Диоды как проверить тестером: Проверка диодов | Fluke

Содержание

Как проверить диод тестером

Диоды Шоттки благодаря своему быстродействию зачастую используются в импульсных стабилизаторах, а также в выпрямителях блоках питания ПК. Проверка на исправность диода Шоттки ничем особо не отличается от проверки самого обычного диода, она проводиться по единому принципу. Единственным моментом будет, который нужно учесть, что диоды Шоттки, используемые в хороших и качественных блоках питания зачастую встречаются сдвоенными в общий корпус и имеют общий катод. И так, сегодня мы расскажем вам, как проверить диод Шоттки мультиметром и выявить все его дефекты? Этот диод от блока питания ПК, рассчитан производителем до 45 В , 30 А.




Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Как проверить различные типы диодов тестером — полная инструкция
  • Как проверить светодиод, приставка к мультиметру
  • Как проверить диод и светодиод мультиметром
  • Проверка диодов мультиметром
  • Назначение диода
  • Как проверить исправность светодиода мультиметром
  • Как проверить диод мультиметром. Подробная инструкция
  • Как проверить диод?
  • Простой способ проверки светодиода без выпаивания из схемы. Проверка диода мультиметром на плате

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Как проверить диод мультиметром?

Как проверить различные типы диодов тестером — полная инструкция



В процессе ремонта бытовой техники или других электронных устройств: монитора, принтера, микроволновки, блока питания компьютера или автомобильного генератора например, Valeo, БОШ или БПВ и т.

Расскажем подробно про тестирование диодов. Учитывая разнообразие этих радиоэлементов, единой методики проверки их работоспособности не существует. Соответственно, для каждого класса есть свой способ тестирования. Рассмотрим, как проверить диод шоттки, фотодиод, высокочастотный, двунаправленный и т. Что касается приборов для тестирования, мы не станем рассматривать экзотические способы проверки например, батарейку и лампочку , а будем пользоваться мультиметром подойдет даже такая простая модель, как DTb или тестером.

Эти приборы практически всегда есть дома у радиолюбителя. В некоторых случаях потребуется собрать несложную схему для тестирования. Начнем с классификации.

Диоды относятся к простым полупроводниковым радиоэлементам на основе p-n перехода. На рисунке представлено графическое обозначение наиболее распространенных типов этих устройств. Защитный диод, а также выпрямительный включая силовой или шоттки можно проверить при помощи мультиметра или воспользоваться омметром , для этого переводим прибор в режим прозвонки так, как это показано на фотографии. Щупы измерительного прибора присоединяем к выводам радиоэлемента. После того, как меняем полярность, прибор должен показать бесконечно большое сопротивление.

В этом случае можно констатировать исправность элемента. Заметим, данную методику проверки можно использовать для тестирования диодов на генераторе автомобиля. Тестирование стабилитрона осуществляется по сходному принципу, правда, такая проверка не позволяет определить, осуществляется ли стабилизация напряжения на заданном уровне.

Поэтому нам потребуется собрать простую схему. В отличие от обычных диодов, у варикапов p-n переход обладает непостоянной емкостью, величина которой пропорциональна обратному напряжению. Проверка на обрыв или замыкание для этих элементов осуществляется также, как у обычных диодов. Для проверки емкости потребуется мультиметр, у которого есть подобная функция. Для тестирования потребуется установить соответствующий режим мультиметра, как показано на фото А и вставить деталь в разъем для конденсаторов.

Как правильно заметил один из комментаторов данной статьи, действительно, определить емкость варикапа, не оперируя номинальным напряжением невозможно. Устройство требует настройки. Она довольно проста, собранное устройство, подключается к измерительному прибору мультиметр с функцией измерения емкости. Питание должно подаваться со стабилизированного источника питания важно с напряжением 9 вольт например, батарея Крона. Меняя емкость подстрочного конденсатора С2 добиваемся показания на индикаторе пФ.

Это значение мы будем вычитать от показания прибора. Данные элементы бывают двух типов: симметричные и несимметричные. Первые используются в цепях переменного тока, вторые — постоянного. Если кратко объяснить принцип действия такого диода, то он следующий:.

В результате увеличивается сила тока в цепи, что вызывает срабатывание предохранителя. Преимущество устройства заключается в быстроте реакции, что позволяет принять на себя переизбыток напряжения и защитить устройство. Скорость срабатывания — главное достоинство защитного TVS диода. Теперь о проверке. Она ничем не отличается от обычного диода. Но, проверка работоспособности скатывается к обычной прозвонке.

Создание условий срабатывания приводит к выходу элемента из строя. Другими словами, способа проверки защитных функций TVS-диода нет, это как проверить спичку годная она или нет пытаясь поджечь.

Проверить высоковольтный диод СВЧ печи тем же способом, что и обычный, не получится, в виду его особенностей. Для тестирования этого элемента, понадобится собрать схему показанную на рисунке ниже , подключенную к блоку питания вольт. Напряжения вольт будет достаточно для поверки большинства элементов данного типа, методика тестирования — как у обычных диодов.

Величина сопротивления R должна быть в пределах от 2кОм до 3,6кОм. Учитывая, что ток, протекающий через диод, зависит от напряжения, приложенного к нему, тестирование заключается в анализе этой зависимости. Для этого потребуется собрать схему, например, такую, как показана на рисунке. Диапазон измерений, выставленный на мультиметре ,не должен быть меньше тока максимума диода, этот параметр указан в даташит datasheet радиоэлемента. Видео: Пример проверки диода мультиметром.

Если элемент исправен, в процессе измерения прибор покажет увеличение тока до I max диода, после чего последует резкое уменьшение этой величины. При дальнейшем повышении напряжения ток уменьшится до I min , после чего снова начнет расти.

