Диоды фото: Страница не найдена

Диоды Д132

Срок доставки: 

5 — 15 дней

Цена:

По запросу

Диоды Д132 предназначен для работы в цепях статических преобразователей электроэнергии постоянного и переменного токов на частотах до 1,5 кГц.

  • Д132-50, Д132-50Х, ДЛ132-50,
  • Д132-63, Д132-63х, ДЛ132-63,
  • Д132-80, Д132-80Х, ДЛ132-80.
Тепловые параметры диодов
Обозначение параметраНаименование, единица измеренияД132-50,
Д132-50Х,
ДЛ132-50
Д132-63,
Д132-63Х,
ДЛ132-63
Д132-80,
Д132-80Х,
ДЛ132-80
Условия установления норм на параметры
TjmМаксимально допустимая температура перехода, °С150 
T jminМинимально допустимая температура перехода, °Сминус 50 минус 60 для УХЛ2. 1 
TstgmМаксимально допустимая температура хранения, °С50 (60 для Т3 ) 
TstgminМинимально допустимая температура хранения, °Сминус 50 (минус 60 для УХЛ2.1; минус 10 для Т3) 
RthjcТепловое сопротивление переход- корпус, °С/Вт, не более0,600,500,38Постоянный ток
RthchТепловое сопротивление корпус-охладитель, °С/Вт, не более0,4Естественное охлаждение. Охладитель ОP331. Постоянный ток
RthjaТепловое сопротивление переход-среда (с охладителем),°С/Вт, не более3,123,022,90
Обратные параметры
Обозначение параметраНаименование, единица измеренияТип диодаУсловия установления норм на параметры
Д132-50 Д132-50ХД132-63 Д132-63ХД132-80 Д132-80Х
URRMПовторяющееся импульсное обратное напряжение, В, для класса: T. = 150 °C , t= 10 мс, f= 50 Гц
 1100
 2200
 4400
 5500
 6600
 8800
 9900
 101000
 111100
 121200
 141400
 161600
 181800
URSMНеповторяющееся импульсное обратное напряжение, В, для класса: T. = 150 °C , t= 10 мс,
.m ‘ l ‘
импульс одиночный
 1110
 2225
 4450
 5560
 6670
 8900
 91000
 101100
 111200
 121300
 141500
 161700
 181900
URПостоянное, В0,6URRMT = 110 °C
С
URWMРабочее импульсное обратное напряжение, В0,8URRMT. RRMПовторяющийся импульсный обратный ток, мА6,0T. = 150 °C,UR= URRM
.m 5 R RRM
IrrmИмпульсный обратный ток восстановления, А42T. = 150 °C, IFM= IF(AV),
.m 5 FM F(AV) 5
(dlF/dt)f= 5 А/мкс, U = 100 В, t = 50 мке
R ‘ l max
QrrЗаряд обратного восстановления, мкКн242
trrВремя обратного восстановления, мке11
Прямые параметры диодов
Обозначение параметраНаименование, единица измеренияТип диодаУсловия установления норм на параметры
Д132-50 Д132-50Х ДЛ132-50Д132-63 Д132-63Х ДЛ132-63Д132-80 Д132-80Х ДЛ132-80
IF(AV)Максимально допустимый сред­ний прямой ток, А506380T = 110 °C, ti= 10 мс,
f= 50 Гц
IFRMSДействующий прямой ток, А7899127Tc = 110 °C
IFSMУдарный прямой ток, кА1,201,401,50Tjm =150 °C, UR=0,
ti = 10 мс, импульс одиночный
1,321,541,65Tj = 25 °C, UR = 0,
tj = 10 мс, импульс одиночный
UFMИмпульсное прямое напряжение, В, не более1,35T. = 25 °C, IFM= 3,14 IF(AV)
UTOПороговое напряжение , В, не более0,850,80Tjm =150 °C
rTДинамическое сопротивление, Ом0,00320,00250,0022Tjm =150 °C
IF(AV)Средний прямой ток, A (с типовым охладителем)303235Ta = 40 °C, естественное охлаждение, охладитель OP331

По следу диода Д1, или совершенно секретно

История отечественной электронной компонентной базы (ЭКБ)

Чечнев Андрей


Эта, почти детективная история, началась с простого вопроса студента о происхождении первых отечественных (советских) германиевых диодов, которые применялись в детекторных или транзисторных (переносных) радиоприёмниках в середине ХХ века.


