интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

ДИОДЫ И ИХ ПРИМЕНЕНИЕ. Для чего нужен диод


виды, как работает и область применения

Диод представляет собой простой полупроводниковый прибор, который нашел широкое применение в технике. Не каждый человек знает, что такое диод, и еще меньшее количество людей точно представляет себе принцип работы изделия.

При этом существует большое количество разновидностей этого прибора, о которых стоит знать всем, кто интересуется радиоэлектроникой.

Устройство и принцип работы

Если понять, как работает диод, то разобраться в устройстве этого полупроводникового прибора будет довольно просто. Основу детали составляет токовый переход, соединенный с двумя контактами (положительным — анодом и отрицательным — катодом). При прямом включении напряжения открывается переход, сопротивление которого небольшое. В результате через изделие проходит ток, называемый прямым.

Если же при включении детали в схему изменить полярность, то сопротивление участка перехода резко возрастет, а показатель электротока будет стремиться к нулю. Такое напряжение принято называть обратным.

Современные диоды имеют принципиальное отличие от первых моделей, активно используемых во время радиоламп. В полупроводниковых радиодеталях токовый переход изготавливается из кремния или германия и носит название р-n-переход. Основное различие между этими материалами заключается в показателях прямого напряжения, при которых происходит открытие.

Так как полупроводниковый кристалл может эффективно работать в любых условиях, то необходимость создания особой среды исчезла.

В ламповых устройствах для этого в колбу закачивался специальный газ либо создавался вакуум. В результате современные изделия имеют небольшие габариты, а стоимость их производства значительно снизилась.

Основные виды

Диоды принято классифицировать по нескольким параметрам. В зависимости от рабочих частот, они могут быть низко-, высокочастотными, а также способными функционировать в условиях сверхвысоких частот. Также существует деление и в соответствии с конструктивными особенностями, где можно выделить следующие виды диодов:

  • Диод Шоттки — вместо привычного p-n-перехода используется металл. С одной стороны, это позволяет добиться минимальных потерь напряжения при прямом включении. Однако с другой при высоком обратном токе, изделие быстро выходит из строя.
  • Стабилитрон — позволяет стабилизировать напряжение.
  • Стабистор — отличается от стабилитрона меньшей зависимостью напряжения от тока.
  • Диод Гана — лишен p — n -перехода, вместо которого используется особый кристалл. Используется для работы в диапазоне сверхвысоких частот.
  • Варикап — представляет собой сочетание диода с конденсатором. Емкость изделия зависит от обратного напряжения в области p — n -перехода, а применяется он при создании колебательных контуров.
  • Фотодиод — попадание светового потока на токовый переход приводит к созданию в нем разности потенциалов. Если замкнуть в этот момент цепь, то в ней появится ток.
  • Светодиод — при достижении определенного показателя тока в p — n -переходе, устройство начинает излучать световой поток.

Область применения

Сфера использования этих деталей в современной радиотехнике высока. Сложно найти устройство, которое работает без этих деталей. Чтобы понять, для чего нужен диод, можно привести несколько примеров:

  • Диодные мосты — содержат от 4 до 12 полупроводниковых устройств, которые соединяются между собой. Основной задачей диодных мостов является выпрямление тока, и они активно используются, например, при создании генераторов для автомобилей.
  • Детекторы — создаются при сочетании диодов и конденсаторов. В результате появляется возможность выделить низкочастотную модуляцию из различных сигналов. Применяются при изготовлении радио- и телеприемников.
  • Защитные устройства — позволяют обезопасить электрическую схему от возможных перегрузок. Несколько изделий подключаются в обратном направлении. Когда схема работает нормально, то они остаются в закрытом положении. Как только входное напряжение достигает критических показателей, устройство активируются.
  • Переключатели — такие системы на основе этих изделий позволяют осуществлять коммутацию высокочастотных сигналов.
  • Системы искрозащиты — создание шунт-диодного барьера позволяет ограничить показатель напряжения в электроцепи. Для увеличения степени защиты вместе с полупроводниковыми деталями используются специальные токоограничивающие резисторы.

Это лишь несколько примеров использования диодов. Они являются достаточно надежными устройствами, с помощью которых можно решать большое количество задач. Чаще всего эти радиодетали выходят из строя по причине естественного старения либо из-за перегрева.

