Если электрический ток будет протекать по проводнику в течение длительного времени, в этом случае установится определенная стабильная температура данного проводника, при условии неизменной внешней среды. Величины токов, при которых температура достигает максимального значения, в электротехнике известны как длительно допустимые токовые нагрузки для кабелей и проводов. Данные величины соответствуют определенным маркам проводов и кабелей. Они зависят от изоляционного материала, внешних факторов и способов прокладки. Большое значение имеет материал и сечение кабельно-проводниковой продукции, а также режим и условия эксплуатации. Причины повышения температуры проводников тесно связаны с самой природой электрического тока. Всем известно, что по проводнику под действием электрического поля упорядоченно перемещаются заряженные частицы – электроны. Однако для кристаллической решетки металлов характерны высокие внутренние молекулярные связи, которые электроны вынуждены преодолевать в процессе движения. Это приводит к высвобождению большого количества теплоты, то есть, электрическая энергия преобразуется в тепловую. Данное явление похоже на выделение теплоты под действием трения, с той разницей, что в рассматриваемом варианте электроны соприкасаются с кристаллической решеткой металла. В результате, происходит выделение тепла. Такое свойство металлических проводников имеет как положительные, так и отрицательные стороны. Эффект нагрева используется на производстве и в быту, как основное качество различных устройств, например, электрических печей или электрочайников, утюгов и другой техники. Отрицательными качествами являются возможные разрушения изоляции при перегреве, что может привести к возгоранию, а также выходу из строя электротехники и оборудования. Это означает, что длительные токовые нагрузки для проводов и кабелей превысили установленную норму. Существует множество причин чрезмерного нагрева проводников: Для правильного расчета сечения кабеля нужно вначале определить максимальные токовые нагрузки. С этой целью сумма всех номинальных мощностей у используемых потребителей, должна быть поделена на значение напряжения. Затем, с помощью таблиц можно легко подобрать нужное сечение кабеля. Правильно выбранное сечение проводника не допускает падений напряжения, а также излишних перегревов под воздействием проходящего электротока. То есть, сечение должно обеспечивать наиболее оптимальный режим работы, экономичность и минимальный расход цветных металлов. Сечение проводника выбирается по двум основным критериям, как допустимый нагрев и допустимая потеря напряжения. Из двух значений сечения, полученных при расчетах, выбирается большая величина, округляемая до стандартного уровня. Потеря напряжения оказывает серьезное влияние преимущественно на состояние воздушных линий, а величина допустимого нагрева оказывает серьезное влияние на переносные шланговые и подземные кабельные линии. Поэтому сечение для каждого вида проводников определяется в соответствии с этими факторами. Понятие допустимой силы тока по нагреву (Iд) представляет собой протекающую по проводнику силу тока в течение длительного времени, в процессе которого появляется значение длительно допустимой температуры нагрева. При выборе сечения необходимо соблюдение обязательного условия, чтобы расчетная сила тока Iр соответствовала допустимой силе тока по нагреву Iд. Значение Iр определяется по следующей формуле: Iр, в которой Рн является номинальной мощностью в кВт; Кз – коэффициент загрузки устройства, составляющий 0,8-0,9; Uн – номинальное напряжение устройства; hд – КПД устройства; cos j – коэффициент мощности устройства 0,8-0,9. Таким образом, любому току, протекающему через проводник в течение длительного времени, будет соответствовать определенное значение установившейся температуры проводника. При этом, внешние условия, окружающие проводник, остаются неизменными. Величина тока, при которой температура данного кабеля считается максимально допустимой, известна в электротехнике, как длительно допустимый ток кабеля. Этот параметр зависит от материала изоляции и способа прокладки кабеля, его сечения и материала жил. Когда рассчитываются длительно допустимые токи кабелей, обязательно используется значение максимальной положительной температуры окружающей среды. Это связано с тем, что при одинаковых токах теплоотдача происходит значительно эффективнее в условиях низких температур. В разных регионах страны и в разное время года температурные показатели будут отличаться. Поэтому в ПУЭ имеются таблицы с допустимыми токовыми нагрузками для расчетных температур. Если же температурные условия значительно отличаются от расчетных, существуют поправки с помощью коэффициентов, позволяющих рассчитать нагрузку для конкретных условий. Базовое значение температуры воздуха внутри и вне помещений устанавливается в пределах 250С, а для кабелей, проложенных в земле на глубине 70-80 см – 150С. Расчеты с помощью формул достаточно сложные, поэтому на практике чаще всего используется таблица допустимых значений тока для кабелей и проводов. Это позволяет быстро определить, способен ли данный кабель выдержать нагрузку на данном участке при существующих условиях. Наиболее эффективными условиями для теплоотдачи является нахождение кабеля во влажной среде. В случае прокладки в грунте, отведение тепла зависит от структуры и состава грунта и количества влаги, содержащейся в нем. Для того чтобы получить более точные данные, необходимо определить состав почвы, влияющий на изменение сопротивления. Далее с помощью таблиц находится удельное сопротивление конкретного грунта. Данный параметр может быть уменьшен, если выполнить тщательную трамбовку, а также изменить состав засыпки траншеи. Например, теплопроводность пористого песка и гравия ниже, чем у глины, поэтому кабель рекомендуется засыпать глиной или суглинком, в которых отсутствуют шлаки, камни и строительный мусор. Воздушные кабельные линии обладают плохой теплоотдачей. Она ухудшается еще больше, когда проводники прокладываются в кабель-каналах с дополнительными воздушными прослойками. Кроме того, кабели, расположенные рядом, подогревают друг друга. В таких ситуациях выбираются минимальные значения нагрузок по току. Чтобы обеспечить благоприятные условия эксплуатации