Поскольку логично предположить, что самый первый, не предназначенный для СВЧ-диапазона, диод назывался Д1, то я и начал собирать любую доступную, информацию, о разработке германиевых детекторных диодов в отечественных НИИ и предприятиях, где они, предположительно, начали производиться. Мне и в голову тогда не приходило, что история затянется на несколько лет кропотливых и упорных поисков истины. 


Отправной точкой поиска стали отдельные номера журнала “Радио”за 50-е годы прошлого века. Там было достаточно информации справочного характера и понимания о примерных сроках начала производства полупроводниковых диодов. Более того, присутствовал цикл статей о полупроводниках. И, разумеется, были авторы. Но ни какой информации о производителях и тому подобном.


Выяснилось, что на просторах великого и могучего Интернета много информации по теме, в том числе, и по СВЧ-детекторным диодам, созданным в НИИ-160 (будущий “Исток”), и по первым транзисторам, сделанным в НИИ-35 (п/я 281, впоследствии “Пульсар”), и по их создателям (конструкторам), но тщательные поиски нужных мне сведений и заинтересованные обсуждения на профильных форумах, в течение без малого двух лет не привели ни к какому результату. Скорее наоборот. Информация, часто противоречивая, только запутывала и уводила в сторону от темы. Даже на сайтах, специально посвящённых истории радиодеталей, при всём многообразии доступной информации, никакой конкретики и ответа на мой вопрос найти не удалось. Всё только одни предположения и догадки.


Следующим этапом были попытки, иногда удачные, встречаться с бывшими сотрудниками заводов и НИИ, проживающими в Москве и владеющими, хотя бы отрывочными фактами по интересующей меня теме.


К глубокому сожалению, в силу возраста и прошедшего времени ничего толком узнать от этих людей мне не удалось. Были написаны и разосланы письма в “Пульсар”, НИИ-311 (“Сапфир”), институт им. П.Н. Лебедева (ФИАН), Гиредмет (Государственный научно-исследовательский и проектный институт редкометаллической промышленности), и ряд других организаций. Безрезультатно. Везде один и тот же ответ: — “Прошло много лет. У нас не сохранилось такой информации”.


Нужно было искать другой путь или отказаться от поисков совсем. Единственно, что оставалось — начать работу с архивами, находящимися в Москве и Саратове. Этот путь оказался куда более плодотворным!


В итоге проведённой работы, я думаю, мне удалось восстановить полную картину создания германиевых детекторных диодов, тех, что предшествовали Д1 и Д2, и тех, чьё производство началось сразу вслед за ними. Включая начало разработки кремниевых, сначала точечных диодов (Д101), диодов для математических машин (Д225), затем стабилитронов (Д808) и мощных диодов (Д214) для выпрямителей. Естественно, что эти разработки шли параллельно с работами над кристаллическими триодами (транзисторами), но мне была более близка информация о диодах. Как оказалось, большая часть информации была под грифом “Совершенно секретно”до конца 2019 г. Одним словом, без везения тут не обошлось.


Начало, 1951 г.


Руководитель лаборатории полупроводников ОКБ 498, будущего Московского предприятия “СТАРТ”, Главный конструктор темы, Александр Никифорович Пужай (фото 1), заканчивает к концу 1951 г. совершенно секретную (тогда) разработку восьми типов точечных германиевых выпрямителей (выпрямительных диодов), называет их ДГ-В1, ДГ-В2 и до ДГ-В8 включительно.  


Фото 1. Александр Никифорович Пужай


В технических условиях (ТУ), в целом принятых 6 мая 1952 г., они так бесхитростно и назывались: детекторы германиевые выпрямительные (фото 2, 3).  Верхняя рабочая частота у них была 25 МГц.