Если произошел электрический пробой изделия, то его последствия редко являются необратимыми, так как кристалл не разрушается.

tokar.guru

Применение диодов

Диоды являются одними из самых распространенных электронных компонентов. Они присутствуют практически во всех электронных приборах, которые мы ежедневно используем – от мобильного телефона до его зарядного устройства. В этой статье рассмотрим основные типы электронных схем, в которых диоды нашли свое применение.

1. Нелинейная обработка аналоговых сигналов

В связи с тем, что диоды относятся к элементам нелинейного типа, они применяются в детекторах, логарифматорах, экстрематорах, преобразователях частоты и в других устройствах, в которых предполагается нелинейная обработка аналоговых сигналов. В таких случаях диоды используют или как основные рабочие приборы – для обеспечения прохождения главного сигнала, или же в качестве косвенных элементов, например в цепях обратной связи. Указанные выше устройства значительно отличаются между собой и используются для разных целей, но применяемые диоды в каждом из них занимают очень важное место.

2. Выпрямители

Устройства, которые используются для получения постоянного тока из переменного называются выпрямителями. В большинстве случаев они включают в себя три главных элемента – это силовой трансформатор, непосредственно выпрямитель (вентиль) и фильтр для сглаживания. Диоды применяют в качестве вентилей, так как по своим свойствам они отлично подходят для этих целей.

3. Стабилизаторы

Устройства, которые служат для реализации стабильности напряжения на выходе источников питания, называются стабилизаторами. Они бывают разных видов, но каждый из них предполагает применение диодов. Эти элементы могут использоваться либо в цепях, отвечающих за опорные напряжения, либо в цепях, которые служат для коммутации накопительной индуктивности.

4. Ограничители

Ограничители – это специальные устройства, используемые для того, чтобы ограничивать возможный диапазон колебания различных сигналов. В цепях такого типа широко применяются диоды, которые имеют прекрасные ограничительные свойства. В сложных устройствах могут использоваться и другие элементы, но большинство ограничителей базируются на самых обычных диодных узлах стандартного типа.

5. Устройства коммутации

Диоды нашли применение и в устройствах коммутации, которые используются для того, чтобы переключать токи или напряжения. Диодные мосты дают возможность размыкать или замыкать цепь, которая служит для передачи сигнала. В работе применяется некоторое управляющее напряжение, под воздействием которого и происходит замыкание или размыкание. Иногда управляющим может быть сам входной сигнал, такое бывает в самых простых устройствах.

6.Логические цепи

В логических цепях диоды применяются для того, чтобы обеспечить прохождение тока в нужном направлении (элементы «И», «ИЛИ»). Подобные цепи используются в схемах аналогового и аналогово-цифрового типа. Здесь перечислены только основные устройства, в которых применяются диоды, но существует и много других, менее распространенных.

Светодиоды

Светодиоды представляют собой полупроводниковые диоды, которые излучают свет при прохождении через них электрического тока. Они могут излучать разные цвета и делятся на такие типы — 3 мм, 5мм, 8мм, SMD 0603, Top type, мигающий диод, диод с резистором, Star PCB, Emitter. В сравнении с традиционными лампами светодиоды обладают многими преимуществами – это экономичность, прочность, яркость света, долговечность, низкий нагрев в процессе работы. Что касается недостатков, то главным из них является цена, так как подобные приборы стоят достаточно дорого. Рассмотрим различные виды светодиодных устройств, которые чаще всего применяются на практике.

1. Одиночные светодиоды

Подобные устройства широко используются в самой разной аппаратуре в качестве лампочек индикации, которые чаще всего свидетельствуют о том, включен или выключен прибор. Кроме того, они применяются для освещения различных небольших пространств, например в автомобилях.

2. 7’Segment

Технология Seven-Segment Display с использованием светодиодов применяется в электронных часах, в различных измерительных приборах и в других технических средствах, которые предполагают отображение цифровой информации на дисплее. В таких целях светодиоды используются еще с 1910 года, но они не потеряли своей актуальности и сейчас. 7’Segment позволяет отображать простейшие данные на дисплее самым простым способом и с низкими энергозатратами.

3. Матрица светодиодов

Светодиодная матрица представляет собой определенное количество светодиодов, которые размещаются на одной площадке. Главные характеристики таких устройств это яркость и размеры. Большое количество применяемых диодов позволяет добиться высоких показателей освещения. Устанавливаются подобные матрицы чаще всего в специальных плафонах, которые могут использоваться в различных местах, например в салоне автомобиля, в его бардачке или в багажнике.