Проверка светодиодов практически ничем не отличается от тестирования выпрямительных диодов. Как это делать, было описано выше. Светодиодную ленту точнее ее smd элементы , инфракрасный светодиод, а также лазерный, проверяем по той же методике. К сожалению, мощный радиоэлемент данной группы, у которого повышенное рабочее напряжение, проверить указанным способом не получится.

В этом случае дополнительно понадобится стабилизированный источник питания. Алгоритм тестирования следующий:. При простой проверке измеряется обратное и прямое сопротивление помещенного под источник света радиоэлемента, после чего его затемняют и повторяют процедуру.

Для более точного тестирования потребуется снять вольтамперную характеристику, сделать это можно при помощи несложной схемы.

Для засветки фотодиода в процессе тестирования можно использовать в качестве источника освещения лампу накаливания мощностью от 60Вт или поднести радиодеталь к люстре. У фотодиодов иногда встречается характерный дефект, который проявляется в виде хаотического изменения тока. Если в процессе тестирования уровень тока будет оставаться неизменным, значит, фотодиод можно считать рабочим.

Как показывает практика, протестировать диод не выпаивая, когда он находится на плате, как и другие радиодетали например, транзистор, конденсатор, тиристор и т. Это связано с тем, что элементы в цепи могут давать погрешность. Поэтому перед тем, как проверить диод, его необходимо выпаять. К проверке супрессоров — эти элементы одноразовые?.

Я правильно понял?. Если обнаружен сгоревший предохранитель нужно менять защитный диод?. Искать есть-ли он в схеме?. Пожалуйста, поделитесь знаниями и опытом. Если супрессор вышел со строя по причине превышения уровня напряжения, то, как и предохранитель, он является одноразовым прибором.

Поэтому после такой реакции на превышение электрического импульса его смело можно выбрасывать и заменять на новый. По поводу проверки супрессора, то она выполняется в том же порядке, что и для обычного диода. При помощи тестера вы прикладываете номинальное значение напряжение к контактам в прямой и обратной последовательности.

Если в прямом положении анод — катод вы видите конкретную величину сопротивления, а в обратном сопротивление стремиться к бесконечности, значит ваш супрессор годен. В случае если в обратном положении сопротивление не стремиться к бесконечности, а представляет собой определенную величину, соизмеримую с величиной сопротивления в прямом положении щупов, то устройство считается негодным.

Следует отметить, что проверить срабатывание супрессора вы не можете, так как при этом произойдет и его окончательный выход со строя. Поэтому экспериментировать с напряжением более номинального не стоит. Доброго времени! Я тут в инете наковырял схемку высовольтного преобразователя, с небольшой доработкой, и собрал уже её, работает хорошо. Регулируемое напряжение вольт. Задумка была сделать для проверки высоковольтных транзисторов полевых, ИЖБТ, диодов.

Проверить мы эти детали можем и мультиметром, и под нагрузкой, но на не больших напряжениях. У меня есть самодельный приборчик проверки как открывается транзистор под нагрузкой, так вот я к чему, если кому интересно могу показать схемку, питается от кроны на 9 вольт, маленький, можно на рынке при покупке детали проверить.

Схема снятия вольт-амперной характеристики фотодиода не верна! Верхний вывод потенциометра не должен соединяться со средним. Емкость варикапа измеряют при подаче на него номинального напряжения в обратном направлении и не мультиметром. Начнем с конца: По варикапу. Во первых мы не измеряем его емкость, а проверяем работоспособность. Для точного измерения емкости потребуется собрать небольшую схему. Описанной методики вполне достаточно для определения годен-негоден. В схеме фотодиод включен в запирающем направлении, следовательно, амперметр покажет прямой ток только при пробитом диоде, либо обратный, если позучесть имеет место.

Соответственно, если все ок, прибор ничего не покажет. А по поводу схемы вольт-амперной характеристики, таки да. Есть моя ошибка. Я её устранил и обновил схему.

Смотрите, пожалуйста. Я отразил в соответствующем дополнительном подзаголовке в статье, все что знаю про проверку TVS диода. Понравилась статья? Поделиться с друзьями:. Вам также может быть интересно.

Как проверить светодиод, приставка к мультиметру

Как и большинство измерительных приборов, мультиметры тестеры делятся на аналоговые и цифровые. Основное их отличие состоит в том, что информация о результатах измерений первой разновидности передаются с помощью определенной шкалы и стрелок на ней, во втором же случае эти данные отображаются в цифровом виде, на жидкокристаллическом экране. Аналоговые устройства появились ранее, их главным достоинством является невысокая цена, а недостатком — неточности измерений. Следовательно, если отметка должна быть максимально верна, рекомендуется приобрести цифровой мультиметр.

Узнайте, что такое проверка диода и в чем заключается ее особенность. Выясните, каким прибором производится измерение и можно ли дать оценку .

Как проверить диод и светодиод мультиметром

Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром. Полупроводниковый диод — это электронный прибор, который обладает свойством однонаправленной проводимости. У диода имеется два вывода. Один называется катодом, он является отрицательным. Другой вывод — анод. Он является положительным. Напомню, что у полупроводниковых приборов p-n переходов может быть несколько. Например, у динистора их три!

Проверка диодов мультиметром

И для любителей, и для профессионалов электроники очень важным умением является способность определить полярность где катод, а где анод и работоспособность диода. Так как мы знаем, что диод, по сути, является не более, чем односторонним клапаном для электричества, то вероятно, мы можем проверить его однонаправленный характер с помощью омметра, измеряющего сопротивление по постоянному току питающегося от батареи , как показано на рисунке ниже. При подключении диода одним способом мультиметр должен показать очень низкое сопротивление на рисунке a. При подключении диода другим способом мультиметр должен показать очень большое сопротивление на рисунке b некоторые модели цифровых мультиметров в этом случае показывают «OL».