Фото 2


Фото 3


В разработке временных ТУ на первые отечественные германиевые выпрямители принимало участие несколько организаций, подписавших документ и, планировавших их применение в своих дальнейших разработках. И только представителей НИИ-885, эти временные ТУ не устроили. Это очень важный момент в истории появления диодов Д1 и Д2. Дело в том, что НИИ-885 — ведущий институт по разработке реактивной техники, а параметры ДГ-В в части допустимого интервала температур, вибро- и влагостойкости в то время не устраивали военных разработчиков.


Нам эти диоды стали известны как ДГ-Ц1 — ДГ-Ц8 (фото 4). Изменение названия (до введения ГОСТ 5461-56) было связано с устранением возможной путаницы с назначением диодов. Дело в том, что индекс В, в те времена, означал видеодетектор. Поэтому диодам присвоили индекс Ц, каким обозначались диоды прочие. За 1952 г. завод 498 выпустил 19140 германиевых точечных диодов. При этом в отчёте за тот год сказано, что могли произвести гораздо больше, если бы поставщики не подводили с керамическими корпусами.


Фото 4


Новое место работы


Во исполнение приказа объединённого Министерства электростанций и электропромышленности от 9 июня 1953 г. № 60сс, на базе бывшего СКБ-627, бывшей лаборатории полупроводников СКБ-498 и части бывшей лаборатории полупроводниковых приборов НИИ-160 создан Государственный НИИ полупроводниковых приборов и магнитных материалов. Новый НИИ-35 разместили в корпусе, предназначенном для опытного завода СКБ-627.


А.Н. Пужай, став сотрудником НИИ-35, на вновь образованном предприятии, продолжает совместную работу с СКБ-498 по улучшению параметров диодов, воисполнение требований ракетчиков, и в конце 1953 г. заканчивает НИОКР на тему увеличения влагостойкости диодов серии ДГ-Ц. В этот же период, к концу 1953 г. в НИИ-35 Александром Никифоровичем закончена разработка плоскостных германиевых диодов с обратным напряжением до 150 В и прямым током 1 А по теме “Вентиль”— будущие диоды Д302, Д303 (фото 5).


Фото 5


К слову сказать, на 1 января 1954 г. в НИИ-35 трудилось 540 человек, в том числе, в отделе физики полупроводников — 18 сотрудников, в отделе полупроводниковых диодов — 42 человека, технологическом отделе — 32.


Завод 498 в 1954 г. выпустил 700000 точечных ДГ-Ц, а СКБ-498 выполнило “»Проект производственных работ № 17”(ППР-17). Результатом стала смонтированная механизированная технологическая линия, состоящая из 15 типов полуавтоматов и устройств различного назначения, предназначенных для производства диодов типа ДГЦ-С, в полностью стеклянном оформлении. Нам эти приборы стали известны как диоды Д1 (фото 6).


Фото 6


Завершив совместную  работу по совершенствованию технических параметров диодов две дружественные организации пошли каждая своим путём. В принципе, это нормальная практика тех лет — параллельная работа по одной тематике, поскольку немного разные решения в технологии производства приводили к конкуренции и неизбежному улучшению конечного продукта.


В это же самое время в НИИ-35, неутомимый А.Н. Пужай по теме “Стекло”создаёт свой вариант диодов, позволяющих выдерживать длительное воздействие влаги без изменения электрических параметров и пригодных для использования военными в своих разработках. По сути, конструкция диода, технологически повторяет, с некоторыми доработками, первую разработку Александра Никифоровича — диод ДГ-В, в котором керамический корпус заменён на стеклянным с похожими, полностью металлическими вводами и держателями электродов и кристалла германия и, в последствии, названного диодом Д2 (фото 7).


Фото 7


Параллельно коллектив под его руководством, успешно сдаёт государственной комиссии разработку германиевого выпрямительного элемента (работа называлась ППР-11) на обратное напряжение более 150 В и ток 300 мА, с превышением технического задания, включая опытную линию по производству диодов, известных как ДГ-Ц21 — ДГ-Ц24 (фото 8). В 1954 г. на опытном заводе НИИ-35 было изготовлено 7000 шт. таких диодов. 