4. LED телевизоры

LED телевизоры – это телевизоры, принцип работы которых основывается на использовании светодиодов. Они дают возможность добиться хорошего качества изображения и позволяют экономить на электроэнергии. Благодаря небольшим размерам таких диодов, телевизионные экраны имеют значительно меньшую толщину, чем у традиционных моделей. Кроме того, подобные устройства характеризуются надежностью и достаточно большим сроком службы. Все телевизоры, изготовленные по этой технологии, имеют боковую подсветку экрана и подсветку за матрицей.

Как видим, несмотря на свою простоту, диоды нашли применение в самых разнообразных технических областях, и без их использования работа многих устройств весьма проблематична. Следует заметить, что диоды находят и новые сферы применения.

hightolow.ru

Что такое диод ?

Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (т.е. имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу — катодом. Диоды бывают как электровакуумными (кенотроны), так и полупроводниковыми. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.

Развитие диодов началось в третьей четверти XIX века сразу по двум направлениям: в 1873 году Фредериком Гутри был разработан принцип действия термионного диода, а в 1874 году Карл Фердинанд Браун разработал первые диоды на кристалле. Принципы работы термионного диода были заново открыты тринадцатого февраля 1880 года Томасом Эдисоном, и затем запатентованы (патент США №307031). Однако дальнейшего развития в работах Эдисона идея не получила. В 1890 году Браун запатентовал выпрямитель на кристалле. В 1900 Гринлиф Пикард создал первый радиоприемник на кристаллическом диоде. Термионный диод был запатентован в Британии Джоном Амброзом Флемингом (научным советником компании Маркони и бывшим сотрудником Эдисона) шестнадцатого ноября 1904 года (патент США №803684 от ноября 1905 года). Пикард же запатентовал кремниевый детектор на кристалле двадцатого ноября 1906 года (патент США №836531). В конце XIX века устройства подобного рода были известны под именем выпрямителей, и лишь в 1919 году Вильям Генри Еклс ввел в оборот слово "диод", образованное от греческих корней "di" - два, и "odos" - путь.

Полупроводниковые диоды используют свойство односторонней проводимости p-n перехода — контакта между полупроводниками с разным типом примесной проводимости, либо между полупроводником и металлом.

Диоды широко используются для преобразования переменного тока в постоянный (точнее, в пульсирующий). Диодный выпрямитель или диодный мост (то есть 4 (или 6 для трёхфазной схемы) диода, соединённых между собой по мостовой схеме) — основной компонент блоков питания практически всех электронных устройств. Диодный выпрямитель применяется также в автомобильных генераторах, он преобразует переменный трёхфазный ток генератора в постоянный ток бортсети автомобиля. Использование диодного выпрямителя в сочетании с генератором переменного тока вместо генератора постоянного тока позволило значительно уменьшить размеры автомобильного генератора и повысить его надёжность.

Диоды в сочетании с конденсаторами применяются для выделения низкочастотной модуляции из амплитудно-модулированного радиосигнала или других модулированных сигналов. Диодные детекторы применяются во всех радиоприёмных устройствах: радиоприёмниках, телевизорах и т. п.. Используется квадратичный участок вольт-амперной характеристики диода.

Диоды применяются также для защиты разных устройств от неправильной полярности включения и т. п.

Известна схема диодной защиты схем постоянного тока с индуктивностями от скачков при выключении питания. Диод включается параллельно катушке так, что в «рабочем» состоянии диод закрыт. В таком случае, если резко выключить сборку, ток потечет через диод и будет уменьшаться медленно (ЭДС индукции будет равна падению напряжения на диоде), и не возникнет мощного скачка напряжения, приводящего к искрящим контактам и выгорающим полупроводникам.

Применяются для коммутации высокочастотных сигналов. Управление осуществляется постоянным током, разделение ВЧ и управляющего сигнала с помощю конденсаторов и индуктивностей. Этим не исчерпывается применение диодов в электронике, однако другие схемы, как правило, весьма узкоспециальны. Совершенно другую область применимости имеют специальные диоды, поэтому они будут рассмотрены в отдельных статьях.

Стабилитроны. Используют обратную ветвь характеристики диода с обратимым пробоем для стабилизации напряжения.

Туннельные диоды. Диоды, существенно использующие квантовомеханические эффекты. Имеют область т. н. «отрицательного сопротивления» на вольт-амперной характеристике. Применяются как усилители, генераторы и пр.

Варикапы. Используется то, что запертый p—n-переход обладает большой ёмкостью, причём ёмкость зависит от обратного напряжения.