Светодиод — полупроводниковый прибор, по своей структуре напоминающий обычный диод.

Назначение диода

Назначение диода — проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом. На рисунке показано условное обозначение диода на схеме.

Как проверить исправность светодиода мультиметром

Проверить работоспособность светодиода возможно с помощью такого прибора, как мультиметр. Цифровой мультиметр или тестер — это многофункциональное измирительное устройство. Работоспособность светодиода проверяется с помощью функционала любого мультиметра. Поломка светодиода довольно распространённая причина выхода из строя целого ряда электроприборов. Проверку исправности этого компонента можно провести и самостоятельно, но при этом необходимо иметь в наличии мультиметр.

Как проверить диод мультиметром? современных цифровых мультиметров (тестеров) в функционале присутствует возможность проверки диода.

Как проверить диод мультиметром. Подробная инструкция

Диод полупроводникового типа относится к тем электронным приборам, которым свойственна проводимость только в одну сторону. Пользователи часто сталкиваются с вопросом, как проверить диод. Для того чтобы проверить, нормально ли диод функционирует, лучше всего воспользоваться методом контроля его состояния при помощи цифрового мультиметра. У всех диодов есть два выхода.

Как проверить диод?

ВИДЕО ПО ТЕМЕ: Как проверить диод с помощью тестера. Немного о структуре и назначении диодов.

Печально, но начинать нужно с теории. Придётся изучить виды диодов, область и цели применения. Не углубляясь в физические основы электроники, пробежимся по поисковым запросам. Важно понимать, что все диоды объединяет способность пропускать ток в одном направлении, блокируя движение частиц противоположном, образуя своеобразные вентили. Затем обсудим, как проверить мультиметром диод. Итак, диоды пропускают ток в прямом направлении и блокируют в обратном.

Как проверить диод и светодиод мультиметром? Оказывается, все очень просто.

Простой способ проверки светодиода без выпаивания из схемы. Проверка диода мультиметром на плате

Светоизлучающие диоды нашли широкое применение в современных осветительных приборах. Это обусловлено их экономичностью и высокой надежностью по сравнению с обычными электролампами. Тем не менее, LED-элементы не застрахованы от неисправностей. Проверить их работоспособность можно различными способами, но наиболее точным и простым методом является проверка с помощью тестера. В этой статье мы поговорим о том, как проверить светодиод мультиметром, и каковы особенности этой процедуры.

Как и большинство измерительных приборов, мультиметры тестеры делятся на аналоговые и цифровые. Основное их отличие состоит в том, что информация о результатах измерений первой разновидности передаются с помощью определенной шкалы и стрелок на ней, во втором же случае эти данные отображаются в цифровом виде, на жидкокристаллическом экране. Аналоговые устройства появились ранее, их главным достоинством является невысокая цена, а недостатком — неточности измерений.



Как проверить диод шоттки тестером

Содержание

  1. Конструкция
  2. Миниатюризация
  3. Использование на практике
  4. Тестирование и взаимозаменяемость
  5. Проверка диода цифровым мультиметром
  6. Проверка диода.
  7. Неисправности диода.
  8. Виды диодов и их предназначение
  9. Определение типа элемента
  10. Применение тестера
  11. Методика проверки
  12. Стабилитроны
  13. Без выпаивания

Развитие электроники требует все более высоких стандартов от радиодеталей. Для работы на высоких частотах используют диод Шоттки, который по своим параметрам превосходит кремниевые аналоги. Иногда можно встретить название диод с барьером Шоттки, что в принципе означает то же самое.

  • Конструкция
  • Миниатюризация
  • Использование на практике
  • Тестирование и взаимозаменяемость

Конструкция

Отличается диод Шоттки от обыкновенных диодов своей конструкцией, в которой используется металл-полупроводник, а не p-n переход. Понятно, что свойства здесь разные, а значит, и характеристики тоже должны отличаться.

Действительно, металл-полупроводник обладает такими параметрами:

  • Имеет большое значение тока утечки;
  • Невысокое падение напряжения на переходе при прямом включении;
  • Восстанавливает заряд очень быстро, так как имеет низкое его значение.

Диод Шоттки изготавливается из таких материалов, как арсенид галлия, кремний; намного реже, но также может использоваться – германий. Выбор материала зависит от свойств, которые нужно получить, однако в любом случае максимальное обратное напряжение, на которое могут изготавливаться данные полупроводники, не выше 1200 вольт – это самые высоковольтные выпрямители. На практике же намного чаще их используют при более низком напряжении – 3, 5, 10 вольт.

На принципиальной схеме диод Шоттки обозначается таким образом:

Но иногда можно увидеть и такое обозначение:

Это означает сдвоенный элемент: два диода в одном корпусе с общим анодом или катодом, поэтому элемент имеет три вывода. В блоках питания используют такие конструкции с общим катодом, их удобно использовать в схемах выпрямителей. Часто на схемах рисуется маркировка обычного диода, но в описании указывается, что это Шоттки, поэтому нужно быть внимательными.

Диодные сборки с барьером Шоттки выпускаются трех типов:

1 тип – с общим катодом;

2 тип – с общим анодом;

3 тип – по схеме удвоения.

Такое соединение помогает увеличить надежность элемента: ведь находясь в одном корпусе, они имеют одинаковый температурный режим, что важно, если нужны мощные выпрямители, например, на 10 ампер.

Но есть и минусы. Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а.

Еще один главный недостаток: для этих приборов нельзя превышать обратный ток даже на мгновение. Они тут же выходят из строя, в то время как кремниевые диоды, если не была превышена их температура, восстанавливают свои свойства.

Но положительного все-таки больше. Кроме низкого падения напряжения, диод Шоттки имеет низкое значение емкости перехода. Как известно: ниже емкость – выше частота. Такой диод нашел применение в импульсных блоках питания, выпрямителях и других схемах, с частотами в несколько сотен килогерц.