Фото 8


Таким образом, первые германиевые плоскостные выпрямительные диоды ДГ-Ц21 — ДГ-Ц24 созданы А.Н. Пужай, сотрудником НИИ-35 в отделе № 2, начальником которого до конца 1955 г. он и был. По теме “Даль”осенью 1954 г. была полностью закончена и предъявлена на государственные испытания разработка высоковольтных модификаций этих диодов — ДГ-Ц25 и ДГ-Ц26.


1955 г.


Наша история, уважаемые читатели, о диоде Д1. После ознакомления с массой документов по существу и около этой темы, возникает полная уверенность в какой-то интриге вокруг создания и производства диодов Д1 и Д2 (фото 9). Дело в том, что периодически в разного рода документах новые названия германиевых выпрямителей ДГ-В имеют место быть и в материалах относящихся к деятельности ОКБ 498, и в документах НИИ-35. То есть не сразу становиться понятно, что работы по ДГЦ-С, это — ОКБ 498, а ДГЦ в стеклянном корпусе — это разработка НИИ-35. Возможно, это связано с отсутствием ГОСТа в то время на обозначение полупроводниковых приборов. Он появился только в 1956 г., а возможно, с желанием того или иного предприятия назвать свой диод первым. Загадка.


Фото 9


Чётко идентифицировать, кто что разработал и выпускал, мне помогли документы о себестоимости и расчёте оптовых цен. В середине 1955 г. обе организации (причём, НИИ-35 уже договорилась о поставках 58000 шт. новых диодов) подали расчёты в министерство для утверждения отпускных оптовых цен. В этой связи интересным фактом является полная разбивка по типам (17 типономиналов) производимых диодов ДГ-Ц1- ДГ-Ц17 (фото 10) у НИИ-35 и полное отсутствие таковой в СКБ-498 (фото 11). Как будто Д1 всего один тип. Приведённые копии с оригинальных документов хорошо иллюстрируют это.


Фото 10


Фото 11


Хорошо видно, что затраты на производство диодов Д2 превышают в несколько раз себестоимость Д1. Объективности ради отмечу, что характеристики и стабильность параметров последних отличались не в лучшую сторону. Не привожу их параметры на этих страницах, поскольку в журналах “Радио”в конце 1950-х годов масса справочных статей по этой тематике. Также понятно, что в апреле 1955 г. диоды ДГ-Ц1 — ДГ-Ц17 ещё не стали Д2. Такое название для них, произведённых на опытном заводе п/я 281, появиться только с сентября 1955 года.


Простой анализ документов о закупаемых материалах для производства Д1 и Д2, (фото 12— фото 14) под которыми стоят подписи действующих директоров, позволяет сделать совершенно объективный вывод о принадлежности диодов к тому ли иному предприятию. Понятно, для производства какого варианта нужны стеклянные трубки малого диаметра, да и вообще, небольшое количество материалов, а где-то нужен ковар, свинец, никель и кадмий со стеклом.


Фото 12


Фото 13


Фото 14


Дальнейшая судьба диода Д1 связана с заводом 362 (“Плутон”), где до конца 1958 года он производился, и в силу объективных причин был вытеснен вновь разработанным в недавно созданном НИИ-311 диодом Д9. Это совсем не случайно, поскольку  его разработкой там занимался Александр Никифорович Пужай — Главный конструктор первых отечественных германиевых точечных выпрямительных диодов ДГ-Ц.И не только германиевых. Но это уже совсем другая история.