Светодиоды. В отличие от обычных диодов, при рекомбинации электронов и дырок в переходе излучают свет в видимом диапазоне, а не в инфракрасном.

Полупроводниковые лазеры. По устройству близки к светодиодам, однако имеют лазерный резонатор, излучают когерентный свет.

Фотодиоды. Запертый фотодиод открывается под действием света.

Диоды Ганна. Используются для генерации и преобразования частоты в СВЧ диапазоне.

Диод Шоттки. Диод с малым падением напряжения при прямом включении.

Лавинно-пролётный диод. Диод, работающий за счет лавинного пробоя.

Магнитодиод. Диод, вольт-амперная характеристика которого существенно зависит от значения индукции магнитного поля и расположения его вектора относительно плоскости p-n-перехода.

Стабисторы. При работе используется участок ветви вольт-амперной характеристики, соответствующий «прямому напряжению» на диоде.

Смесительный диод — предназначен для перемножения 2 высокочастотных сигналов. В

первые десятилетия развития полупроводниковой технологии точность изготовления диодов была настолько низкой, что приходилось делать «разбраковку» уже изготовленных приборов. Так, диод Д220 мог, в зависимости от фактически получившихся параметров, маркироваться и как переключательный (Д220А,Б), и как стабистор (Д220С). Радиолюбители широко использовали его в качестве варикапа.

Диоды могут использоваться как датчики температуры. Диоды в прозрачном стеклянном корпусе (в том числе и современные SMD-варианты) могут обладать паразитной чувствительностью к свету (то есть радиоэлектронное устройство работает по-разному в корпусе и без корпуса, на свету).

Назад

www.altie.ru

Что такое диод

Доброго времени суток, сегодня мы вам поведаем, что такое диод и для чего он нужен.

Ещё за долго до того, как изобрели электронные лампы, уже в радиотехнике применялись полупроводниковые приборы (что такое полупроводник ← здесь). Всеми известный изобретатель радио А. С. Попов для того, что бы обнаружить электромагнитные волны использовал когерер (стеклянную трубку с металлическими опилками), позднее он использовал другое устройство. Это был первый полупроводниковый диод, он же детектор.

Что такое диод

В последующие годы, создавались детекторы с использованием естественных и искусственных кристаллических полупроводников (галена, цинкита, халькопирита и т. д.). Детектором являлся кристалл полупроводника, который был впаян в "чашечку-держатель", и стальной или вольфрамовой пружинки с заостренным концом. Империческим путём находилось положение острия на кристалле, и далее добиваясь наибольшей громкости передачи-радиостанции.

Введение

Начнём с термина из википедии:

Дио́д — электронный элемент, обладающий различной проводимостью в зависимости от направления электрического поля.

На данном уровне развития человечества, человек в схемах зачастую применяет диоды. Но мало кто понимает, как он работает и  что он из себя представляет. На сегодняшний день диод присутствует не в одном десятке полупроводниковых приборов. Диод представляет собой небольшую емкость в которой, можно сказать, присутствует вакуум, внутри которой на небольшом расстоянии друг от друга находится электроды анод и катод, один из которых обладает электропроводностью типа р, а другой - n.

Как работает диод

Говоря простым языком, представьте себе такую ситуацию, вы накачиваете колесо при помощи воздушного насоса. Накачивая камеру воздухом, воздух проходит в камеру через ниппель, но в обратном направлении выйти не может. Тот же воздух в камере, так же как и электрон в диоде - вошел, а обратно выйти уже не способен. Если вдруг ниппель выйдет из строя, то колесо сдуется, точно также происходит пробой диода. А если ниппель у нас исправный, и если мы будем нажимать на нипель и стравливать воздух из камеры, причем нажимать мы будем так как нам хочется и с необходимой нам продолжительностью – это называется управляемым пробоем в диоде. Из данного примера, можно понять, что пропускная способность тока у диода, работает только в одно направление.

На заметку, обозначается диод на схеме так:

Обозначение диода

Треугольник на схематическом изображении это часть диода, которая называется анод, он же является "плюсом". Вертикальная прямая на изображении, называется анодом, который является "минусом".

Спайка диодов определённым методом называется диодным мостом. Диодный мост представляет собой 4 диода, которые подключаются последовательно. Диодные мосты используют в блоках питания, за счёт которых выпрямляют переменный ток. А также для защиты различных устройств от неправильной полярности и т. п.