Вольтамперная характеристика светодиода (ВАХ)

ВАХ такого диода имеет несимметричный вид. Когда приложено прямое напряжение, видно, что ток растет по экспоненте, а при обратном – ток от напряжения не зависит.

Все это объясняется, если знать, что принцип работы этого полупроводника основан на движении основных носителей – электронов. По этой же самой причине эти приборы и являются такими быстродействующими: у них отсутствуют рекомбинационные процессы, свойственные приборам с p-n переходами. Для всех приборов, имеющих барьерную структуру, свойственна несимметричность ВАХ, ведь именно количеством носителей электрического заряда обусловлена зависимость тока от напряжения.

Миниатюризация

С развитием микроэлектроники стали широко применяться специальные микросхемы, однокристальные микропроцессоры. Все это не исключает использования навесных элементов. Однако если для этой цели использовать радиоэлементы обычных размеров, то это сведет на нет всю идею миниатюризации в целом. Поэтому были разработаны бескорпусные элементы – smd компоненты, которые в 10 и более раз меньше обычных деталей. ВАХ таких компонентов ничем не отличается от ВАХ обычных приборов, а их уменьшенные размеры позволяют использовать такие запчасти в различных микросборках.

Компоненты smd имеют несколько типоразмеров. Для ручной пайки подходят smd размера 1206. Они имеют размер 3,2 на 1,6 мм, что позволяет их впаивать самостоятельно. Другие элементы smd более миниатюрные, собираются на заводе специальным оборудованием, и самому, в домашних условиях, их паять невозможно.

Принцип работы smd компонента также не отличается от его большого аналога, и если, к примеру, рассматривать ВАХ диода, то она в одинаковой степени будет подходить для полупроводников любого размера. По току изготавливаются от 1 до 10 ампер. Маркировка на корпусе часто состоит из цифрового кода, расшифровка которого приводится в специальных таблицах. Протестировать на пригодность их можно тестером, как и большие аналоги.

Использование на практике

Выпрямители Шоттки используется в импульсных блоках питания, стабилизаторах напряжения, импульсных выпрямителях. Самыми требовательными по току – 10а и более – это напряжения 3,3 и 5 вольт. Именно в таких цепях вторичного питания приборы Шоттки используют чаще всего. Для усиления значений по току их включают вместе по схеме с общим анодом или катодом. Если каждый из сдвоенных диодов будет на 10 ампер, то получится значительный запас прочности.

Одна из самых частых неисправностей импульсных модулей питания – выход из строя этих самых диодов. Как правило, они либо полностью пробиваются, либо дают утечку. В обоих случаях неисправный диод нужно заменить, после чего проверить мультиметром силовые транзисторы, а также замерить напряжения питания.

Тестирование и взаимозаменяемость

Проверить выпрямители Шоттки можно так же, как и обычные полупроводники, так как они имеют похожие характеристики. Мультиметром необходимо прозвонить его в обе стороны – он должен показать себя так же, как и обычный диод: анод-катод, при этом утечек быть не должно. Если он показывает даже незначительное сопротивление – 2–10 килоом, это уже повод для подозрений.

Проверка диода Шоттки мультиметром

Диод с общим анодом или катодом можно проверить как два обычных полупроводника, соединенных вместе. Например, если анод общий, то это будет одна ножка из трех. На анод ставим один щуп тестера, другие ножки – это разные диоды, на них ставится другой щуп.

Можно ли его заменить на другой тип? В некоторых случаях диоды Шоттки меняют на обычные германиевые. К примеру, Д305 при токе 10 ампер давал падение всего 0,3 вольта, а при токах 2–3 ампера их вообще можно ставить без радиаторов. Но главная цель установки Шоттки – это не малое падение, а низкая емкость, поэтому заменить получится не всегда.

Как видим, электроника не стоит на месте, и дальнейшие варианты применения быстродействующих приборов будет только увеличиваться, давая возможность разрабатывать новые, более сложные системы.

Проверка диода цифровым мультиметром

Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром.

Но для начала вспомним, что представляет собой полупроводниковый диод.

Полупроводниковый диод – это электронный прибор, который обладает свойством однонаправленной проводимости.

У диода имеется два вывода. Один называется катодом, он является отрицательным. Другой вывод – анод. Он является положительным.

На физическом уровне диод представляет собой один p-n переход.

Напомню, что у полупроводниковых приборов p-n переходов может быть несколько. Например, у динистора их три! А полупроводниковый диод, по сути является самым простым электронным прибором на основе всего лишь одного p-n перехода.

Запомним, что рабочие свойства диода проявляются только при прямом включении. Что значит прямое включение? А это означает, что к выводу анода приложено положительное напряжение ( +), а к катоду – отрицательное, т.е. (). В таком случае диод открывается и через его p-n переход начинает течь ток.

При обратном включении, когда к аноду приложено отрицательное напряжение (), а к катоду положительное ( +), то диод закрыт и не пропускает ток.

Так будет продолжаться до тех пор, пока напряжение на обратно включённом диоде не достигнет критического, после которого происходит повреждение полупроводникового кристалла. В этом и заключается основное свойство диода – односторонняя проводимость.

У подавляющего большинства современных цифровых мультиметров (тестеров) в функционале присутствует возможность проверки диода. Эту функцию также можно использовать для проверки биполярных транзисторов. Обозначается она в виде условного обозначения диода рядом с разметкой переключателя режимов мультиметра.

Небольшое примечание! Стоит понимать, что при проверке диодов в прямом включении на дисплее показывается не сопротивление перехода, как многие думают, а его пороговое напряжение! Его ещё называют падением напряжения на p-n переходе. Это напряжение, при превышении которого p-n переход полностью открывается и начинает пропускать ток. Если проводить аналогию, то это величина усилия, направленного на то, чтобы открыть «дверь» для электронов. Это напряжение лежит в пределах 100 – 1000 милливольт (mV). Его то и показывает дисплей прибора.