Список использованной литературы

  1. А.Н. Пужай.Германиевые диоды.- «Автоматика и телемеханика», 1956, Том XVII, выпуск 2.
  2. А. М. Бройде. Справочник по электровакуумным и полупроводниковым приборам. 1957. (Массовая радиобиблиотека. Вып. 269).
  3. Полупроводниковые приборы. — Всесоюзная промышленная выставка. 1957.
  4. Журнал «Радио».  1953 год номер 1 стр. 57
  5. Терещук Р.М., Домбругов Р.М., Босый Н.Д. Справочник радиолюбителя. Под общ. ред. В.В. Огиевского. — Киев, 1957.
  6. Журнал «Радио» 1955 год номера 1, 5, 10.
  7. Материалы постоянного хранения Российского государственного архива.

Об авторе: пос. Володарского
журнале в «Радио» номера 2/2020, с. 10.
Помещена в музей с разрешения автора
27 сентября 2020

Что такое фотодиод? Рабочие, V-I характеристики, области применения

Краткое описание

Что такое фотодиод?

Датчик света, преобразующий световую энергию в электрическую (напряжение или ток). Фотодиод представляет собой тип полупроводникового устройства с PN-переходом. Между p (положительным) и n (отрицательным) слоями находится внутренний слой. Фотодиод принимает световую энергию в качестве входа для генерации электрического тока.

Его также называют фотодетектором, фотодатчиком или детектором света. Фотодиод работает в режиме обратного смещения, т.е. p-сторона фотодиода подключена к отрицательной клемме батареи (или источника питания), а n-сторона к положительной клемме батареи.

Типичными фотодиодными материалами являются кремний, германий, индий-галлий-арсенид-фосфид и индий-галлий-арсенид.

Фотодиод имеет внутри оптические фильтры, встроенную линзу и поверхность. Когда площадь поверхности фотодиода увеличивается, это приводит к меньшему времени отклика. Немногие фотодиоды будут выглядеть как светоизлучающие диоды (LED). Он имеет два терминала, как показано ниже. Меньшая клемма действует как катод, а более длинная клемма действует как анод.

Символ фотодиода аналогичен символу светодиода, но стрелки указывают внутрь, а не наружу в светодиоде. На следующем изображении показан символ фотодиода.

Работа фотодиода

Обычно, когда свет освещает PN-переход, ковалентные связи ионизируются. При этом образуются пары дырок и электронов. Фототоки образуются за счет генерации электронно-дырочных пар. Электронно-дырочные пары образуются, когда на диод попадают фотоны с энергией более 1,1 эВ. Когда фотон входит в обедненную область диода, он поражает атом с высокой энергией. Это приводит к высвобождению электрона из структуры атома. После высвобождения электронов образуются свободные электроны и дырки.

Обычно электрон имеет отрицательный заряд, а дырка — положительный. Энергия истощения будет иметь встроенное электрическое поле. Благодаря этому электрическому полю электронно-дырочные пары удаляются от соединения. Следовательно, дырки движутся к аноду, а электроны движутся к катоду, создавая фототок.

Интенсивность поглощения фотонов и энергия фотонов прямо пропорциональны друг другу. Когда энергия фотографий меньше, поглощение будет больше. Весь этот процесс известен как внутренний фотоэлектрический эффект.

Внутреннее возбуждение и внешнее возбуждение — это два метода, с помощью которых происходит возбуждение фотонов. Процесс собственного возбуждения происходит, когда электрон в валентной зоне возбуждается фотоном в зону проводимости.

Читайте также «Различные типы датчиков»

Режимы работы фотодиода

Фотодиод работает в трех различных режимах. Это:

  • Фотогальванический режим
  • Фотопроводящий режим
  • Режим лавинного диода

Давайте кратко рассмотрим эти режимы.

Фотогальванический режим

Этот режим также называется режимом нулевого смещения. Когда фотодиод работает в низкочастотных приложениях и приложениях сверхвысокого уровня освещенности, этот режим является предпочтительным. Когда фотодиод облучается вспышкой света, создается напряжение. Создаваемое напряжение будет иметь очень маленький динамический диапазон и нелинейную характеристику. Когда фотодиод сконфигурирован с OP-AMP в этом режиме, будет очень меньше изменений в зависимости от температуры.