Так же есть туннельные диоды. Изготавливаются они из полупроводниковых материалов с очень высоким содержанием примеси, что в результате полупроводник превращается в полуметалл. Благодаря необычной форме вольт-амперной характеристики (на ней имеется участок отрицательного сопротивления) туннельные диоды используют для усиления и генерирования электрических сигналов и в переключающих устройствах. Важным достоинством этих диодов является то, что они могут работать на очень высоких частотах (до 10" Гц).

РЕКОМЕНДУЕМ

Просмотров: 5535 | Комментариев: 0 | Дата: 27.10.2014

proelektrik.ucoz.ru

ДИОДЫ И ИХ ПРИМЕНЕНИЕ

Продолжаем изучать полупроводниковые приборы, им хочется уделить более пристальное внимание, потому как их значимость в радиоэлектронике трудно переоценить. В этом уроке будет предложена несложная практическая работа для закрепления материала. Во всем остальном этот урок по значимости ни чем не отличается от предыдущих. Если вы заметили во всех уроках, я стараюсь выкладывать основные мысли по теме, чтобы не перегружать юных радиолюбителей непонятными математическими выкладками и т.д., за исключением подробных пояснений, если это необходимо. И так, как и в предыдущих уроках, что выделено черным курсивом, зазубриваем. Приступайте!

Полупроводники и их свойства

Сегодня в «семейство» диодов входит не один десяток полупроводниковых приборов, носящих название «диод». Здесь речь пойдет лишь о некоторых приборах, с которыми вам в первую очередь придется иметь дело. Схематично диод можно представить, как две пластинки полупроводника, одна из которых обладает электропроводностью типа р, а другая — n типа. На (рис. 1, а) дырки, преобладающие в пластинке типа р, условно изображены кружками, а электроны, преобладающие в пластинке типа n — черными шариками таких же размеров. Эти две области — два электрода диода: анод и катод. Анодом, т.е. положительным электродом, является область типа р, а катодом, т.е. отрицательным электродом,- область типа n. На внешние поверхности пластин нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой полупроводниковый прибор может находиться в одном из двух состояний: открытом, когда он хорошо проводит ток, и закрытом, когда он плохо проводит ток. Если к его электродам подключить источник постоянного тока, например, гальванический элемент, но так, чтобы его положительный полюс был соединен с анодом диода, т.е. с областью типа р, а отрицательный — с катодом, т.е. с областью типа, n (рис. 1, б), то диод окажется в открытом состоянии и в образовавшейся цепи потечет ток, значение которого зависит от приложенного к нему напряжения и свойств диода. При такой полярности подключения батареи электроны в области типа n перемещаются от минуса к плюсу, т. е. в сторону области типа р, а дырки в области типа р движутся навстречу электронам — от плюса к минусу. Встречаясь на границе областей, называемой электронно — дырочным переходом или, короче, р — n переходом, электроны как бы «впрыгивают» в дырки, в результате и те, и другие при встрече прекращают свое существование. Металлический контакт, соединенный с отрицательным полюсом элемента, может отдать области типа n практически неограниченное количество электронов, пополняя недостаток электронов в этой области, а контакт, соединенный с положительным полюсом элемента, может принять из области типа р такое же количество электронов, что равнозначно введению в него соответствующего количества дырок.

Схематическое устройство и работа полупроводникового диода

Рис. 1 Схематическое устройство и работа полупроводникового диода.