В обратном включении, когда к аноду подключен минусовой () вывод тестера, а к катоду плюсовой ( +), то на дисплее не должно показываться никаких значений. Это свидетельствует о том, что переход исправен и в обратном направлении ток не пропускает.

В документации (даташитах) на импортные диоды пороговое напряжение именуется как Forward Voltage Drop (сокращённо Vf), что дословно переводится как «падение напряжения в прямом включении«.

Само по себе падение напряжения на p-n переходе нежелательно. Если помножить протекающий через диод ток (прямой ток) на величину падения напряжения, то мы получим ни что иное, как мощность рассеивания – ту мощность, которая бесполезно расходуется на нагрев элемента.

Узнать подробнее о параметрах диода можно здесь.

Проверка диода.

Чтобы было более наглядно, проведём проверку выпрямительного диода 1N5819. Это диод Шоттки. В этом мы скоро убедимся.

Производить проверку будем мультитестером Victor VC9805+. Также для удобства применена беспаечная макетная плата.

Обращаю внимание на то, что во время измерения нельзя держать выводы проверяемого элемента и металлические щупы двумя руками. Это грубая ошибка. В таком случае мы измеряем не только параметры диода, но и сопротивление своего тела. Это может существенно повлиять на результат проверки.

Держать щупы и выводы элемента можно только одной рукой! В таком случае в измерительную цепь включен только сам измерительный прибор и проверяемый элемент. Данная рекомендация справедлива и при измерении сопротивления резисторов, а также при проверке конденсаторов. Не забывайте об этом важном правиле!

Итак, проверим диод в прямом включении. При этом плюсовой щуп ( красный) мультиметра подключаем к аноду диода. Минусовой щуп (чёрный) подключаем к катоду. На фотографии, показанной ранее, видно, что на цилиндрическом корпусе диода нанесено белое кольцо с одного края. Именно с этой стороны у него вывод катода. Таким образом маркируется вывод катода у большинства диодов импортного производства.

Как видим, на дисплее цифрового мультиметра показалось значение порогового напряжения для 1N5819. Так как это диод Шоттки, то его значение невелико – всего 207 милливольт (mV).

Теперь проверим диод в обратном включении. Напоминаем, что в обратном включении диод ток не пропускает. Забегая вперёд, отметим, что и в обратном включении через p-n переход всё-таки протекает небольшой ток. Это так называемый обратный ток (Iобр). Но он настолько мал, что его обычно не учитывают.

Поменяем подключение диода к измерительным щупам мультиметра. Красный щуп подключаем к катоду, а чёрный к аноду.

На дисплее покажется «1» в старшем разряде дисплея. Это свидетельствует о том, что диод не пропускает ток и его сопротивление велико. Таким образом, мы проверили диод 1N5819 и он оказался полностью исправным.

Многие задаются вопросом: «Можно ли проверить диод не выпаивая его из платы?» Да, можно. Но в таком случае необходимо выпаять из платы хотя бы один его вывод. Это нужно сделать для того, чтобы исключить влияние других деталей, которые соединены с проверяемым диодом.

Если этого не сделать, то измерительный ток потечёт через все, в том числе, и через связанные с ним элементы. В результате тестирования показания мультиметра будут неверными!

В некоторых случаях данным правилом можно пренебречь, например, когда чётко видно, что на печатной плате нет таких деталей, которые могут повлиять на результат проверки.

Неисправности диода.

У диода есть две основные неисправности. Это пробой перехода и его обрыв.

Пробой. При пробое диод превращается в обычный проводник и свободно пропускает ток хоть в прямом направлении, хоть в обратном. При этом, как правило, пищит буззер мультиметра, а на дисплее показывается величина сопротивления перехода. Это сопротивление очень мало и составляет несколько ом, а то и вообще равно нулю.

Обрыв. При обрыве диод не пропускает ток ни в прямом, ни в обратном включении. В любом случае на дисплее прибора – «1«. При таком дефекте диод представляет собой изолятор. «Диагноз» – обрыв можно случайно поставить и исправному диоду. Особенно легко это сделать, когда щупы тестера порядком изношены и повреждены. Следите за исправностью измерительных щупов, провода у них ох какие «жиденькие» и при частом использовании легко рвутся.

А теперь пару слов о том, как по значению порогового напряжения (падению напряжения на переходе – Forward Voltage Drop (Vf)) можно ориентировочно судить о типе диода и материале из которого он изготовлен.

Вот небольшая подборка, составленная из конкретных диодов и соответствующих им величин Vf, которые были получены при их тестировании мультиметром. Все диоды были предварительно проверены на исправность.

Определение пригодности радиодеталей – основная процедура, проводимая при ремонте или обслуживании радиоэлектронной аппаратуры. И если с пассивными элементами все более или менее понятно, то активные требуют специальных подходов. Проверить сопротивление резистора или целостность катушки индуктивности не составляет труда.

С активными компонентами дело обстоит немного сложнее. Необходимо отдельно разобраться в том, как проверить диод мультиметром своими руками, учитывая, что это простейший и наиболее часто встречающийся полупроводниковый элемент электронных схем.

Виды диодов и их предназначение

Вкратце можно сказать, что диод представляет собой полупроводниковый компонент электронной схемы, предназначенный для однонаправленного пропускания тока. Другими словами, прибор пропускает ток в одном направлении, запирая его течение в обратном, образуя своеобразный электрический вентиль.

На принципиальных схемах диод обозначается в виде стрелки-указателя, на конце которой изображена черта, означающая запирание. Стрелка указывает направление течения тока. Нужно помнить, что в теоретической физике ток образуют позитивно заряженные частицы. Поэтому для открытия p-n перехода положительный потенциал прикладывают к началу стрелки, а отрицательный к ее концу. При таких условиях через прибор потечет прямой ток.