Режим фотопроводимости

В этом режиме фотодиод работает в режиме обратного смещения. Катод будет положительным, а анод отрицательным. При увеличении обратного напряжения увеличивается и ширина обедненного слоя. Благодаря этому время отклика и емкость перехода будут уменьшены. Сравнительно этот режим работы является быстрым и производит электронный шум.

Трансимпедансные усилители используются в качестве предусилителей для фотодиодов. Режимы таких усилителей поддерживают постоянное напряжение, чтобы фотодиод работал в фотопроводящем режиме.

Режим лавинного диода

В этом режиме лавинный диод работает в условиях высокого обратного смещения. Это позволяет умножить лавинный пробой на каждую фотоэлектронно-дырочную пару. Следовательно, это создает внутреннее усиление в фотодиоде. Внутреннее усиление увеличивает отклик устройства.

Подключение фотодиода во внешней цепи

Фотодиод работает в цепи с обратным смещением. Анод подключен к земле цепи, а катод к положительному напряжению питания цепи. При освещении светом ток течет от катода к аноду.

Когда фотодиоды используются с внешними цепями, они подключаются к источнику питания в цепи. Количество тока, производимого фотодиодом, будет очень маленьким. Этого значения тока будет недостаточно для управления электронным устройством. Поэтому, когда они подключены к внешнему источнику питания, он подает в цепь больший ток. Итак, в качестве источника питания используется аккумулятор. Источник батареи помогает увеличить текущее значение, что повышает производительность внешних устройств

V-I Характеристики фотодиода

Фотодиод работает в условиях обратного смещения. Обратные напряжения отложены по оси X в вольтах, а обратный ток отложен по оси Y в микроамперах. Обратный ток не зависит от обратного напряжения. При отсутствии светового освещения обратный ток будет практически равен нулю. Минимальное количество текущего настоящего называется темным током. Однажды, когда световая освещенность увеличивается, обратный ток также увеличивается линейно.

Применение фотодиодов

  • Фотодиоды используются во многих простых повседневных приложениях. Причиной их использования является линейный отклик фотодиода на световую засветку. Когда на датчик падает больше света, он производит большой ток. Увеличение тока будет отображаться на гальванометре, подключенном к цепи.
  • Фотодиоды помогают обеспечить электрическую изоляцию с помощью оптронов. Когда две изолированные цепи освещаются светом, для оптической связи цепи используются оптопары. Но цепи будут изолированы электрически. По сравнению с обычными устройствами оптопары работают быстро.
  • Фотодиоды

  • также используются в электронике для обеспечения безопасности, например, в детекторах огня и дыма. Он также используется в телевизионных блоках.
  • При использовании в камерах они действуют как фотодатчики. Он используется в сцинтилляторах, устройствах с зарядовой связью, фотопроводниках и фотоумножителях.
  • Фотодиоды также широко используются в многочисленных медицинских приложениях, таких как инструменты для анализа образцов, детекторы для компьютерной томографии, а также используются в мониторах газов крови.

Что такое фотодиод? Рабочие, V-I характеристики, применение

Краткое описание

Что такое фотодиод?

Датчик света, преобразующий световую энергию в электрическую (напряжение или ток). Фотодиод представляет собой тип полупроводникового устройства с PN-переходом. Между p (положительным) и n (отрицательным) слоями находится внутренний слой. Фотодиод принимает световую энергию в качестве входа для генерации электрического тока.

Его также называют фотодетектором, фотодатчиком или детектором света. Фотодиод работает в режиме обратного смещения, т.е. p-сторона фотодиода подключена к отрицательной клемме батареи (или источника питания), а n-сторона к положительной клемме батареи.

Типичными фотодиодными материалами являются кремний, германий, индий-галлий-арсенид-фосфид и индий-галлий-арсенид.

Фотодиод имеет внутри оптические фильтры, встроенную линзу и поверхность. Когда площадь поверхности фотодиода увеличивается, это приводит к меньшему времени отклика. Немногие фотодиоды будут выглядеть как светоизлучающие диоды (LED). Он имеет два терминала, как показано ниже. Меньшая клемма действует как катод, а более длинная клемма действует как анод.