В этом случае сопротивление р — n перехода мало, вследствие чего через диод течет ток, называемый прямым током. Чем больше площадь р — n перехода и напряжение источника питания, тем больше этот прямой ток. Если полюсы элемента поменять местами, как это показано на (рис. 1, в), диод окажется в закрытом состоянии. В этом случае электрические заряды на диоде поведут себя иначе. Теперь, удаляясь от р — n перехода, электроны в области типа n будут перемещаться к положительному, а дырки в области типа р — к отрицательному контактам диода. В результате граница областей с различными типами электропроводности как бы расширится, образуя зону, обедненную электронами и дырками (на рис. 1, (в) она заштрихована и, следовательно, оказывающую току очень большое сопротивление. Однако в этой зоне небольшой обмен носителями тока между областями диода все же будет происходить. Поэтому через диод пойдет ток, но во много раз меньший, чем прямой. Этот ток называют обратным током диода. На графиках, характеризующих работу диода, прямой ток обозначают Iпр., а обратный Iобр. А если диод включить в цепь с переменным током? Он будет открываться при положительных полупериодах на аноде, свободно пропуская ток одного направления — прямой ток Iпр., и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления — обратный ток Iобр. — Эти свойства диодов и используют в выпрямителях для преобразования переменного тока в постоянный. Напряжение, при котором диод открывается и через него идет прямой ток, называют прямым (пишут Uпp.) или пропускным, а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток, называют обратным (пишут Uобр.) или непропускным. При прямом напряжении сопротивление диода хорошего качества не превышает нескольких десятков ом, при обратном же напряжении его сопротивление достигнет десятков, сотен килоом и даже мегаом. В этом нетрудно убедиться, если обратное сопротивление диода измерить омметром. Внутреннее сопротивление открытого диода — величина непостоянная и зависит от прямого напряжения, приложенного к диоду: чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр. = 100 мА (0,1 А) и при этом на нем падает напряжение 1В, то (по закону Ома) прямое сопротивление диода будет: R = 1 / 0,1 = 10 Ом. В закрытом состоянии на диоде падает почти все прикладываемое к нему напряжение, обратный ток через него чрезвычайно мал, а сопротивление, следовательно, велико. Зависимость тока через диод от значения и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт — амперной характеристикой диода (ВАХ). Такую характеристику вы видите на (рис. 2). Здесь по вертикальной оси вверх отложены значения прямого тока Iпр., а внизу — обратного тока Iобр. По горизонтальной оси вправо обозначены значения прямого напряжения Uпp., влево — обратного напряжения. На такой вольт — амперной характеристике различают прямую ветвь (в правой верхней части), соответствующую прямому току через диод, и обратную ветвь вольт — амперной характеристики, соответствующую обратному току. Из нее видно, что ток Iпр. диода в сотни раз больше тока Iобр. Так, например, уже при прямом напряжении Uпp. = 0,5 В ток Iпр. равен 50 мА (точка (а) на характеристике), при Uпp. = 1 В он возрастает до 150 мА (точка (б) на характеристике), а при обратном напряжении Uобр. = 100 В обратный ток Iобр. не превышает 0,5 мА (500 мкА). Подсчитайте, во сколько раз при одном и том же прямом и обратном напряжении прямой ток больше обратного.

Вольт - амперная характеристика полупроводникового диода (ВАХ)

Рис. 2 Вольт — амперная характеристика полупроводникового диода.

Схематическое устройство и внешний вид некоторых плоскостных диодов.

Рис. 3 Схематическое устройство (а) и внешний вид некоторых плоскостных диодов (б).