Рассмотрим наиболее распространенные типы диодов, учитывая, что интерес в плане проверки представляют лишь некоторые, а именно:

  • обычные диоды, созданные на основе p-n перехода;
  • с барьером Шоттки, чаще называемые просто диоды Шоттки;
  • стабилитрон, служащий для стабилизации потенциала и другие виды.

Существует еще множество типов диодов – варикапы, светодиоды или фотодиоды, например. Но ввиду сходности проверки работоспособности или малой распространенности эти устройства здесь не рассматриваются.

Определение типа элемента

Хорошо если размер корпуса позволяет нанести на нем хоть сколько-нибудь понятную маркировку. Но чаще всего диоды настолько малы, что их трудно маркировать даже цветом. В этом случае отличить диод от стабилитрона, например, не представляется возможным, ведь они как близнецы-братья.

В подобных ситуациях поможет лишь принципиальная схема аппарата, из которого извлечен элемент. В соответствии с ней можно определить тип компонента и его марку. Если же отсутствует эта информация, можно попробовать поискать принципиальную схему ремонтируемого аппарата в интернете или сделать фотоснимок элемента и также обратиться в Сеть и провести поиск по изображению.

Проверка диодов мультиметром или другим тестером должна проводиться только после определения их типа и марки, потому что разные виды тестируются по-разному.

Применение тестера

Простейшим, но от этого ничуть не менее эффективным, прибором для тестирования элементов электронных схем, полупроводниковых диодов, в том числе, является тестер радиодеталей. Более того, этот инструмент наиболее распространен в среде радиомастеров по причине неприхотливости, малых массогабаритных параметров и возможности измерения практически любых характеристик радиоэлементов и цепей, важных при ремонте.

Считается, что цифровые мультиметры, благодаря своей точности и удобству в эксплуатации, постепенно вытесняют аналоговые. Однако не стоит грешить на точность старенькой «цешки». В ее состав уже входят микросхемы, а мостовые резисторы имеют погрешность 1-2% (это очень высокая точность даже для интегральных микросхем). Поэтому, чтобы проверить исправность диода или транзистора нет необходимости покупать новый мультиметр, при наличии аналогового.

Цифровая индикация прижилась из-за отсутствия механических узлов в мультиметре. Это повысило его удароустойчивость и срок эксплуатации.

Проверка диодов упростилась и с появлением звукового сигнала, позволяющего даже не обращать внимания на дисплей. В большинстве мультиметров существует специальный режим, позволяющий в прямом и переносном смысле прозвонить диод. Он отмечен на корпусе соответствующим знаком.

Достаточно вставить черный штекер в разъем COM, а красный в разъем измерения сопротивления (Ω), установить переключатель на режиме прозвонки диодов, и можно начинать проверку.

Методика проверки

Проверка диодов мультиметром заключается в выяснении работоспособности их p-n перехода. Вообще, в радиоэлектронике бывают лишь две неисправности. Первая представляет собой разрыв цепи (перегорание), когда ток не течет ни в одном из направлений. Вторая же вызвана коротким замыканием (пробой) электродов, что превращает компонент в кусок обычного провода.

Методика тестирования предельно проста. При соединении анода с плюсовым щупом мультиметра, а катода с минусовым, p-n переход должен быть открыт, следовательно, его сопротивление близко к нулю. Цифровые измерители должны подать характерный сигнал. При обратном подключении p-n переход обязан быть заперт, о чем должно свидетельствовать бесконечное (в теории) его сопротивление. На дисплее цифрового тестера индицируется цифра 1. Так звонится рабочий диод. Если же ток проходит, вне зависимости от полярности подключения, налицо короткое замыкание. В случае когда прибор не звонится ни в ту ни в другую сторону имеет место разрыв.

Нередко можно услышать вопрос о том, как проверить диод Шоттки. Действительно, эти компоненты принципиально отличаются от прочих. Дело в том, что p-n переход даже в открытом состоянии имеет сопротивление, хотя и небольшое. Это, в свою очередь, вызывает потери энергии, рассеиваемые в виде тепла. Для сокращения последних один из полупроводниковых электродов диода был заменен металлом. И хотя ток потерь в этом случае немного увеличивается, но в открытом состоянии сопротивление перехода очень низко, что обуславливает экономичность прибора. В остальном проверка диода Шоттки с использованием мультиметра ничем не отличается от тестирования обычного p-n перехода.

Стабилитроны

Особняком стоит вопрос о проверке стабилитронов. Проверять их по описанной выше методике нет смысла, разве что можно убедиться в целостности p-n перехода. В отличие от обычного выпрямительного диода, стабилитрон использует обратную ветвь вольтамперной характеристики (ВАХ). Поэтому для исследования стабилизирующих свойств рабочую точку нужно сместить именно на этот участок графика.

Для этого используется простенькая схема из источника питания и токоограничительного резистора. В этом случае мультиметром измеряется не сопротивление перехода, а напряжение, при плавном повышении питающего потенциала. Стабилитрон считается рабочим, если при повышении напряжения питания разница потенциалов на его электродах остается постоянной и равной заявленной в документации на прибор.

Без выпаивания

Отдельно нужно рассмотреть вопрос о том, можно ли проводить тестирование мультиметром непосредственно на плате, не выпаивая из нее элемент.
Здесь все зависит от сложности схемы и квалификации мастера. Смонтированное на плате изделие может звониться через обмотки трансформатора, резистивные элементы, сгоревший конденсатор или что-то еще. Поэтому получить более или менее адекватные показатели чаще всего не удается.

Разумеется, если мастер читает принципиальную схему как открытую книгу или «набил руку» на подобных аппаратах, он может оценить работоспособность прибора. Существуют даже методики проверок без демонтажа для автомобильного питания, например.