кабелей, значение допустимых токов рассчитывается в двух вариантах: для работы в аварийном и длительном режиме. Отдельно рассчитывается допустимая температура на случай короткого замыкания. Для кабелей в бумажной изоляции она составит 2000С, а для ПВХ – 1200С. Значение длительно допустимого тока и допустимая нагрузка на кабель представляет собой обратно пропорциональную зависимость температурного сопротивления кабеля и теплоемкости внешней среды. Необходимо учитывать, что охлаждение изолированных и неизолированных проводов происходит в совершенно разных условиях. Тепловые потоки, исходящие от кабельных жил, должны преодолеть дополнительное тепловое сопротивление изоляции. На кабели и провода, проложенные в земле и трубах, существенно влияет теплопроводность окружающей среды. Если в одной траншее прокладывается сразу несколько кабелей, в этом случае условия их охлаждения значительно ухудшаются. В связи с этим длительно допустимые токовые нагрузки на провода и кабели снижаются на каждой отдельной линии. Данный фактор нужно обязательно учитывать при расчетах. На определенное количество рабочих кабелей, проложенных рядом, существуют специальные поправочные коэффициенты, сведенные в общую таблицу. Передача и распределение электрической энергии совершенно невозможно без проводов и кабелей. Именно с их помощью электрический ток подводится к потребителям. В этих условиях большое значение приобретает токовая нагрузка по сечению кабеля, рассчитываемая по формулам или определяемая с помощью таблиц. В связи с этим, сечения кабелей подбираются в соответствии с нагрузкой, создаваемой всеми электроприборами. Предварительные расчеты и выбор сечения обеспечивают бесперебойное прохождение электрического тока. Для этих целей существуют таблицы с широким спектром взаимных связей сечения с мощностью и силой тока. Они используются еще на стадии разработки и проектирования электрических сетей, что позволяет в дальнейшем исключить аварийные ситуации, влекущие за собой значительные затраты на ремонт и восстановление кабелей, проводов и оборудования. Существующая таблица токовых нагрузок кабелей, приведенная в ПУЭ показывает, что постепенный рост сечения проводника вызывает снижение плотности тока (А/мм2). В некоторых случаях вместо одного кабеля с большой площадью сечения, более рациональным будет использование нескольких кабелей с меньшим сечением. Однако, данный вариант требует экономических расчетов, поскольку при заметной экономии цветного металла жил, возрастают затраты на устройство дополнительных кабельных линий. Выбирая наиболее оптимальное сечение проводников с помощью таблицы, необходимо учитывать несколько важных факторов. Во время проверки на нагрев, токовые нагрузки на провода и кабели принимаются из расчета их получасового максимума. То есть, учитывается средняя максимальная получасовая токовая нагрузка для конкретного элемента сети – трансформатора, электродвигателя, магистралей и т.д. Кабели, рассчитанные на напряжение до 10 кВ, имеющие пропитанную бумажную изоляцию и работающие с нагрузкой, не превышающей 80% от номинала, допускается краткосрочная перегрузка в пределах 130% на максимальный период 5 суток, не более 6 часов в сутки. Когда нагрузка кабеля по сечению определяется для линий, проложенных в коробах и лотках, ее допустимое значение принимается как для проводов, уложенных открытым способом в лотке в одном горизонтальном ряду. Если провода прокладываются в трубах, то это значение рассчитывается, как для проводов, уложенных пучками в коробах и лотках. Если в коробах, лотках и трубах прокладываются пучки проводов в количестве более четырех, в этом случае допустимая токовая нагрузка определяется следующим образом: Расчеты, выполняемые вручную, не всегда позволяют определить длительно допустимые токовые нагрузки для кабелей и проводов. В ПУЭ содержится множество разных таблиц, в том числе и таблица токовых нагрузок, содержащая готовые значения, применительно к различным условиям эксплуатации. Характеристики проводов и кабелей, приведенные в таблицах, дают возможность нормальной передачи и распределения электроэнергии в сетях с постоянным и переменным напряжением. Технические параметры кабельно-проводниковой продукции находятся в очень широком диапазоне. Они различаются собственной маркировкой, количеством жил и другими показателями. Таким образом, перегрев проводников при постоянной нагрузке можно исключить путем правильного подбора длительно допустимого тока и расчетов отведения тепла в окружающую среду. electric-220.ru Длительно допустимый ток регламентируют Правилами устройства электроустановок. Значения этих нагрузок приведены в таблицах из расчета нагрева жил до температуры +65°С при температуре окружающего воздуха +25°С. www.elko-service.ru Токовые нагрузки, установленные в действующих нормативных документах по использованию кабелей и проводов в электрических сетях, указаны в таблицах 1 - 11. Указанные значения токов приведены для температур окружающего воздуха +25 °С и земли +15 °С для усредненных условий прокладки. В случае необходимости выбора конкретной токовой нагрузки для конкретного типа кабеля или провода и конкретных условий прокладки, необходимо руководствоваться методиками, указанными в стандартах и правилах. Таблица 1. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с медными жилами, А Таблица 2. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами, А Таблица 3. Длительно допустимый ток для гибких кабелей и проводов с резиновой изоляцией, А Таблица 4. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией для электрифицированного транспорта 1, 3 и 4 кВ, А Таблица 5. Допустимый длительный ток для кабелей с медными жилами с бумажной пропитанной изоляцией на низкое напряжение в свинцовой оболочке, прокладываемых в земле, А Таблица 6. Допустимый длительный ток для кабелей с медными жилами с бумажной пропитанной изоляцией на низкое напряжение в свинцовой оболочке, прокладываемой в воздухе, А Таблица 7. Допустимый длительный ток для кабелей с алюминиевыми жилами с бумажной пропитанной изоляцией на низкое напряжение в свинцовой оболочке, прокладываемых в земле, А Таблица 8. Допустимый длительный ток для кабелей с алюминиевыми жилами с бумажной пропитанной изоляцией на низкое напряжение в свинцовой оболочке, прокладываемых в воздухе, А Таблица 9. Допустимый длительный ток для кабелей с медными жилами с пластмассовой изоляцией на напряжение до 3 кВ, А Таблица 10. Допустимый длительный ток для кабелей с алюминиевыми жилами с пластмассовой изоляцией на напряжение до 3 кВ, А Таблица 11. Допустимый длительный ток для кабелей с пластмассовой изоляцией на напряжение 6 кВ, А www.ruscable.ru Допустимые длительные токовые нагрузки на установочные, монтажные провода, кабели и соединительные шнуры определяются ПУЭ. В таблицах приведены сведения для проводов с медными жилами, с алюминиевыми жилами, допустимые длительные токовые нагрузки на шнуры переносные, переносные гибкие шланговые легкие средние и тяжелые кабели, на шланговые прожекторные и переносные провода с медными жилами. Таблица 1.10. Допустимые токовые нагрузки на провода и шнуры с медными жилами с резиновой и пластмассовой изоляцией Таблица 1.11. Допутимые длительные токовые нагрузки на провода с алюминиевыми жилами с резиновой и поливинилхлоридной изоляцией Таблица 1.12. Допуcтимые длительные токовые нагрузки на шнуры переносные, переносные шланговые гибкие; легкие, средние и тяжелые кабели, шланговые прожекторные и переносные провода с медными жилами На рисунках 1.1 - 1.21 представлены эскизы сечений и изображения некоторых установочных, соединительных и монтажных проводов и кабелей. www.eti.su Длительно допустимые токовые нагрузки (токи) в А на провода и шнуры с резиновой и поливинилхлоридной изоляцией, а также на неизолированные провода воздушных линий Допустимые токовые нагрузки на алюминиевые провода с резиновой и поливинилхлоридной изоляцией в А Допустимые токовые нагрузки в А на медные провода с резиновой изоляцией в металлических защитных оболочках и кабели с медными жилами, с резиновой изоляцией в свинцовой, поливинилхлоридной, наиритовой или резиновой оболочках, бронированные и небронированные, с заземляющей жилой и без нее Допустимые токовые нагрузки в А на медные провода и шнуры с резиновой или поливинилхлоридной изоляцией Допустимые токовые нагрузки в А на кабели с алюминиевыми жилами, с резиновой или пластмассовой изоляцией в алюминиевой, свинцовой, поливинилхлоридной или резиновой оболочках, бронированные и небронированные Кабель обычно состоит из 2-4 жил. Сечение (точнее, площадь поперечного сечения) жилы определяется ее диаметром. Исходя из практических соображений при малых значениях силы тока сечение медной жилы берут не менее 1 мм2, а алюминиевой — 2 мм2. При достаточно больших токах сечение провода выбирают по подключаемой мощности. Обычно исходят из расчета, что нагрузка величиной 1 кВт требует 1,57 мм2 сечения жилы. Отсюда следуют приближенные значения сечений провода, которых следует придерживаться при выборе его диаметра. Для алюминиевых проводов это 5 А на 1 мм2, для медных — 8 А на 1 мм2. Проще говоря, если у вас стоит проточный водонагреватель на 5 кВт, то подключать его надо проводом, рассчитанным не менее чем на 25 А, и для медного провода сечение должно быть не менее 3,2 мм2. Учтите, из ряда предпочтительных величин сечений (0,75; 1; 1,5; 2,5; 4; б мм2 и т. д.) для алюминиевых проводов сечение выбирают на ступень выше, чем для медных, так как их проводимость составляет примерно 62% от проводимости медных. Например, если по расчетам для меди нужна величина сечения 2,5 мм2, то для алюминия следует брать 4 мм2, если же для меди нужно 4 мм2, то для алюминия — б мм2 и т. д. www.esm53.ru el-cab.ru Очень часто, в работе приходится выполнять выбор проводов и кабелей. Частенько сталкиваешься с задачей, а какое сечение, должно быть при длительной нагрузке возникающей при эксплуатации кабельных линий питания различных устройств. Для этих целей, конечно существуют различные программы. Но я все-таки решил опубликовать таблицы, где указана информация по выбору. Длительно допустимые токовые нагрузки одножильных кабелей с пропитанной бумажной изоляцией, на напряжение 1 кВ. Таблица 1 Длительно допустимые токовые нагрузки 3-х и 4-х жильных силовых кабелей с пропитанной бумажной изоляцией, на напряжение 1, 6 и 10 кВ. Примечание к табл.1, 2:1. Токовые нагрузки для одножильных кабелей даны для постоянного тока.2. Токовые нагрузки для 3-х и 4-х жильных кабелей даны для переменного тока.3. При прокладке в воде кабелей с защитными покровами типа Кл значение токовой нагрузки в земле следует умножить на коэффициент K = 1,3.4. Токи нагрузки даны для грунтов с удельным тепловым сопротивлением 1,2°С•м/Вт (глубина прокладки 0,7 м).5. Для кабелей и изоляции, пропитанной изоляционным составом, содержащим полиэтиленовый воск в качестве загустителя,токовые нагрузки должны соответствовать действующим ПУЭ. Допустимые токовые нагрузки кабелей с алюминиевыми жилами с изоляцией из поливинилхлоридного пластиката*, на напряжение до 3 кВ включительно. Таблица 3 Допустимые токовые нагрузки кабелей с медными жилами с изоляциейиз поливинилхлоридного пластиката*, на напряжение до 3 кВ включительно. Таблица 4 Допустимые токовые нагрузки кабелей с изоляциейиз поливинилхлоридного пластиката*, на напряжение 6 кВ. Таблица 5 Примечание к табл. 3, 4 и 5:* Для определения токовых нагрузок кабелей, проложенных в воде, нагрузки для прокладки в земле должны быть умножены накоэффициент 1,3.** Токовые нагрузки даны для работы на постоянном токе.*** Так же для четырехжильных кабелей с нулевой жилой меньшего сечения. Для определения токовых нагрузок четырехжильныхкабелей с жилами равного сечения в четырехпроводных сетях при нагрузке во всех жилах в нормальном режиме нагрузки должныбыть умножены на коэффициент 0,93. Допустимые нагрузки кабелей с изоляциейиз силанольносшитого полиэтилена, на напряжение 1 кВ Таблица 6 Примечание к табл. 6:При прокладке в земле токовые нагрузки рассчитаны для глубины прокладки 0,7 м при удельном термическом противлении почвы 1,2 °См/Вт.Токи нагрузки нескольких кабелей, проложенных в земле, в т.ч. в трубах, должны быть уменьшены умножением значений, указанных в табл. 6, на коэффициент, приведенный в табл. 7. Таблица 7 Длительно допустимый ток нагрузки для одножильных кабелейс изоляцией из сшитого полиэтилена, на напряжение 6 кВ. Таблица 8 Длительно допустимый ток нагрузки для трехжильных кабелейс изоляцией из сшитого полиэтилена, на напряжение 6 кВ. Таблица 9 Длительно допустимый ток нагрузки для кабелейс изоляцией из сшитого полиэтилена, на напряжение 10 кВ. Таблица 10 Примечание к табл.10:Допустимый ток кабелей, проложенных в трубах длиной более 10 м, должны быть уменьшены умножением значения токов на коэффициент 0,94, если одножильные кабели проложены в отдельных трубах, и 0,9 – если три одножильных кабеля проложены в одной трубе.