Прямая ветвь идет круто вверх, как бы прижимаясь к вертикальной оси. Она характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения. Обратная же ветвь, как видите, идет почти параллельно горизонтальной оси, характеризуя медленный рост обратного тока. Наличие заметного обратного тока — недостаток диодов. Примерно такие вольт — амперные характеристики имеют все германиевые диоды. Вольт — амперные характеристики кремниевых диодов чуть сдвинуты вправо. Объясняется это тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1-0,2 В, а кремниевый при 0,5-0,6 В. Прибор, на примере которого я рассказал вам о свойствах диода, состоял из двух пластин полупроводников разной электропроводности, соединенных между собой плоскостями. Подобные диоды называют плоскостными. В действительности же плоскостной диод представляет собой одну пластину полупроводника, в объеме которой созданы две области разной электропроводности. Технология изготовления таких диодов заключается в следующем. На поверхности квадратной пластины площадью 2 — 4 мм квадратных и толщиной в несколько долей миллиметра, вырезанной из кристалла полупроводника с электронной электропроводностью, расплавляют маленький кусочек индия. Индий крепко сплавляется с пластинкой. При этом атомы индия проникают (диффундируют) в толщу пластинки, образуя в ней область с преобладанием дырочной электропроводности (рис. 3, а). Получается полупроводниковый прибор с двумя областями различного типа электропроводности, а между ними р — n переход. Контактами электродов диода служат капелька индия и металлический диск или стержень с выводными проводниками. Так устроены наиболее распространенные плоскостные германиевые и кремниевые диоды. Внешний вид некоторых из них показан на (рис. 3, б). Приборы заключены в цельнометаллические или стеклянные корпуса со стеклянными изоляторами, что позволяет использовать их для работы в условиях повышенной влажности. Диоды, рассчитанные на значительные прямые токи, имеют винты с гайками для крепления их на монтажных панелях или шасси радиотехнических устройств. Плоскостные диоды маркируются буквами и цифрами, например: Д226А, Д242. Буква Д в маркировке прибора означает «диод», цифры, следующие за нею, заводской порядковый номер конструкции. Буквы, стоящие в конце обозначения диодов, указывают на разновидности групп приборов. Плоскостные диоды предназначены в основном для работы в выпрямителях переменного тока блоков питания радиоаппаратуры, поэтому их называют еще выпрямительными Диодами. Теперь познакомимся с принципом преобразования переменного тока в ток постоянный. Схему простейшего выпрямителя переменного тока вы видите на (рис. 4, а). На вход выпрямителя подается переменное напряжение электроосветительной сети. К выходу выпрямителя подключен резистор Rн, символизирующий нагрузку, питающуюся от выпрямителя. Функцию выпрямительного элемента выполняет диод V. Сущность работы такого выпрямителя иллюстрируют графики, помещенные на том же рисунке. При положительных полупериодах напряжения на аноде диод открывается. В эти моменты времени через диод, а значит, и через нагрузку, подключенную к выпрямителю, течет прямой ток диода Iпр. При отрицательных полупериодах напряжения на аноде диода закрывается и во всей цепи, в которую он включен, течет незначительный обратный ток диода Iобр. Диод как бы отсекает большую часть отрицательных полуволн переменного тока (на рис. 4, а показано штриховыми линиями). И вот результат: через нагрузку Rн, подключенную к сети через диод V, течет уже не переменный, а пульсирующий ток — ток одного направления, но изменяющийся по значению с частотой 50 Гц. Это и есть форма выпрямленного переменного тока. Таким образом, диод является прибором, обладающим резко выраженной односторонней проводимостью электрического тока. И если пренебречь малым обратным током (что и делают на практике), который у исправных диодов не превышает малые доли миллиампера, можно считать, что диод является односторонним проводником тока. Можно ли таким током питать нагрузку? Можно, он ведь выпрямленный. Но не каждую. Лампу накаливания, например, можно, если, конечно, выходное напряжение не будет превышать то напряжение, на которое лампа рассчитана. Ее нить будет накаливаться не постоянно, а импульсами, следующими с частотой 50 Гц. Из-за тепловой инертности нить не будет успевать остывать в промежутках между импульсами, поэтому мерцания света будут едва заметными. А вот приемник питать таким током нельзя. Потому что в цепях его усилителей ток тоже будет пульсировать с такой же частотой. В результате в телефонах или головке громкоговорителя на выходе приемника будет прослушиваться гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Этот недостаток можно частично устранить, если на выходе выпрямителя параллельно нагрузке подключить фильтрующий электролитический конденсатор (Сф) большой емкости, это показано на (рис. 4, б). Заряжаясь: от импульсов тока, конденсатор (Сф) в момент спадания тока или его исчезновения (между импульсами) разряжается через нагрузку Rн. Если конденсатор достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться и в нагрузке будет непрерывно поддерживаться ток. Ток, поддерживаемый за счет зарядки конденсатора, показан на (рис. 4, б) сплошной волнистой линией. Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель: он будет «фонить», так как пульсации пока еще очень ощутимы. В выпрямителе, с работой которого мы сейчас разбираемся, полезно используется энергия только половины волн переменного тока. Такое выпрямление переменного тока называют однополупериодными, а выпрямители — однополупериодными выпрямителями. Однако выпрямителям, построенным по таким схемам, присущи два существенных недостатка. Первый из них заключается в том, что напряжение выпрямленного тока равно примерно напряжению сети, в то время как для питания транзисторных конструкций необходимо более низкое напряжение, а для ламповых часто более высокое напряжение. Второй недостаток — недопустимость присоединения заземления к приемнику, питаемому от такого выпрямителя. Если приемник заземлить, ток из электросети пойдет через приемник в землю — могут перегореть предохранители. Кроме того, приемник или усилитель, питаемые от такого выпрямителя и, таким образом, имеющие прямой контакт с электросетью, опасны — можно получить электрический удар.

Схемы однополупериодного выпрямителя

Рис. 4 Схемы однополупериодного выпрямителя.

Двухполупериодный выпрямитель с трансформатором

Рис. 5 Двухполупериодный выпрямитель с трансформатором.