Символ фотодиода аналогичен символу светодиода, но стрелки указывают внутрь, а не наружу в светодиоде. На следующем изображении показан символ фотодиода.

Работа фотодиода

Обычно, когда свет освещает PN-переход, ковалентные связи ионизируются. При этом образуются пары дырок и электронов. Фототоки образуются за счет генерации электронно-дырочных пар. Электронно-дырочные пары образуются, когда на диод попадают фотоны с энергией более 1,1 эВ. Когда фотон входит в обедненную область диода, он поражает атом с высокой энергией. Это приводит к высвобождению электрона из структуры атома. После высвобождения электронов образуются свободные электроны и дырки.

Обычно электрон имеет отрицательный заряд, а дырка — положительный. Энергия истощения будет иметь встроенное электрическое поле. Благодаря этому электрическому полю электронно-дырочные пары удаляются от соединения. Следовательно, дырки движутся к аноду, а электроны движутся к катоду, создавая фототок.

Интенсивность поглощения фотонов и энергия фотонов прямо пропорциональны друг другу. Когда энергия фотографий меньше, поглощение будет больше. Весь этот процесс известен как внутренний фотоэлектрический эффект.

Внутреннее возбуждение и внешнее возбуждение — это два метода, с помощью которых происходит возбуждение фотонов. Процесс собственного возбуждения происходит, когда электрон в валентной зоне возбуждается фотоном в зону проводимости.

Читайте также «Различные типы датчиков»

Режимы работы фотодиода

Фотодиод работает в трех различных режимах. Это:

  • Фотогальванический режим
  • Фотопроводящий режим
  • Режим лавинного диода

Давайте кратко рассмотрим эти режимы.

Фотогальванический режим

Этот режим также называется режимом нулевого смещения. Когда фотодиод работает в низкочастотных приложениях и приложениях сверхвысокого уровня освещенности, этот режим является предпочтительным. Когда фотодиод облучается вспышкой света, создается напряжение. Создаваемое напряжение будет иметь очень маленький динамический диапазон и нелинейную характеристику. Когда фотодиод сконфигурирован с OP-AMP в этом режиме, будет очень меньше изменений в зависимости от температуры.

Режим фотопроводимости

В этом режиме фотодиод работает в режиме обратного смещения. Катод будет положительным, а анод отрицательным. При увеличении обратного напряжения увеличивается и ширина обедненного слоя. Благодаря этому время отклика и емкость перехода будут уменьшены. Сравнительно этот режим работы является быстрым и производит электронный шум.

Трансимпедансные усилители используются в качестве предусилителей для фотодиодов. Режимы таких усилителей поддерживают постоянное напряжение, чтобы фотодиод работал в фотопроводящем режиме.

Режим лавинного диода

В этом режиме лавинный диод работает в условиях высокого обратного смещения. Это позволяет умножить лавинный пробой на каждую фотоэлектронно-дырочную пару. Следовательно, это создает внутреннее усиление в фотодиоде. Внутреннее усиление увеличивает отклик устройства.

Подключение фотодиода во внешней цепи

Фотодиод работает в цепи с обратным смещением. Анод подключен к земле цепи, а катод к положительному напряжению питания цепи. При освещении светом ток течет от катода к аноду.

Когда фотодиоды используются с внешними цепями, они подключаются к источнику питания в цепи. Количество тока, производимого фотодиодом, будет очень маленьким. Этого значения тока будет недостаточно для управления электронным устройством. Поэтому, когда они подключены к внешнему источнику питания, он подает в цепь больший ток. Итак, в качестве источника питания используется аккумулятор. Источник батареи помогает увеличить текущее значение, что повышает производительность внешних устройств

V-I Характеристики фотодиода

Фотодиод работает в условиях обратного смещения. Обратные напряжения отложены по оси X в вольтах, а обратный ток отложен по оси Y в микроамперах. Обратный ток не зависит от обратного напряжения. При отсутствии светового освещения обратный ток будет практически равен нулю.