При прокладке в плоскости токи рассчитаны при расстоянии между кабелями в свету, равном диаметру кабеля, при прокладке треугольником вплотную. Таблица 11 Допустимые токовые нагрузки кабелей, не распространяющих горение,с низким дымо- и газовыделением (нг-LS) при прокладке на воздухе Таблица 12 Допустимые токовые нагрузки кабелей огнестойких, не распространяющих горение, с низким дымо- и газовыделением (нг-FRLS) при прокладке на воздухе. Таблица 13 Примечание к табл. 12, 13:* Токовые нагрузки даны для работы на постоянном токе.** Для кабелей четырех% и пятижильных с жилами равного сечения при нагрузке во всех жилах в нормальном режиме токи нагрузки необходимо умножить на коэффициент 0,93. Таблица 14 Допустимые токовые нагрузки кабелей с медными жилами с изоляцией и оболочкой из полимерных композиций, не содержащих галогенов (нг-HF), на напряжение до 1 кВ включительно. Таблица 15 Допустимые токовые нагрузки кабелей с медными жилами с изоляцией из сшитого полиэтилена и оболочкой из полимерных композиций, не содержащих галогенов (нг-HF), на напряжение до 1 кВ включительно. Таблица 16 Примечание к табл. 15, 16:* Токовые нагрузки даны для работы на постоянном токе. Допустимые токовые нагрузки проводов марки СИП. Таблица 17 Приложение к Таблице 17 Таблица 18 Понравился пост? Расскажи друзьям: elektrikov.net Длительно допустимый ток регламентируют Правилами устройства электроустановок.Значения этих нагрузок приведены в таблицах из расчета нагрева жил до температуры +65°С при температуре окружающего воздуха +25°С. www.elko-service.ru При определении количества проводов, прокладываемых в одной трубе (или жил многожильного проводника), нулевой рабочий проводник четырехпроводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются. Для проводов вторичных цепей снижающие коэффициенты не вводятся. 1.3.11. Допустимые длительные токи для проводов, проложенных в лотках, при однорядной прокладке (не в пучках) следует принимать как для проводов, проложенных в воздухе. При выборе снижающих коэффициентов контрольные и резервные провода и кабели не учитываются. Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами Сечение токопроводящей жилы, мм2 Ток, А, для проводов, проложенных открыто в одной трубе двух одно жильных трех одно жильных четырех одно жильных одного двух жильного одного трех жильного 0,5 11 - - - - - 0,75 15 - - - - - 1 17 16 15 14 15 14 1,2 20 18 16 15 16 14,5 1,5 23 19 17 16 18 15 2 26 24 22 20 23 19 2,5 30 27 25 25 25 21 3 34 32 28 26 28 24 4 41 38 35 30 32 27 5 46 42 39 34 37 31 6 50 46 42 40 40 34 8 62 54 51 46 48 43 10 80 70 60 50 55 50 16 100 85 80 75 80 70 25 140 115 100 90 100 85 35 170 135 125 115 125 100 50 215 185 170 150 160 135 70 270 225 210 185 195 175 95 330 275 255 225 245 215 120 385 315 290 260 295 250 150 440 360 330 - - - 185 510 - - - - - 240 605 - - - - - 300 695 - - - - - 400 830 - - - - - Таблица 1.3.5. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами Сечение токопроводящей жилы, мм2 Ток, А, для проводов, проложенных открыто в одной трубе двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного 2 21 19 18 15 17 14 2,5 24 20 19 19 19 16 3 27 24 22 21 22 18 4 32 28 28 23 25 21 5 36 32 30 27 28 24 6 39 36 32 30 31 26 8 46 43 40 37 38 32 10 60 50 47 39 42 38 16 75 60 60 55 60 55 25 105 85 80 70 75 65 35 130 100 95 85 95 75 50 165 140 130 120 125 105 70 210 175 165 140 150 135 95 255 215 200 175 190 165 120 295 245 220 200 230 190 150 340 275 255 - - - 185 390 - - - - - 240 465 - - - - - 300 535 - - - - - 400 645 - - - - - Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных Сечение токопроводящей жилы, мм2 одножильных двухжильных трехжильных при прокладке в воздухе в воздухе в земле в воздухе в земле 1,5 23 19 33 19 27 2,5 30 27 44 25 38 4 41 38 55 35 49 6 50 50 70 42 60 10 80 70 105 55 90 16 100 90 135 75 115 25 140 115 175 95 150 35 170 140 210 120 180 50 215 175 265 145 225 70 270 215 320 180 275 95 325 260 385 220 330 120 385 300 445 260 385 150 440 350 505 305 435 185 510 405 570 350 500 240 605 - - - - Таблица 1.3.7. Сечение токопроводящей жилы, мм2 Ток, А, для проводов и кабелей одножильных двухжильных трехжильных при прокладке в воздухе в воздухе в земле в воздухе в земле 2,5 23 21 34 19 29 4 31 29 42 27 38 6 38 38 55 32 46 10 60 55 80 42 70 16 75 70 105 60 90 25 105 90 135 75 115 35 130 105 160 90 140 50 165 135 205 110 175 70 210 165 245 140 210 95 250 200 295 170 255 120 295 230 340 200 295 150 340 270 390 235 335 185 390 310 440 270 385 240 465 - - - - Таблица 1.3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами Сечение токопроводящей жилы, мм2 одножильных двухжильных трехжильных 0,5 - 12 - 0,75 - 16 14 1,0 - 18 16 1,5 - 23 20 2,5 40 33 28 4 50 43 36 6 65 55 45 10 90 75 60 16 120 95 80 25 160 125 105 35 190 150 130 50 235 185 160 70 290 235 200 Таблица 1.3.9. Допустимый длительный ток для переносных шланговых с медными жилами с резиновой изоляцией кабелей для торфопредприятий Сечение токопроводящей жилы, мм2 0,5 3 6 6 44 45 47 10 60 60 65 16 80 80 85 25 100 105 105 35 125 125 130 50 155 155 160 70 190 195 - Таблица 1.3.10. Допустимый длительный ток для шланговых с медными жилами с резиновой изоляцией кабелей для передвижных электроприемников Сечение токопроводящей жилы, мм2 Сечение токопроводящей жилы, мм2 Ток*, А, для кабелей напряжением, кВ 3 6 3 6 16 85 90 70 215 220 25 115 120 95 260 265 35 140 145 120 305 310 50 175 180 150 345 350 Таблица 1.3.11. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией для электрифицированного транспорта 1, 3 и 4 кВ Сечение токопроводящей жилы, мм2 Ток, А Сечение токопроводящей жилы, мм2 Ток, А Сечение токопроводящей жилы, мм2 Ток, А 1 20 16 115 120 390 1,5 25 25 150 150 445 2,5 40 35 185 185 505 4 50 50 230 240 590 6 65 70 285 300 670 10 90 95 340 350 745 Таблица 1.3.12. Снижающий коэффициент для проводов и кабелей, прокладываемых в коробах Способ прокладки Количество проложенных проводов и кабелей Снижающий коэффициент для проводов и кабелей, питающих одножильных многожильных отдельные электроприемники с коэффициентом использования до 0, 7 группы электроприемников и отдельные приемники с коэффициентом использования более 0, 7 Многослойно и пучками - До 4 1,0 - 2 5-6 0,85 - 3-9 7-9 0,75 - 10-11 10-11 0,7 - 12-14 12-14 0,65 - 15-18 15-18 0,6 - Однослойно 2-4 2-4 - 0,67 5 5 - 0,6 almih.narod.ru 1.3.10. Допустимые длительные токи для проводов с резиновой или поливинилхлоридной изоляцией, шнуров с резиновой изоляцией и кабелей с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках приведены в табл. 1.3.4-1.3.11. Они приняты для температур: жил + 65, окружающего воздуха + 25 и земли + 15°С. При определении количества проводов, прокладываемых в одной трубе (или жил многожильного проводника), нулевой рабочий проводник четырехпроводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются. Данные, содержащиеся в табл. 1.3.4 и 1.3.5, следует применять независимо от количества труб и места их прокладки (в воздухе, перекрытиях, фундаментах). Допустимые длительные токи для проводов и кабелей, проложенных в коробах, а также в лотках пучками, должны приниматься: для проводов — по табл. 1.3.4 и 1.3.5 как для проводов, проложенных в трубах, для кабелей — по табл. 1.3.6-1.3.8 как для кабелей, проложенных в воздухе. При количестве одновременно нагруженных проводов более четырех, проложенных в трубах, коробах, а также в лотках пучками, токи для проводов должны приниматься по табл. 1.3.4 и 1.3.5 как для проводов, проложенных открыто (в воздухе), с введением снижающих коэффициентов 0,68 для 5 и 6; 0,63 для 7-9 и 0,6 для 10-12 проводников. Для проводов вторичных цепей снижающие коэффициенты не вводятся. Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами Сечение токопроводящей жилы, мм2 Ток, А, для проводов, проложенных открыто в одной трубе двух-, одножильных трех-, одножильных четырех-, одножильных одного-, двухжильного одного-, трехжильного 0,5 11 – – – – – 0,75 15 – – – – – 1 17 16 15 14 15 14 1,2 20 18 16 15 16 14,5 1,5 23 19 17 16 18 15 2 26 24 22 20 23 19 2,5 30 27 25 25 25 21 3 34 32 28 26 28 24 4 41 38 35 30 32 27 5 46 42 39 34 37 31 6 50 46 42 40 40 34 8 62 54 51 46 48 43 10 80 70 60 50 55 50 16 100 85 80 75 80 70 25 140 115 100 90 100 85 35 170 135 125 115 125 100 50 215 185 170 150 160 135 70 270 225 210 185 195 175 95 330 275 255 225 245 215 120 385 315 290 260 295 250 150 440 360 330 – – – 185 510 – – – – – 240 605 – – – – – 300 695 – – – – – 400 830 – – – – – Таблица 1.3.5. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами Сечение токопроводящей жилы, мм2 Ток, А, для проводов, проложенных открыто в одной трубе двух-, одножильных трех-, одножильных четырех-, одножильных одного-, двухжильного одного-, трехжильного 2 21 19 18 15 17 14 2,5 24 20 19 19 19 16 3 27 24 22 21 22 18 4 32 28 28 23 25 21 5 36 32 30 27 28 24 6 39 36 32 30 31 26 8 46 43 40 37 38 32 10 60 50 47 39 42 38 16 75 60 60 55 60 55 25 105 85 80 70 75 65 35 130 100 95 85 95 75 50 165 140 130 120 125 105 70 210 175 165 140 150 135 95 255 215 200 175 190 165 120 295 245 220 200 230 190 150 340 275 255 – – – 185 390 – – – – – 240 465 – – – – – 300 535 – – – – – 400 645 – – – – – Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных Сечение токопроводящей жилы, мм2 Ток *, А, для проводов и кабелей одножильных двухжильных трехжильных при прокладке в воздухе в воздухе в земле в воздухе в земле 1,5 23 19 33 19 27 2,5 30 27 44 25 38 4 41 38 55 35 49 6 50 50 70 42 60 10 80 70 105 55 90 16 100 90 135 75 115 25 140 115 175 95 150 35 170 140 210 120 180 50 215 175 265 145 225 70 270 215 320 180 275 95 325 260 385 220 330 120 385 300 445 260 385 150 440 350 505 305 435 185 510 405 570 350 500 240 605 - - - - * Токи относятся к проводам и кабелям как с нулевой жилой, так и без нее. Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных Сечение токопроводящей жилы, мм² Ток, А, для кабелей одножильных двухжильных трехжильных при прокладке в воздухе в воздухе в земле в воздухе в земле 2,5 23 21 34 19 29 4 31 29 42 27 38 6 38 38 55 32 46 10 60 55 80 42 70 16 75 70 105 60 90 25 105 90 135 75 115 35 130 105 160 90 140 50 165 135 205 110 175 70 210 165 245 140 210 95 250 200 295 170 255 120 295 230 340 200 295 150 340 270 390 235 335 185 390 310 440 270 385 240 465 – – – – Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по табл. 1.3.7, как для трехжильных кабелей, но с коэффициентом 0,92. Таблица 1.3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами Сечение токопроводящей жилы, мм2 Ток *, А, для шнуров, проводов и кабелей одножильных двухжильных трехжильных 0,5 – 12 – 0,75 – 16 14 1,0 – 18 16 1,5 – 23 20 2,5 40 33 28 4 50 43 36 6 . 65 55 45 10 90 75 60 16 120 95 80 25 160 125 105 35 190 150 130 50 235 185 160 70 290 235 200 * Токи относятся к шнурам, проводам и кабелям с нулевой жилой и без нее. Таблица 1.3.9. Допустимый длительный ток для переносных шланговых с медными жилами с резиновой изоляцией кабелей для торфопредприятий Сечение токопроводящей жилы, мм2 Ток *, А, для кабелей напряжением, кВ 0,5 3 6 6 44 45 47 10 60 60 65 16 80 80 85 25 100 105 105 35 125 125 130 50 155 155 160 70 190 195 – * Токи относятся к кабелям с нулевой жилой и без нее. Таблица 1.3.10. Допустимый длительный ток для шланговых с медными жилами с резиновой изоляцией кабелей для передвижных электроприемников Сечение токопроводящей жилы, мм2 Ток *, А, для кабелей напряжением, кВ Сечение токопроводящей жилы, мм2 Ток *, А, для кабелей напряжением, кВ 3 6 3 6 16 85 90 70 215 220 25 115 120 95 260 265 35 140 145 120 305 310 50 175 180 150 345 350 * Токи относятся к кабелям с нулевой жилой и без нее. Таблица 1.3.11. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией для электрифицированного транспорта 1,3 и 4 кВ Сечение токопроводящей жилы, мм2 Ток, А Сечение токопроводящей жилы, мм2 Ток, А Сечение токопроводящей жилы, мм2 Ток, А 1 20 16 115 120 390 1,5 25 25 150 150 445 2,5 40 35 185 185 505 4 50 50 230 240 590 6 65 70 285 300 670 10 90 95 340 350 745 Таблица 1.3.12. Снижающий коэффициент для проводов и кабелей, прокладываемых в коробах Способ прокладки Количество проложенных проводов и кабелей Снижающий коэффициент для проводов, питающих одножильных многожильных отдельные электроприемники с коэффициентом использования до 0,7 группы электроприемников и отдельные приемники с коэффициентом использования более 0,7 Многослойно и пучками – До 4 1,0 – 2 5-6 0,85 – 3-9 7-9 0,75 – 10-11 10-11 0,7 – 12-14 12-14 0,65 – 15-18 15-18 0,6 – Однослойно 2-4 2-4 – 0,67 5 5 – 0,6 1.3.11. Допустимые длительные токи для проводов, проложенных в лотках, при однорядной прокладке (не в пучках) следует принимать, как для проводов, проложенных в воздухе. Допустимые длительные токи для проводов и кабелей, прокладываемых в коробах, следует принимать по табл. 1.3.4-1.3.7 как для одиночных проводов и кабелей, проложенных открыто (в воздухе), с применением снижающих коэффициентов, указанных в табл. 1.3.12. При выборе снижающих коэффициентов контрольные и резервные провода и кабели не учитываются. www.elec.ru Практически каждая тема на блоге имеет свою предысторию. Вот и сегодняшняя тема появилась благодаря моему новому проекту. Несмотря на то, что здесь ничего не будет нового, я все равно советую добавить данную статью в свои закладки и в случае необходимости быстро найти нужную информацию. Дома, на работе и в моей сумке всегда лежит файл, в котором находятся распечатанные таблицы с допустимыми токовыми нагрузками кабелей по ГОСТ 31996-2012. Но, так получилось, что по каким-то причинам я выложил данный файл из свой сумки, и когда я был на объекте он мне понадобился. Начал вспоминать, а есть ли у меня данная информация на блоге, чтобы зайти через телефон и посмотреть допустимый ток для кабеля нужного сечения? Оказалось – нету. А это очень важная информация при выполнении проектов электроснабжения, также позволяет быстро оценить примерное сечение кабельной линии. Лично я всегда длительно допустимые токовые нагрузки кабелей выбираю по ГОСТ 31996-2012. На эту тему уже писал: По какому нормативному документу необходимо выбирать сечение кабеля? Я считаю, таблицы длительно допустимых токов должны всегда находиться под рукой проектировщика или энергетика, т.к. их можно сравнить с таблицами умножения в математике. Это основа проектирования электроснабжения и эксплуатации электроустановок. Если вы уже изучаете кокой-либо мой курс, то данные таблицы можно найти в дополнительных материалах. Для пользователей 220soft в следующей рассылке в качестве бонуса добавлю готовые таблицы для распечатки, которые мелькают в моих видео. Отличительная особенность моих таблиц в том, что там для выбора четырехжильных и пятижильных кабелей токи не нужно умножать на кф. 0,93. Такие таблицы может сделать каждый, потратив пару часов времени Таблица 19 — Допустимые токовые нагрузки кабелей с медными жилами с изоляцией из поливинилхлоридных пластикатов и полимерных композиций, не содержащих галогенов: Допустимые токовые нагрузки кабелей с медными жилами с изоляцией из поливинилхлоридных пластикатов и полимерных композиций, не содержащих галогенов Таблица 21 — Допустимые токовые нагрузки кабелей с алюминиевыми жилами с изоляцией из поливинилхлоридных пластикатов и полимерных композиций, не содержащих галогенов: Допустимые токовые нагрузки кабелей с алюминиевыми жилами с изоляцией из поливинилхлоридных пластикатов и полимерных композиций, не содержащих галогенов Таблица 20 — Допустимые токовые нагрузки кабелей с медными жилами с изоляцией из сшитого полиэтилена: Допустимые токовые нагрузки кабелей с медными жилами с изоляцией из сшитого полиэтилена Таблица 22 — Допустимые токовые нагрузки кабелей с алюминиевыми жилами с изоляцией из сшитого полиэтилена: Допустимые токовые нагрузки кабелей с алюминиевыми жилами с изоляцией из сшитого полиэтилена ГОСТ31996-2012 (Кабели силовые с пластмассовой изоляцией на номинальное напряжение 0,66, 1 и 3кВ). В этом документе имеется и другая полезная информация, советую изучить. P.S. Для трехжильных кабелей допустимые токи здесь занижены, т.к. учтен кф. 0,93, но, считаю, такой запас сделает однофазные сети более надежными. По теме: Вы можете пролистать до конца и оставить комментарий. Уведомления сейчас отключены. 220blog.ruДлительно допустимые токовые нагрузки для кабелей и проводов. Длительно допустимые токовые нагрузки для проводов и кабелей
Длительно допустимые токовые нагрузки для проводов и кабелей
Содержание: Причины нагрева кабеля
Расчет допустимой силы тока по нагреву жил
Условия теплоотдачи
Таблица нагрузок по сечению кабеля
Таблица для определения допустимого тока
Длительно допустимые токовые нагрузки для проводов и кабелей
Главная » Статьи » Длительно допустимые токовые нагрузки для проводов и кабелей Длительно допустимые токовые нагрузки для проводов и кабелей
Провода с резиновой и полихлорвиниловой изоляцией с медными жилами
Сечение токопроводящей жилы, мм² Сила тока, А, для проводов, проложенных открыто в одной трубе два одножильных три одножильных четыре одножильных один двухжильный один трехжильный 0.5 11 - - - - - 0.75 15 - - - - - 1 17 16 15 14 15 14 1.5 23 19 17 16 18 15 2.5 30 27 25 25 25 21 4 41 38 35 30 32 27 6 50 46 42 40 40 34 10 80 70 60 50 55 50 16 100 85 80 75 80 70 25 140 115 100 90 100 85 35 170 135 125 115 125 100 50 215 185 170 150 160 135 Провода с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами
Сечение токопроводящей жилы, мм² Сила тока, А, для проводов, проложенных открыто в одной трубе два одножильных три одножильных четыре одножильных один двухжильный один трехжильный 2.5 24 20 19 19 19 16 4 32 28 28 23 25 21 6 39 36 32 30 31 26 10 60 50 47 39 42 38 16 76 60 60 55 60 55 25 105 85 80 70 75 65 35 130 100 95 85 95 75 50 165 140 130 120 125 105 Провода с медными жилами с резиновой изоляцией, в металлических защитных оболочках и кабели с медными жилами с резиновой изоляцией в поливинилхлоридной наиритовой или резиновой оболочках, бронированные и небронированные
Сечение токопроводящей жилы, мм² Сила тока, А, на кабели одножильные двухжильные трехжильные при прокладке в воэдухе в воэдухе в земле в воэдухе в земле 1.5 23 19 33 19 27 2.5 30 27 44 25 38 4 41 38 55 35 49 6 50 50 70 42 60 10 80 70 105 55 90 16 100 90 135 75 115 25 140 115 175 95 150 35 170 140 210 120 180 50 215 175 265 145 225 Кабели с алюминиевыми жилами с резиновой или пластмассовой изоляцией в поливинилхлоридной и резиновой оболочках, бронированные и небронированные.