Но лучше все же выпаивать элемент из схемы. К тому же достаточно «повесить в воздух» только одну ножку изделия, что занимает 2-3 секунды. А после тестирования мультиметром за тот же промежуток времени диод возвращается в первоначальное положение на плате.

Как проверить диод с помощью схемы тестера

, Apichet Garaipoom

Как проверить диод. Вы должны построить схему проверки диодов. Почему? Если вы новичок. Вам нужно это сделать. Обычно вы можете легко проверить его с помощью мультиметра. Но он не может проверить все типы диодов. Например, диод Шоттки. Работает на высокой частоте. Иногда он не может проверить с помощью обычного измерительного прибора.

Схема тестера диодов с использованием 741

Но эту схему можно проверить. Потому что он работает на высокой частоте с генератором внутри. Кроме того, иногда вам нужно протестировать его быстрее. Эта схема может проверить диод хороший или плохой. И может указать свою полярность.

Они используют 741 операционный усилитель и несколько деталей так просто. Два светодиода . Индикатор указывает на проверенный диод.

Как проверить диод

Попробуйте схему

Похожие сообщения

Как проверить диод

Прежде всего, если вы не знаете, как проверить диод с помощью цифрового мультиметра . Вы можете посмотреть это видео.

В любом случае, вам нужно построить эту схему. Это может быть хорошо для вашей работы.

В цепи.

Имеются IC1, R1, R2, R3 и C1, включенные в схему генератора , которая генерирует прямоугольную волну на контакте 6. Этот сигнал будет AC , который представляет собой симметричную форму волны.

Итак, если мы соединим контрольную точку или обе клеммы A и B вместе. Это приводит к тому, что светодиоды LED1 и LED2 будут попеременно мигать ВКЛ и ВЫКЛ.

Потом, если взять диод на клемму А-В.

Катодом к A и анодом к B. Теперь LED1 находится в прямом смещении.

Итак, светодиод 1 загорится, а светодиод 2 погаснет. Потому что это обратное смещение.

Если поставить диод наоборот, то анод к А, а катод к В. Так загорится LED2. но LED1 погаснет.

Указывает, что этот диод исправен.

Но…

В случае отсутствия диода LED1-LED2 погаснут.

Затем, если диод закоротит, загорятся оба светодиода.

Тестер транзисторов
Также эту схему можно использовать для проверки транзисторов, поскольку структура транзисторов имеет состояние, подобное состоянию двух диодов, соединенных вместе, база-коллектор — это один диод, а база-эмиттер — это другой диод.

При проверке того же общего диода, но при проверке между выводом коллектор-эмиттер. Если обычный транзистор, LED1-LED2 должны погаснуть. Но светодиоды загораются, показывая, что между коллектором и эмиттером короткое замыкание, мы не можем использовать этот транзистор.

Как собирать схемы

Эта простая проектная схема может быть собрана на универсальной плате, содержащейся в небольшой коробке. Пытаюсь установить LED1, а LED2 максимально приближен к тестированию. И светодиоды разных цветов, чтобы облегчить наблюдение. 9Аккумулятор на вольт следует использовать нормального типа, потому что эта схема использует низкий ток и, таким образом, экономит ваши деньги.

Попробуйте схему

Например, я попробую схему на макетной плате. Оно работает. Я могу проверить все типы диодов с частотой. Что лучше обычного мультиметра. Подходит для ремонта телевизора и всего.

Примечание: Для обоих светодиодов не требуется токоограничивающий резистор. Потому что он работает с часами пульса переменного тока с Scope. Таким образом, средний ток ниже.


Детали, которые вам понадобятся.

IC1: Операционный усилитель LM741 IC
C1: 0,1 мкФ, 50 В, керамические конденсаторы
R1: 68 K, 1/4 Вт. Допустимое отклонение резисторов: 5 %
R2: 10 K, 1/4 Вт. Допустимое отклонение резисторов: 5 %. в тексте.
PCB, SW1 и т. д.

Блог

— СОВЕТ ЭКСПЕРТА № 5: ПРОВЕРКА/ТЕСТИРОВАНИЕ ДИОДОВ ВЫПРЯМИТЕЛЯ CP

Переключить навигацию

Поиск

Поиск

Расширенный поиск

Все категорииПриборы и испытательное оборудование- Измерители напряжения- Цифровые мультиметры — Общее- Мультиметры CP- Измерители клещевого типа- Оборудование для измерения сопротивления грунта- Измерители изоляции- Прерыватели- Детекторы выходного дня/Короткие локаторы- Регистраторы данных- Геодезическое оборудование- Катушки, трости и оборудование- Локаторы труб и кабелей — Измерители толщины сухого покрытия — Измеритель толщины материала — Проверка покрытия — Тестер электрода сравнения — Источники питания — Измерители толщины мокрого покрытия — Измерители глубины ямы — Приборы для проверки поверхности и загрязнения — Приборы для измерения температуры и влажности — Приборы для проверки адгезии — Детекторы напряжения — CP БезопасностьКатодная защита-Аноды-Ток под давлением- Аноды (гальванические/жертвенные)- Источники питания CP- Соединительные и соединительные коробки- Испытательные станции и маркеры- Анодная засыпка- Сращивание и герметизация кабелей- Электроды сравнения- Защита от перенапряжения- Защита от перенапряжения- Кабель и крепление кабеля — Дистанционные мониторы- Система защиты от переменного токаПокрытия и изоляционные материалы- Покрытия и ленты- Подготовка поверхности- Защита атмосферы- R Защитные экраны — Изолирующие изделия — Распорки, уплотнения и заполнение трубопроводов — Свиньи для очистки трубопроводов. Услуги по установке катодной защиты — Установка анодов в глубоких скважинах — Удаление анодов в глубоких скважинах — Распределенная или обычная установка — Установка системы смягчения переменного тока — Установка испытательной станции — Установка системы резервуаров для воды — Под резервуаром Монтаж системы- Заливка корпусаКатодная защита Инженерные услуги- Инженерные услуги- Технические услуги- Консалтинговые услугиВакансииПродажа

