номинальной. Максимальная кратность определяется насыщением магнитопровода, это когда при дальнейшем увеличении первичного тока, вторичный остается неизменным.

    elenergi.ru

    Что такое трансформаторы тока и зачем они нужны

    Содержание:

    Определение

    В первую очередь необходимо понять, трансформатор тока - что это такое. На самом деле сделать это достаточно просто, ведь каждый хотя бы раз встречался с подобным устройством и примерно представляет, как именно оно работает.

    В трансформаторе первичный ток пропорционален вторичному, а когда устройство включается и начинает работать, первичный ток сдвигается на угол (хотя в градусах величина угла равна практически нулю и даже не доходит до одной целой единицы).

    Первичная обмотка включена последовательно, вторичная замыкается на нагрузку, именно поэтому получаются пропорциональные величины. Также стоит учитывать то, что вторичная заземляется, а обе они полностью изолированы друг от друга, значит, не могут передавать напряжение или какие-либо заряды.

    Назначение ↑

    С учетом представленной выше конструкции можно выделить ряд функций. Вот несколько основных сфер, где трансформатор тока незаменим:

    • он помогает измерить любым прибором подобные заряды. В первую очередь это касается силы тока, но - кроме амперметра - можно подключить и вольтметр, и другие приборы для измерения. Здесь переменный ток остается переменным, он просто становится более приемлемым для измерения, и с помощью данных приборов легко можно получить конкретное число единиц в определенной системе;
    • изолирование необходимо в том случае, когда электрическая система достаточно мощная. Трансформаторы здесь нужны для стабильной работы. Поэтому возможно производить ремонтные и профилактические работы, не опасаясь за жизнь и здоровье персонала;
    • преобразование переменного тока в такой же переменный ток подходящего значения Конкретные единицы подбираются таким образом, чтобы реле и защита устройства, которое будет подключено к конкретной электрической цепи, не перегорели и работали достаточно стабильно;
    • изолирование реле необходимо для того, чтобы защитить сотрудников, которые регулярно проверяют и ремонтируют технику. Напряжение способно нанести вред, даже если не нарушена изоляция или же не было серьезных ошибок в технологии установки, а также при эксплуатации.

    Каждый понимает, что ответ на вопрос, для чего нужен трансформатор тока, неоднозначный. В зависимости от конкретной ситуации, а также от вида самого трансформатора, они могут выполнять разные функции, однако самое главное заключается в том, что необходимость этого устройства не  требует доказательств.

    Особенности ↑

    Основная особенность данного прибора в его применении. Это всего лишь две функции. Первая ориентирована на защиту, а вторая - на измерение. Отличительная особенность таких аппаратов заключается в точности. Она обязательна в любой ситуации, чтобы измерения или же защита давала конкретные единицы.

    Обеспечивается стабильная работа только максимально четким контролем. Любая, даже самая небольшая ошибка может быть очень трагичной.

    Нужно регулярно проверять эти устройства, а также понимать, для чего нужны трансформаторы тока.

    Виды ↑

    Есть несколько основных групп трансформаторов тока. Каждая из них имеет свои подгруппы.

    По установке

    Некоторые модели созданы специально для закрытых помещений, другие же применяются на открытом пространстве. Изначально конструкция подразумевает данные различия, которые необходимо учитывать. Есть модели для установки в проемах (это либо специальная полость в стене, либо любая, уже имеющаяся арка). Также есть и вторая группа приборов, которые устанавливаются только на опорную стену, иными словами, нужно найти достаточно прочную вертикальную поверхность.

    По числу

    В первую очередь это касается коэффициента. В зависимости от числа обмоток и некоторых других особенностей эта цифра может быть небольшой или же наоборот значительной. Также есть и ступени трансформатора тока.

    По обмотке

    Существуют одновитковые и многовитковые трансформаторы.

    Инженерный центр "ПрофЭнергия" имеет все необходимые инструменты для качественного проведения испытания изоляции силовых трансформаторов, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории "ПрофЭнергия" вы выбираете надежную и качествунную работу своего оборудования!

    Если хотите заказать испытание изоляции силовых трансформаторов или задать вопрос, звоните по телефону: +7 (495) 181-50-34.

    energiatrend.ru


    Каталог товаров
      .