Сечение токопроводящей жилы, мм² Сила тока, А, на кабели одножильные двухжильные трехжильные при прокладке в воэдухе в воэдухе в земле в воэдухе в земле 2.5 23 21 34 19 29 4 31 29 42 27 38 6 38 38 55 32 46 10 60 55 80 42 70 16 75 70 105 60 90 25 105 90 135 75 115 35 130 105 160 90 140 50 165 135 205 110 175 Шнуры переносные шланговые легкие и средние, кабели переносные шланговые
сечение токопроводящей жилы, мм² Сила тока, А, на шнуры, провода и кабели одножильные двухжильные трехжильные 0.5 - 12 - 0.75 - 16 14 1 - 18 16 1.5 - 23 20 2.5 40 33 28 4 50 43 36 5 65 55 45 10 90 75 60 16 120 95 80 25 160 125 105 35 190 150 130 50 235 185 160 Токовые нагрузки на кабели и провода
Сечение токопроводящей жилы, мм2 Для проводов, проложенных открыто в одной трубе двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного 0,5 11 - - - - - 0,75 15 - - - - - 1 17 16 15 14 15 14 1,5 23 19 17 16 18 15 2,5 30 27 25 25 25 21 4 41 38 35 30 32 27 6 50 46 42 40 40 34 10 80 70 60 50 55 50 16 100 85 80 75 80 70 25 140 115 100 90 100 85 35 170 135 125 115 125 100 50 215 185 170 150 160 135 70 270 225 210 185 195 175 95 330 275 255 225 245 215 120 385 315 290 260 295 250 Сечение токопроводящей жилы, мм2 Для проводов, проложенных открыто в одной трубе двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного 2,5 24 20 19 19 19 16 4 32 28 28 23 25 21 10 60 50 47 39 42 38 16 75 60 60 55 60 55 25 105 85 80 70 75 65 35 130 100 95 85 95 75 50 165 140 130 120 125 105 70 210 175 165 140 150 135 95 255 215 200 175 190 165 120 295 245 220 200 230 190 Сечение токопроводящей жилы, мм2 Одножильные Двухжильные Трехжильные 0,5 - 12 - 0,75 - 16 14 1,0 - 18 16 1,5 - 23 20 2,5 40 33 28 4 50 43 36 6 65 55 45 10 90 75 60 16 120 95 80 25 160 125 105 35 190 150 130 50 235 185 160 70 290 235 200 Сечение токопроводящей жилы, мм2 Ток Сечение токопроводящей жилы, мм2 Ток Сечение токопроводящей жилы, мм2 Ток 1 20 16 115 120 390 1,5 25 25 150 150 445 2,5 40 35 185 185 505 4 50 50 230 240 590 6 65 70 285 300 670 10 90 95 340 350 745 Сечение токопроводящей жилы, мм2 Для кабелей одножильных до 1 кВ двухжильных до 1 кВ трехжильных напряжением, кВ четырехжильных до 1 кВ доЗ 6 10 6 - 80 70 - - - 10 140 105 95 80 - 85 16 175 140 120 105 95 115 25 235 185 160 135 120 150 35 285 225 190 160 150 175 50 360 270 235 200 180 215 70 440 325 285 245 215 265 95 520 380 340 295 265 310 120 595 435 390 340 310 350 150 675 500 435 390 355 395 185 755 - 490 440 400 450 240 880 - 570 510 460 - 300 1000 - - - - - 400 1220 - - - - - 500 1400 - - - - - 625 1520 - - - - - 800 1700 - - - - - Сечение токопроводящей жилы, мм2 Для кабелей одножильных до 1 кВ двухжильных до 1 кВ трехжильных напряжением, кВ четырехжильных до 1 кВ до 3 6 10 6 - 55 45 - - - 10 95 75 60 55 - 60 16 120 95 80 65 60 80 25 160 130 105 90 85 100 35 200 150 125 110 105 120 50 245 185 155 145 135 145 70 305 225 200 175 165 185 95 360 275 245 215 200 215 120 415 320 285 250 240 260 150 470 375 330 290 270 300 185 525 - 375 325 305 340 240 610 - 430 375 350 - 300 720 - - - - - 400 880 - - - - - 500 1020 - - - - - 625 1180 - - - - - 800 1400 - - - - - Сечение токопроводящей жилы, мм2 Для кабелей одножильных до 1 кВ двухжильных до 1 кВ трехжильных напряжением, кВ четырехжильных до 1 кВ до 3 6 10 6 - 60 55 - - - 10 110 80 75 60 - 65 16 135 110 90 80 75 90 25 180 140 125 105 90 115 35 220 175 145 125 115 135 50 275 210 180 155 140 165 70 340 250 220 190 165 200 95 400 290 260 225 205 240 120 460 335 300 260 240 270 150 520 385 335 300 275 305 185 580 - 380 340 310 345 240 675 - 440 390 355 - 300 770 - - - - - 400 940 - - - - - 500 1080 - - - - - 625 1170 - - - - - 800 1310 - - - - - Сечение токопроводящеи жилы, мм2 Для кабелей одножильных до 1 кВ двухжильных до 1 кВ трехжильных напряжением, кВ четырехжильных до 1 кВ до З 6 10 6 - 42 35 - - - 10 75 55 46 42 - 45 16 90 75 60 50 46 60 25 125 100 80 70 65 75 35 155 115 95 85 80 95 50 190 140 120 110 105 110 70 235 175 155 135 130 140 95 275 210 190 165 155 165 120 320 245 220 190 185 200 150 360 290 255 225 210 230 185 405 - 290 250 235 260 240 470 - 330 290 270 - 300 555 - - - - - 400 675 - - - - - 500 785 - - - - - 625 910 - - - - - 800 1080 - - - - - Номинальное сечение жилы, мм2 Одножильных Двухжильных Трехжильных на воздухе в земле на воздухе в земле на воздухе в земле 1,5 29 32 24 33 21 28 2,5 40 42 33 44 28 37 4 53 54 44 56 37 48 6 67 67 56 71 49 58 10 91 89 75 94 66 77 16 121 116 101 123 87 100 25 160 148 134 157 115 130 35 197 178 166 190 141 158 50 247 217 208 230 177 192 70 318 265 - - 226 237 95 386 314 - - 274 280 120 450 358 - - 321 321 150 521 406 - - 370 363 185 594 455 - - 421 406 240 704 525 - - 499 468 Номинальное сечение жилы, мм2 Одножильных Двухжильных Трехжильных на воздухе в земле на воздухе в земле на воздухе в земле 2,5 30 32 25 33 21 28 4 40 41 34 43 29 37 6 51 52 43 54 37 44 10 69 68 58 72 50 59 16 93 83 77 94 67 77 25 122 113 103 120 88 100 35 151 136 127 145 109 121 50 189 166 159 176 136 147 70 233 200 - - 167 178 95 284 237 - - 204 212 120 330 269 - - 236 241 150 380 305 - - 273 274 185 436 343 - - 313 308 240 515 396 - - 369 355 Номинальное сечение жилы, мм2 С алюминиевой жилой С медной жилой на воздухе в земле на воздухе в земле 10 50 55 65 70 16 65 70 85 92 25 85 90 110 122 5 105 110 135 147 50 125 130 165 175 70 155 160 210 215 95 190 195 255 260 120 220 220 300 295 150 250 250 335 335 185 290 285 285 380 240 345 335 460 445 1.4. ДОПУСТИМЫЕ ТОКОВЫЕ НАГРУЗКИ НА УСТАНОВОЧНЫЕ, МОНТАЖНЫЕ ПРОВОДА И КАБЕЛИ И СОЕДИНИТЕЛЬНЫЕ ШНУРЫ
Сечение жилы, мм2 Допустимые токовые нагрузки, А Провода проложены открыто Провода проложены в одной трубе Два одножильных Три обножильных Четыре одножильных Один двужильный Один трехжильный 0,5 11 - - - - - 0,75 15 - - - - - 1 17 16 15 14 15 14 1,5 23 19 17 16 18 15 2,5 30 27 25 25 25 21 4 41 38 35 30 32 27 6 50 46 42 40 40 34 10 80 70 60 50 55 50 16 100 85 80 75 80 70 25 140 115 100 90 100 85 35 170 135 12550 115 125 100 50 215 185 170 150 160 135 70 270 225 210 185 195 175 95 330 275 255 225 245 215 120 385 315 290 260 295 250 Сечение токопроводящей жилы, мм2 Допустимые токовые нагрузки, А Провода, проложенные открыто Провода, проложенные в трубе два одножильных три одножильных четыре одножильных 2 21 19 18 15 2,5 24 20 19 19 3 27 24 22 21 4 32 28 28 23 4 36 32 30 27 6 39 36 32 30 8 46 43 40 37 10 60 50 47 39 16 75 60 60 55 25 105 85 80 70 35 130 100 95 85 50 165 140 130 120 70 210 175 165 140 95 255 215 200 175 120 295 245 220 200 Сечение жилы, мм2 Допуcтимые токовые нагрузки, А Одножильных Двухжильных Трехжильных 0,5 - 12 - 0,75 - 16 14 1,0 - 18 16 1,5 - 23 20 2,5 40 33 28 4 50 43 36 6 65 55 45 10 90 75 60 16 120 95 80 25 160 125 105 35 235 185 160 50 235 185 160 70 290 235 200 Рис.1.13. Провод ВПП. Рис.1.14. Шнур ШБРО. Рис.1.15. Шнур ШБПВ. Рис.1.16. Провод ПБПП. Рис.1.17. Провод ПВВТ. Рис.1.18. Шнур ШВП-2. Рис.1.19. Шнур ШРО. Рис.1.20. Провода АПВ, ПВ3, АППВ. Рис.1.21. Шнур ШВВП и провод ПРС. Допустимые токовые нагрузки