Меню

Счет

Опубликовано в: Советы экспертов

Катодная защита Проблемы с блоком питания или выпрямителем являются причиной отказов системы катодной защиты (CP) в 58% случаев. При поиске и устранении неисправностей неисправного выпрямителя CP наиболее распространенная проблема возникает с блоком выпрямителей. (Причины выхода из строя выпрямителя: Блок диодов выпрямителя – 85 %; Счетчики, выключатели, предохранители – 12 %; Трансформаторы, дроссели – 3 %)

Типы блоков

Обычные выпрямители трансформаторного типа имеют однофазный двухполупериодный блок кремния с ручным управлением ответвлениями. Стеки Selenium требуют другого метода тестирования.

Функции диода

Диод представляет собой электронный «обратный клапан». Это значение позволяет току течь в одном направлении и блокировать его в противоположном направлении. Этот символ является общим символом для диода. Как показано здесь, ток может течь слева направо, но блокируется справа налево.

 

Как проверить диод вне выпрямителя

Большинство цифровых мультиметров (DMM) имеют режим «проверки диода». Она может находиться на циферблате совместно с другой функцией. В функции проверки диода измеритель обеспечивает небольшой фиксированный ток через проверяемый диод. Отображаемое на цифровом мультиметре значение представляет собой падение напряжения на диоде.

  • Убедитесь, что питание выпрямителя выключено, и что используются все меры предосторожности и надлежащие средства индивидуальной защиты.
  • Очень важно, чтобы диод был отключен от цепи, чтобы избежать параллельных токопроводящих дорожек. Для этого может потребоваться отключить один конец диода от цепи. Специальные методы тестирования выпрямительных диодов обсуждаются ниже.
  • Подсоедините измерительные провода цифрового мультиметра к обеим сторонам диода и запишите показания, отображаемые на цифровом мультиметре. Затем поменяйте местами измерительные провода и снова запишите отображаемое измерение.
  • На исправном диоде от 0,450 до 0,800 вольт «падает» в одном направлении и «размыкается» в противоположном направлении. «OL» — это типичный дисплей цифрового мультиметра для состояния разомкнутой цепи.
  • Когда диод выходит из строя, он выходит из строя либо из-за короткого замыкания, либо из-за обрыва цепи.
  • «Закороченный» диод покажет 0,000 В в обоих направлениях
  • Farwest Expert Tip 5 Проверка диодов выпрямителя CP 060820

  • «Открытый» диод будет отображать «OL» в обоих направлениях.

 

Проверка диодов в выпрямителе CP с передней панели

Отдельные диоды можно проверить с передней панели выпрямителя. Это хороший вариант, потому что получить физический доступ к стеку диодов (как обсуждалось выше) может быть сложно. В большинстве выпрямителей с воздушным охлаждением блок диодов расположен внизу и сзади в корпусе. В выпрямителях с масляным охлаждением блок диодов погружен в масло и редко доступен без извлечения стойки компонентов из масла, что может привести к беспорядку.

 

Подготовка к тестированию

Проверяемые диоды должны быть изолированы от других компонентов схемы. В выпрямителе CP это будет включать в себя главный трансформатор, анод или структурные цепи. Шаги по изоляции этих компонентов включают:

  1. Убедитесь, что питание переменного тока на выпрямителе отключено, питание заблокировано и отключено.
  2. Снимите одну из перемычек ответвлений регулировки напряжения (грубую или точную) на передней панели, чтобы изолировать трансформатор.
  3. Отсоедините положительный или отрицательный выходной кабель от выходного наконечника.
  4. Убедитесь, что вторичный выключатель переменного тока находится в положении «ВКЛ.». Если вместо автоматического выключателя используется предохранитель, убедитесь, что предохранитель установлен и находится в рабочем состоянии (не «перегорел»).

 

Проверка диодов

Установите цифровой мультиметр на функцию «проверка диодов». Убедитесь, что ваши кабели измерительных проводов находятся в хорошем рабочем состоянии.

См. тестовую схему и таблицу (ниже). Буква идентифицирует каждый отдельный диод, а также контрольные точки:

  • Диоды — от A до D
  • Контрольные точки — от E до H.

Для проверки диода «А»:

  • Подсоедините контрольные точки E и H к измерительным проводам цифрового мультиметра. Прочитайте дисплей цифрового мультиметра и запишите значения.
  • Поменяйте полярность измерительных проводов в контрольных точках E и H. Прочтите показания на дисплее и запишите значения.

Диод «А» находится в рабочем состоянии (исправен), когда показания находятся в пределах 0,450–0,800 для одной полярности и OL (обрыв цепи) для другой полярности. Закороченный диод будет показывать 0,000 в обоих направлениях.

Чтобы проверить диоды B, C и D, обратитесь к таблице ниже.

Этот метод позволяет тестировать каждый отдельный диод без необходимости прямого доступа к физическому компоненту. Это реальное преимущество при поиске и устранении неисправностей переполненных выпрямителей с воздушным охлаждением или грязных масляных выпрямителей.

ВНИМАНИЕ! Большинство кремниевых стеков будут иметь разрядники для защиты от перенапряжения, установленные параллельно с входом переменного тока и выходом постоянного тока стека. Разрядник может быть установлен непосредственно на штабеле или отдельно сбоку штабеля. Если это так, и ваши тесты показывают, что два или более диода закорочены (неисправны), возможно, что диоды в рабочем состоянии (исправны), но ограничитель перенапряжений закорочен.