Оба эти недостатка устранены в выпрямителе с трансформатором (рис. 5). Здесь выпрямляется не напряжение электросети, а напряжение вторичной (II) обмотки сетевого трансформатора Т. Поскольку эта обмотка изолирована от первичной сетевой обмотки I, радиоконструкция не имеет контакта с сетью и к ней можно подключать заземление. В выпрямителе на (рис. 5) четыре диода, включенные по так называемой мостовой схеме. Диоды являются плечами выпрямительного моста. Нагрузка Rн включена в диагональ 1 — 2 моста. В таком выпрямителе в течение каждого полупериода работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов. Постарайтесь вникнуть и запомнить классическую схему диодного моста! Когда на верхнем (по схеме) выводе вторичной обмотки положительный полупериод напряжения, ток идет через диод V2, нагрузку Rн, диод V3 к нижнему выводу обмотки II (график а). Диоды V1 и V4 в это время закрыты. В течение другого полупериода переменного напряжения, когда плюс на нижнем выводе обмотки II, ток идет через диод V4, нагрузку Rн, диод V1 к верхнему выводу обмотки (график б). В это время диоды V2 и V3 закрыты и, естественно, ток через себя не пропускают. И вот результаты: меняются знаки напряжения на выводах вторичной обмотки трансформатора, а через нагрузку выпрямителя идет ток одного направления (график в). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными. Эффективность работы двухполупериодного выпрямителя по сравнению с однополупериодным налицо: частота пульсаций выпрямленного тока удвоилась, «провалы» между импульсами уменьшились. Среднее значение напряжения постоянного тока на выходе такого выпрямителя равно примерно переменному напряжению, действующему во всей вторичной обмотке трансформатора. А если выпрямитель дополнить фильтром, сглаживающим пульсации выпрямленного тока, выходное напряжение увеличится в 1,4 раза, т. е. примерно на 40%. Именно такой выпрямитель я позже буду рекомендовать вам для питания транзисторных конструкций. Теперь о точечном диоде. Внешний вид одного из таких приборов и его устройство (в значительно увеличенном виде) показаны на (рис. 6). Это диод серии Д9. Буква «Д» в его маркировке означает диод, а цифра 9 — порядковый заводской номер конструкции. Выпрямительным элементом диода служат тонкая и очень маленькая (площадью около 1 мм квадратных) пластина полупроводника германия или кремния типа n и вольфрамовая проволочка, упирающаяся острым концом в пластину. Они припаяны к отрезкам посеребренной проволоки длиной примерно по 50 мм, являющимися выводами диода. Вся конструкция находится внутри стеклянной трубочки диаметром около 3 и длиной меньше 10 мм, запаянной с концов. После сборки диод формуют — пропускают через контакт между пластиной полупроводника и острием вольфрамовой проволочки ток определенного значения. При этом под острием проволочки в кристалле полупроводника образуется небольшая область с дырочной электропроводностью. Получается электронно — дырочный переход, обладающий односторонней проводимостью тока. Пластина полупроводника является катодом, а вольфрамовая проволочка — анодом точечного диода.

Схематическое устройство и внешний вид точечного диода серии Д9

Рис. 6 Схематическое устройство и внешний вид точечного диода серии Д9.

Вывод анода диодов серии Д9 обозначают цветными метками на их корпусах. Электроды точечного диода серии Д2 обозначают символом диода на одном из его ленточных выводов. У точечного диода площадь соприкосновения острия проволочки с поверхностью пластины полупроводника чрезвычайно мала — не более 50мкм. Поэтому токи, которые точечные диоды могут выпрямлять в течение продолжительного времени, малы. Точечные диоды радиолюбители используют в основном для детектирования модулированных колебаний высокой частоты, поэтому их часто называют высокочастотными диодами. Как для плоскостных, так и для точечных диодов существуют максимально допустимые значения прямого и обратного токов, зависящие от прямого и обратного напряжений и определяющие их выпрямительные свойства и электрическую прочность. Это их основные параметры. Плоскостной диод Д226В, например, может продолжительное время выпрямлять ток до 300 мА. Но если его включить в цепь, потребляющую ток более 300 мА, он будет нагреваться, что неизбежно приведет к тепловому пробою р — n перехода и выходу диода из строя. Диод будет пробит и в том случае, если он окажется в цепи, в которой на него будет подаваться обратное напряжение более чем 400 В. Допустимый выпрямленный ток для точечного диода Д9А 65 мА, а допустимое обратное напряжение 10 В. Основные параметры полупроводниковых диодов указывают в их паспортах и справочных таблицах. Превышение предельных значений приводит к выходу приборов из строя.

Спасибо lessonradio.narod.ru

www.radioingener.ru


Каталог товаров