ндартная площадь сечения провода, мм2 Медные изолированные провода Алюминиевые изолированные провода Неизолированные провода вне помещения Открытая проводка Три провода в трубе Открытая проводка Три провода в трубе Медные марки М Алюминиевые марки А Стальные марки ПО 0,5 11 • • • • • • 0,75 15 • • • • • • 1,0 17 15 • • • • • Стандартная площадь сечения провода, мм2 Медные изолированные провода Алюминиевые изолированные провода Неизолированные провода вне помещения Открытая проводка Три провода в трубе Открытая проводка Три провода в трубе Медные марки М Алюминиевые марки А Стальные марки ПО 1.5 23 17 - - - - — 2,5 30 24 24 19 • • 4,0 41 35 32 28 50 • 6,0 50 42 39 32 70 - - 10,0 80 60 55 47 95 - - 16 100 80 80 60 130 105 • 25 140 100 105 80 180 135 60 35 170 125 130 95 220 170 75 50 215 170 165 130 270 215 90 70 270 210 210 165 340 265 125 95 330 225 225 200 415 320 135 120 385 290 295 220 485 375 • Сечение токопрово- дящей жилы, мм2 Провода, проложенные в одной трубе Провода, проложенные открыто Два одножильных Три одножильных Четыре одножильных Один двухжильный Один трех-жильный 2,0 21 19 18 15 17 14 2,5 24 20 19 19 19 16 3 27 24 22 21 22 18 4 32 28 28 23 25 21 5 36 32 30 27 28 24 6 39 36 32 30 31 26 со 46 43 40 37 38 32 10 60 50 47 39 42 38 Сечение токопро-водящей жилы, мм2 Провода и кабели _ Одножильные Двухжильные Трехжильные__ При прокладке _____ в воздухе в воздухе в земле в воздухе в земле 1 2 3 4 5 6 1,5 23 19 33 19 27 Сечение токопро-водящей жилы, мм2 Провода и кабели Одножильные Двухжильные Трехжильные При прокладке в воздухе в воздухе в земле в воздухе в земле 2,5 30 27 44 25 38 4 41 38 55 35 49 6 50 50 70 42 60 10 80 70 105 55 90 Сечение токопрово- дящей жилы, мм2 Провода, проложенные в одной трубе Провода, проложенные открыто Два одножильных Три одножильных Четыре одножильных Один двухжильный Один трех-жильный 0,5 11 • - • • - 0,75 15 • - • • 1 17 16 15 14 15 14 1,2 20 18 16 15 16 14,5 1.5 23 19 17 16 18 15 2,0 26 24 22 20 23 19 2,5 30 27 25 25 25 21 3 34 32 28 26 28 24 4 41 38 35 30 32 27 5 46 42 39 34 37 31 6 50 46 42 40 40 34 со 62 54 51 46 48 43 10 80 70 60 50 55 50 Сечение токопро-водящей жилы, мм2 Провода и кабели Одножильные Двухжильные Трехжильные При прокладке в воздухе в воздухе в земле в воздухе в земле 1 2 3 4 5 6 2,5 23 21 34 19 29 4 31 29 42 27 38 6 38 38 55 32 46 10 60 55 80 42 70 Длительно допустимые токовые нагрузки кабелей
Значения токов нагрузки приведены для температуры окружающего воздуха +25°Си земли +15°С для усредненных условий прокладки.
Поправочные коэффициенты, учитывающие зависимость тока нагрузкиот температуры окружающей среды
Поправочные коэффициенты на токовые нагрузки к табл. 12, 13
Таблицы токовых нагрузок
Провода с резиновой и полихлорвиниловой изоляцией с медными жилами
Сечение токопроводящей жилы, мм² Сила тока, А, для проводов, проложенных открыто в одной трубе два одножильных три одножильных четыре одножильных один двухжильный один трехжильный 0.5 11 - - - - - 0.75 15 - - - - - 1 17 16 15 14 15 14 1.5 23 19 17 16 18 15 2.5 30 27 25 25 25 21 4 41 38 35 30 32 27 6 50 46 42 40 40 34 10 80 70 60 50 55 50 16 100 85 80 75 80 70 25 140 115 100 90 100 85 35 170 135 125 115 125 100 50 215 185 170 150 160 135 Провода с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами
Сечение токопроводящей жилы, мм² Сила тока, А, для проводов, проложенных открыто в одной трубе два одножильных три одножильных четыре одножильных один двухжильный один трехжильный 2.5 24 20 19 19 19 16 4 32 28 28 23 25 21 6 39 36 32 30 31 26 10 60 50 47 39 42 38 16 76 60 60 55 60 55 25 105 85 80 70 75 65 35 130 100 95 85 95 75 50 165 140 130 120 125 105 Провода с медными жилами с резиновой изоляцией, в металлических защитных оболочках и кабели с медными жилами с резиновой изоляцией в поливинилхлоридной наиритовой или резиновой оболочках, бронированные и небронированные
Сечение токопроводящей жилы, мм² Сила тока, А, на кабели одножильные двухжильные трехжильные при прокладке в воэдухе в воэдухе в земле в воэдухе в земле 1.5 23 19 33 19 27 2.5 30 27 44 25 38 4 41 38 55 35 49 6 50 50 70 42 60 10 80 70 105 55 90 16 100 90 135 75 115 25 140 115 175 95 150 35 170 140 210 120 180 50 215 175 265 145 225 Кабели с алюминиевыми жилами с резиновой или пластмассовой изоляцией в поливинилхлоридной и резиновой оболочках, бронированные и небронированные.
Сечение токопроводящей жилы, мм² Сила тока, А, на кабели одножильные двухжильные трехжильные при прокладке в воэдухе в воэдухе в земле в воэдухе в земле 2.5 23 21 34 19 29 4 31 29 42 27 38 6 38 38 55 32 46 10 60 55 80 42 70 16 75 70 105 60 90 25 105 90 135 75 115 35 130 105 160 90 140 50 165 135 205 110 175 Шнуры переносные шланговые легкие и средние, кабели переносные шланговые
сечение токопроводящей жилы, мм² Сила тока, А, на шнуры, провода и кабели одножильные двухжильные трехжильные 0.5 - 12 - 0.75 - 16 14 1 - 18 16 1.5 - 23 20 2.5 40 33 28 4 50 43 36 5 65 55 45 10 90 75 60 16 120 95 80 25 160 125 105 35 190 150 130 50 235 185 160 Допустимые длительные токи для проводов, шнуров и кабелей с резиновой или пластмассовой изоляцией
1.3.10. Допустимые длительные токи для проводов с резиновой или поливинилхлоридной изоляцией, шнуров с резиновой изоляцией и кабелей с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках приведены в табл. 1.3.4 - 1.3.11. Они приняты для температур: жил +65, окружающего воздуха +25 и земли +15 º С. Ток*, А, для проводов и кабелей Ток*, А, для шнуров, проводов и кабелей Ток*, А, для кабелей напряжением, кВ Ток*, А, для кабелей напряжением, кВ ПУЭ 7. Правила устройства электроустановок. Издание 7
Допустимые токовые нагрузки кабелей | Проектирование электроснабжения
Советую почитать:
Поделиться с друзьями: