Физика полна понятий, которые сложно представить. Яркий пример этого — тема про электричество. Почти все встречающиеся там явления и термины сложно увидеть или представить. Что такое электрическое сопротивление? Откуда оно появляется? Почему возникает напряжение? И почему у тока есть сила? Вопросов бесконечное количество. Стоит разобраться во всем по порядку. И начать хорошо бы с сопротивления. Бывают ситуации, когда материал, который обладает проводящей способностью, оказывается между двумя полюсами электрического поля: положительным и отрицательным. И тогда по нему идет электрический ток. Это проявляется в том, что свободные электроны начинают направленное движение. Поскольку они имеют отрицательный заряд, то их перемещение осуществляется в одну сторону - к плюсу. Интересно, что за направление электрического тока принято указывать другое - от плюса к минусу.Во время движения электроны ударяются об атомы вещества и передают им часть своей энергии. Этим объясняется то, что включенный в сеть проводник нагревается. А сами электроны замедляют свое движение. Но электрическое поле их снова ускоряет, поэтому они вновь устремляются к плюсу. Этот процесс происходит бесконечно, пока вокруг проводника имеется электрическое поле. Получается, что именно электроны испытывают сопротивление электрического тока. То есть чем больше препятствий они встречают, тем выше значение этой величины. Ему можно дать определение исходя из двух позиций. Первая связана с формулой для закона Ома. И звучит оно так: электрическое сопротивление — это физическая величина, которая определяется как отношение напряжения в проводнике к силе тока, протекающего в нем. Математическая запись приведена немного ниже. Вторая основывается на свойствах тела. Электрическое сопротивление проводника — это физическая величина, которая указывает на свойство тела преобразовывать энергию электричества в тепло. Оба этих утверждения верны. Только в школьном курсе чаще всего останавливаются на запоминании первого. Обозначается изучаемая величина буквой R. Единицы, в которых измеряется электрическое сопротивление, — Ом. Самая известная вытекает из закона Ома для участка цепи. Она объединяет электрический ток, напряжение, сопротивление. Выглядит так: Это формула под номером 1. Вторая учитывает то, что сопротивление зависит от параметров проводника: Эта формула имеет номер 2. В ней введены такие обозначения: ρ Удельное электрическое сопротивление — это физическая величина, которая равна сопротивлению материала длиной в 1 м и с площадью сечения в 1 м2. В таблице указана системная единица измерения удельного сопротивления. В реальных ситуациях не бывает такого, чтобы сечение измерялось в квадратных метрах. Почти всегда это квадратные миллиметры. Поэтому и удельное электрическое сопротивление удобнее брать в Ом * мм2 / м, а площадь подставлять в мм2. Во-первых, от вещества, из которого изготовлен проводник. Чем больше значение, которое имеет удельное электрическое сопротивление, тем хуже он будет проводить ток. Во-вторых, от длины провода. И здесь зависимость прямая. С увеличением длины сопротивление возрастает. В-третьих, от толщины. Чем толще проводник, тем меньше у него сопротивление. И наконец, в-четвертых, от температуры проводника. И здесь все не так однозначно. Если речь идет о металлах, то их электрическое сопротивление возрастает по мере нагревания. Исключение составляют некоторые специальные сплавы - их сопротивление практически не изменяется при нагревании. К ним относятся: константан, никелин и манганин. Когда же нагреваются жидкости, то их сопротивление уменьшается. Это элемент, который включается в электрическую цепь. Он имеет вполне конкретное сопротивление. Именно это и используется в схемах. Принято разделять резисторы на два вида: постоянные и переменные. Их название связано с тем, можно ли изменить их сопротивление. Первые — постоянные — не позволяют каким-либо образом изменить номинальное значение сопротивления. Оно остается неизменным. Вторые — переменные — дают возможность производить регулировку, изменяя сопротивление в зависимости от потребностей конкретной схемы. В радиоэлектронике выделяют еще один вид — подстроечные. Их сопротивление изменяется только в тот момент, когда нужно настроить прибор, а потом остается постоянным. Прямоугольник с двумя выходами из узких его сторон. Это постоянный резистор. Если с третьей стороны к нему пририсована стрелка, то он уже переменный. К тому же на схемах еще подписывается и электрическое сопротивление резистора. Прямо внутри этого прямоугольника. Обычно просто цифры или с наименованием, если они очень большие. Ее назначение - обеспечение электрической безопасности. Электрическое сопротивление изоляции является главной характеристикой. Оно не позволяет протекать через тело человека опасному значению тока. Выделяют четыре вида изоляции: Все устройства, которые имеют бытовое назначение, обязаны быть оборудованы двойной или усиленной изоляцией. Причем она должна обладать такими характеристиками, чтобы выдерживать любые механические, электрические и тепловые нагрузки. С течением времени изоляция стареет, и ее параметры ухудшаются. Этим объясняется то, что она требует регулярного профилактического осмотра. Его целью является устранение дефектов, а также измерение ее активного сопротивления. Для этого используется специальный прибор — мегаомметр. Условие 1: требуется определить электрическое сопротивление железной проволоки, которая имеет длину, равную 200 м, и площадь поперечного сечения в 5 мм². Решение. Нужно воспользоваться второй формулой. В ней неизвестно только удельное сопротивление. Но его можно посмотреть в таблице. Оно равно 0,098 Ом * мм / м2. Теперь нужно только подставить значения в формулу и сосчитать: R = 0,098 * 200 / 5 = 3,92 Ом. Ответ: сопротивление приблизительно равно 4 Ом. Условие 2: вычислить электрическое сопротивление проводника, изготовленного из алюминия, если его длина равна 2 км, а площадь сечения — 2,5 мм². Решение. Аналогично первой задаче, удельное сопротивление — 0,028 Ом * мм / м2. Чтобы получить верный ответ, потребуется перевести километры в метры: 2 км = 2000 м. Теперь можно считать: R = 0,028 * 2000 / 2,5 = 22,4 Ом. Ответ: R = 22,4 Ом. Условие 3: какой длины потребуется проволока, если ее сопротивление должно быть равно 30 Ом? Известна площадь ее сечения — 0,2 мм², и материал — никелин. Решение. Из той же формулы сопротивления можно получить выражение для длины проволоки: l = (R * S) / ρ. Известно все, кроме удельного сопротивления, которое нужно взять из таблицы: 0,45 Ом * мм2 / м. После подстановки и расчетов получается, что l = 13,33 м. Ответ: приблизительное значение длины равно 13 м. Условие 4: определить материал, из которого изготовлен резистор, если его длина равна 40 м, сопротивление — 16 Ом, сечение — 0,5 мм². Решение. Аналогично третьей задаче, выражается формула для удельного сопротивления: ρ = (R * S) / l. Подстановка значений и расчеты дают такой результат: ρ = 0,2 Ом * мм2 / м. Данное значение удельного сопротивления характерно для свинца. Ответ: свинец. www.syl.ru На рисунке 33 изображена электрическая цепь, в которую включена панель с разными проводниками. Эти проводники отличаются друг от друга материалом, а также длиной и площадью поперечного сечения. Подключая по очереди эти проводники и наблюдая за показаниями амперметра, можно заметить, что при одном и том же источнике тока сила тока в разных случаях оказывается различной. С увеличением длины проводника и уменьшением его сечения сила тока в нем становится меньше. Уменьшается она и при замене никелиновой проволоки проволокой такой же длины и сечения, но изготовленной из нихрома. Это означает, что разные проводники оказывают различное противодействие току. Противодействие это возникает из-за столкновений носителей тока со встречными частицами вещества. Физическая величина, характеризующая противодействие, оказываемое проводником электрическому току, обозначается буквой R и называется электрическим сопротивлением (или просто сопротивлением) проводника: R — сопротивление. Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который впервые ввел это понятие в физику. 1 Ом — это сопротивление такого проводника, в котором при напряжении 1 В сила тока равна 1 А. При сопротивлении 2 Ом сила тока при том же напряжении будет в 2 раза меньше, при сопротивлении 3 Ом — в 3 раза меньше и т. д. На практике встречаются и другие единицы сопротивления, например килоом (кОм) и мегаом (МОм): 1 кОм= 1000 Ом, 1 МОм= 1 000 ООО Ом. Сопротивление однородного проводника постоянного сечения зависит от материала проводника, его длины l и площади поперечного сечения S и может быть найдено по формуле R = ρl/S (12.1) где ρ — удельное сопротивление вещества, из которого изготовлен проводник. Удельное сопротивление вещества — это физическая величина, показывающая, каким сопротивлением обладает сделанный из этого вещества проводник единичной длины и единичной площади поперечного сечения. Из формулы (12.1) следует, что ρ = RS/l Так как в СИ единицей сопротивления является 1 Ом, единицей площади 1 м2, а единицей длины 1 м, то единицей удельного сопротивления в СИ будет 1 Ом · м2/м, или 1 Ом · м. На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (мм2). В этом случае более удобной единицей удельного сопротивления является Ом·мм2/м. Так как 1 мм2 = 0,000001 м2, то 1 Ом · мм2/м = 0,000001 Ом · м. У разных веществ удельные сопротивления различны. Некоторые из них приведены в таблице 3. Приведенные в этой таблице значения соответствуют температуре 20 °С. (С изменением температуры сопротивление вещества изменяется.) Например, удельное сопротивление железа равно 0,1 Ом · мм2/м. Это означает, что если изготовить из железа провод с площадью сечения 1 мм2 и длиной 1 м, то при температуре 20 °С он будет обладать сопротивлением 0,1 Ом. Из таблицы 3 видно, что наименьшим удельным сопротивлением обладают серебро и медь. Значит, именно эти металлы являются наилучшими проводниками электричества. Из той же таблицы видно, что, наоборот, такие вещества, как фарфор и эбонит, обладают очень большим удельным сопротивлением. Это и позволяет использовать их в качестве изоляторов. ??? 1. Что характеризует и как обозначается электрическое сопротивление? 2. По какой формуле находится сопротивление проводника? 3. Как называется единица сопротивления? 4. Что показывает удельное сопротивление? Какой буквой оно обозначается? 5. В каких единицах измеряют удельное сопротивление? 6. Имеются два проводника. У какого из них больше сопротивление, если они: а) имеют одинаковую длину и площадь сечения, но один из них сделан из константана, а другой — из фехраля; б) сделаны из одного и того же вещества, имеют одинаковую толщину, но один из них в 2 раза длиннее другого; в) сделаны из одного и того же вещества, имеют одинаковую длину, но один из них в 2 раза тоньше другого? 7. Проводники, рассматриваемые в предыдущем вопросе, поочередно подключают к одному и тому же источнику тока. В каком случае сила тока будет больше, в каком меньше? Проведите сравнение для каждой пары рассматриваемых проводников. phscs.ru Электрическое сопротивление - физическая величина, которая показывает, какое препятствие создается току при его прохождении по проводнику. Единицами измерения служат Омы, в честь Георга Ома. В своем законе он вывел формулу для нахождения сопротивления, которая приведена ниже. Существует такое важное понятие как удельное сопротивление, это тоже самое сопротивление, только в единице длины. У каждого металла оно свое, например у меди оно равно 0,0175 Ом*мм2/м, у алюминия 0,0271 Ом*мм2/м . Это значит, брусок из меди длиной 1 м и площадью поперечного сечения 1 мм2 будет иметь сопротивление 0,0175 Ом, а такой же брусок, но из алюминия будет иметь сопротивление 0,0271 Ом. Выходит что электропроводность меди выше чем у алюминия. У каждого металла удельное сопротивление свое, а рассчитать сопротивление всего проводника можно по формуле где p – удельное сопротивление металла, l – длина проводника, s – площадь поперечного сечения. Значения удельных сопротивлений приведены в таблице удельных сопротивлений металлов (20°C) Вещество p, Ом*мм2/2 α,10-3 1/K Алюминий 0.0271 3.8 Вольфрам 0.055 4.2 Железо 0.098 6 Золото 0.023 4 Латунь 0.025-0.06 1 Манганин 0.42-0.48 0,002-0,05 Медь 0.0175 4.1 Никель 0.1 2.7 Константан 0.44-0.52 0.02 Нихром 1.1 0.15 Серебро 0.016 4 Цинк 0.059 2.7 Кроме удельного сопротивления в таблице есть значения ТКС, об этом коэффициенте чуть позже. При холодной обработке металлов давлением, металл испытывает пластическую деформацию. При пластической деформации кристаллическая решетка искажается, количество дефектов становится больше. С увеличением дефектов кристаллической решетки, сопротивление течению электронов по проводнику растет, следовательно, удельное сопротивление металла увеличивается. К примеру, проволоку изготавливают методом протяжки, это значит, что металл испытывает пластическую деформацию, в результате чего, удельное сопротивление растет. На практике для уменьшения сопротивления применяют рекристаллизационный отжиг, это сложный технологический процесс, после которого кристаллическая решетка как бы, “расправляется” и количество дефектов уменьшается, следовательно, и сопротивление металла тоже. При растяжении или сжатии, металл испытывает упругую деформацию. При упругой деформации вызванной растяжением, амплитуды тепловых колебаний узлов кристаллической решетки увеличиваются, следовательно, электроны испытывают большие затруднения, и в связи с этим, увеличивается удельное сопротивление. При упругой деформации вызванной сжатием, амплитуды тепловых колебаний узлов уменьшаются, следовательно, электронам проще двигаться, и удельное сопротивление уменьшается. Как мы уже выяснили выше, причиной сопротивления в металле являются узлы кристаллической решетки и их колебания. Так вот, при увеличении температуры, тепловые колебания узлов увеличиваются, а значит, удельное сопротивление также увеличивается. Существует такая величина как температурный коэффициент сопротивления (ТКС), который показывает насколько увеличивается, или уменьшается удельное сопротивление металла при нагреве или охлаждении. Например, температурный коэффициент меди при 20 градусах по цельсию равен 4.1 · 10 − 3 1/градус. Это означает что при нагреве, к примеру, медной проволоки на 1 градус цельсия, её удельное сопротивление увеличится на 4.1 · 10 − 3 Ом. Удельное сопротивление при изменении температуры можно вычислить по формуле где r это удельное сопротивление после нагрева, r0 – удельное сопротивление до нагрева, a – температурный коэффициент сопротивления, t2 – температура до нагрева, t1 - температура после нагрева. Подставив наши значения, мы получим: r=0,0175*(1+0.0041*(154-20))=0,0271 Ом*мм2/м. Как видите наш брусок из меди длиной 1 м и площадью поперечного сечения 1 мм2, после нагрева до 154 градусов, имел бы сопротивление, как у такого же бруска, только из алюминия и при температуре равной 20 градусов цельсия. Свойство изменения сопротивления при изменении температуры, используется в термометрах сопротивления. Эти приборы могут измерять температуру основываясь на показаниях сопротивления. У термометров сопротивления высокая точность измерений, но малые диапазоны температур. На практике, свойства проводников препятствовать прохождению тока используются очень широко. Примером может служить лампа накаливания, где нить из вольфрама, нагревается за счет высокого сопротивления металла, большой длины и узкого сечения. Или любой нагревательный прибор, где спираль разогревается благодаря высокому сопротивлению. В электротехнике, элемент главным свойством которого является сопротивление, называется – резистор. Резистор применяется практически в любой электрической схеме. electroandi.ru ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ Электрическое сопротивление ( R ) - это физическая величина, численно равная отношению напряжения на концах проводника к силе тока, проходящего через проводник. Величину сопротивления для участка цепи можно определить из формулы закона Ома для участка цепи. Однако, сопротивление проводника не зависит от силы тока в цепи и напряжения, а определяется только формой, размерами и материалом проводника. где l - длина проводника ( м ), S - площадь поперечного сечения (кв.м ),r ( ро) - удельное сопротивление (Ом м ). Удельное сопротивление - показывает, чему равно сопротивление проводника, выполненного из данного вещества, длиной в 1м и с поперечным сечением 1 м кв. Единица измерения удельного сопротивления в системе СИ: 1 Ом м Однако, на практике толщина проводов значительно меньше 1 м кв, поэтому чаще используют внесистемную единицу измерения удельного сопротивления: Единица измерения сопротивления в системе в СИ: [R] = 1 Ом Сопротивление проводника равно 1 Ом, если при разности потенциалов на его концах в 1 В, по нему протекает ток силой 1 А. ___ Причиной наличия сопротивления у проводника является взаимодействие движущихся электронов с ионами кристалической решетки проводника. Из-за различия в строении криталической решетки у проводников, выполненных из различных веществ, сопротивления их отличаются друг от друга. ЗАПОМНИ ! Существует физическая величина обратная сопротивлению - электрическая проводимость. R - это сопротивление проводника,1/R - это электрическая проводимость проводника ___ Величины проводимости проводников и изоляторов различаются в большое число раз, измеряемое единицей с двадцатью двумя нулями! ЗНАЕШЬ ЛИ ТЫ ? ... что сопротивления кожи человека обычно изменяется от 1 кОм ( для влажной кожи )до 500 кОм ( для сухой кожи ). Сопротивление других тканей тела равно от 100 до 500 Ом.___ ... что соединительные провода, из которых собираются электрические цепи, обладают сопротивлением. Согласно закону Ома на проводах теряется часть напряжения, поэтому выгодно ставить провода с наименьшим удельным сопротивлением.___ ... что сопротивление проводника зависит от температуры. ИНТЕРЕСНО ! При повышении температуры металлического проводника его сопротивление увеличивается. При увеличении температуры электролита (жидкого проводника) его сопротивление уменьшается. Если взять в качестве проводника уголь (обычную таблетку активированногоугля из аптечки),то его сопротивление при надавливании на уголь уменьшается! ДУМАЕМ НАД ЗАДАЧКАМИ ! Если длину проволоки вытягиванием увеличить вдвое то, как изменится её сопротивление?___ Две квадратные металлические пластины из одного металла разной толщины включены в электрическую цепь. Одинаковое ли сопротивление они оказывают току? ___ Какой проводник представляет большее сопротивление для постоянного тока: медный сплошной стержень или медная трубка, имеющая внешний диаметр, равный диаметру стержня? ( длину обоих проводников считать одинаковой) НЕ СОПРОТИВЛЯЙСЯ, ИДИ СКОРЕЕ РЕШАТЬ ЗАДАЧИ ! Другие страницы по темам физики за 8 класс: К 1 сентября! Проверочный тестТепловое движение. Температура Внутренняя энергия. Способы изменения внутренней энергии Теплопередача. Теплопроводность Конвекция Излучение Теплопередача в природе и технике Количество теплоты Нагревание и охлаждение телЭнергия топлива Агрегатные состояния вещества Плавление кристаллических тел Отвердевание кристаллических тел Парообразование. Испарение Кипение Конденсация Влажность воздуха Работа газа и пара при расширении. ДВС Паровая турбина. КПД теплового двигателяДва рода зарядов. Электроскоп Проводники и диэлектрикиЭлектрическое поле Источники тока Электрические цепи Действия электрического тока Сила тока Напряжение Измерения силы тока и напряжения Электрическое сопротивление Закон Ома для участка цепи Соединение проводников Работа и мощность электрического тока Короткое замыкание. Предохранители Магнитное полеМагнитное поле прямого проводника. Магнитные линииМагнитное поле катушки с током. ЭлектромагнитПостоянные магнитыМагнитное поле Земли Действие магнитного поля на проводник с током. Электродвигатель Плоское зеркало Смотри еще страницы по теме «Электричество»:А вы об этом знаете? Легенды об янтаре"Круглая" загадкаЗвезды ДиоскуровОгни святого ЭльмаО полярных сиянияхЭлектризатор в сутанеЧудо природы-шаровая молнияЖизнь среди молнийИзобретение лейденской банкиИзобретатель громоотводов Б.ФранклинГальвани-воскреситель из мертвыхА.Вольта и монеты во рту"Лошадиная" аварияЭлектрические фонтаны Гастона Планте class-fizika.narod.ru В любой цепи переменного тока наряду с чисто реактивным сопротивлением присутствует омическое (активное) сопротивление, которое нужно учитывать при определении полного сопротивления. Если то имеем: полное сопротивление векторная диаграмма тока и напряжений При последовательном соединении активное и реактивное сопротивления складываются геометрически полное сопротивление векторная диаграмма \[ Z = \sqrt{R^{2} + X^{2}} \] и \[ U = \sqrt{U^{2}_{R} + U^{2}_{X}} = IZ \] полное сопротивление векторная диаграмма тока и напряжений При параллельном соединении активная и реактивная проводимости складываются геометрически полное сопротивление векторная диаграмма \[ Y = \sqrt{G^{2} + B^{2}} \] и \[ I = \sqrt{I^{2}_{R} + I^{2}_{X}} = UY \] www.fxyz.ru В данной статье мы рассмотрим, что это – проводник. Здесь будут затронуты вопросы его определения, особенностей и свойств. Также мы остановимся на понятии потенциала проводника. Изучаемый объект представляет собой важное открытие и достижение науки, которое позволяет человеку на современном этапе развития снижать расходы на потребление важных и исчерпаемых ресурсов земли. Проводник – это преимущественно вещество, а также определенная среда или материал, которые проводят электрический ток практически без препятствования. В проводниках находится большое количество свободно двигающихся носителей заряда (частиц с зарядом), которые способны в свободном виде перемещаться внутри проводников. Эти носители находятся под влиянием проводника, что приближен к объекту электронапряжения и создают ток проводимости. Существует понятие однородного проводника. Это набор характеристик, которые являются одинаковыми в любой его точке. Примером может служить реохорд – устройство для измерения эл. сопротивления посредством мостового метода Уитстона. В связи с наличием большого числа свободных переносчиков заряда и высокой степенью их подвижности, значение удельной величины, определяющей электропроводимость, достигает больших значений. С точки зрения электродинамической науки, проводник – это среда, обладающая огромным значением тангенса, указывающего на угол диэлектрической потери. Рассмотрение происходит всегда посредством определения четкой частоты. Идеальный проводник в таком случае - это материал, обладающий значением tgδ в бесконечно большом размере. Все остальные виды таких структур именуют реальными, или обладающими потерей. Проводник – это часть электрической цепочки (соединительный провод, металлическая шина и т.д.). Одними из наиболее распространенных проводящих структур твердого типа являются вещества металлов, полуметаллов и углеродов (графит и уголь). Среди проводящих жидкостей, примером может служить ртуть, электролитические растворы, а также металлические расплавы. Среди газов, способных проводить ток, самым ярким представителем является газ в ионизированном виде (плазма). Некоторые вещества, чаще полупроводники, могут изменять свои свойства проводимости, если изменять внешние условия вокруг них, например, повышать температуру или легировать. Электрические проводники – это вещества и материалы, которые, в соответствии с формой движения частиц, делятся на первый и второй род. В первом случае свойство проводимости обуславливается электронным движением, а во втором, ионным. Под электрическим током подразумевают передвижение частиц, обладающих зарядом, в упорядоченном виде. Ток способен образоваться в разнообразных средах. Обязательным условием является наличие подвижных носителей заряда, которые смогут передвигаться под воздействием поля, которое приложили извне. Силой тока называют скалярную величину, что может принимать два значения: положительное и отрицательное. Это зависит от произвольного направления, вдоль которого движутся частицы. Единицей, определяющей силу тока, является ампер (А). Сила тока в проводника – это величина, что может обуславливаться направлением положительно заряженных элементов, образующих ток. В случае, когда ток был обусловлен частицами с зарядом «-», он приобретает направление, противоположное курсу реальной скорости движения частичек. Силу тока определяют, анализируя отношение Dq (количество заряда), что был перенесенным сквозь проводниковое поперечное сечение, за единицу времеи Dt, к размерной величине самого интервала: I = Delta q/ Dela t. Показатель, указывающий на силу тока, тесно связан с явлением дрейфа заряж. частиц. Допустим, у нас есть проводник, на участке поперечного сечения (S) которого, есть определенное количество носителей заряда в конкретном объеме, соответствующем числу – n. Заряд всех носителей соответствует значению q0. Если приложить внешнее электр. поле (E), то переносчики приобретут среднюю величину скорости v (показатель скорости дрейфа), которая направляется по направлению к противоположному полю. Если допустить, что дрейф обладает постоянной скоростью (ток движется в одном темпе и с одной мощностью), можно рассчитать силу взаимосвязи дрейфа и перемещения частичек: ∆q=q0nv∆ts, из которого следует, что I=q0nvS Полная величина заряда в общей величине объема цилиндра со значением образующей величины Dl = vDt равна. Электрическое сопротивление проводника – это величина, характеризующая его свойства, способные препятствовать переправе тока, а еще она равна соотношению напряжения на концевых участках провода к силе тока, который пропускают. Понятие импеданса и явление волновой формы сопротивления описывают противодействие для цепи тока с переменными значениями, а также электромагнитные поля. Под понятием резистора в таком случае подразумевают радиодеталь, предназначение которой заключено во введении активного сопротивления в электр. цепь. Сопротивление проводника – это величина, которую чаще всего обозначают буквой R (малой или большой). В некоторых пределах, оно является постоянным и рассчитывается по формуле: R = U/I, где R – это величина сопротивления, I – указывает на силу тока, что протекает между разными концами проводника под воздействием потенциальной разности (A), а U – это степень разности электр. потенциалов, которые расположены по его разные стороны. Электрический ток в проводнике – это упорядоченное перемещение частиц с определенным зарядом. Металлы обладают высокой электропроводимостью, что связано с наличием огромного количества носителей эл. тока (электроны проводимости), которые образуются из валентного ряда электронов металлов. Последние не должны принадлежать определенному виду атомов. Электроны, которые передвигаются благодаря воздействию поля, начинают рассеиваться на неоднородности ионных решеток. Сам электрон в таком случае теряет силу импульса, а энергия, отвечающая за движение, превращается во внутреннюю энергию решетки кристаллического характера. Она вызывает нагревание проводника вследствие прохождения эл. тока по нему. Важно помнить о том, что значение линейной зависимости, которая выражается законом Ома, не всегда соблюдается. Величина сопротивления обуславливается также особенностями его геометрии и свойствами удельного эл. сопротивления материала, из которого его образовали. Поперечное сечение проводника – это характеристика, тесно связанная с явлением его сопротивления. Дело в том, что носителем заряда в металле является свободный электрон. Находясь в хаотической форме движения, они подобны газовым молекулам. По этой причина, классическая физика определяет электроны в металле как электронный газ. Здесь применимы постановления закона для идеальных газов. Показатель плотности эл. газа и структура кристаллических решеток обусловлены родом металла. По этой причине, сопротивление зависит от рода самого вещества, из которого был создан проводник. Также учитывается его длина, температура и площадь поперечного сечения. Влияние последней объяснить можно благодаря тому, что уменьшение сечения электронного потока внутри проводника, с одним и тем же значением силы тока, приводит к уплотнению потока. Это вызывает усиление взаимодействия между электроном и частицей вещества проводника. Электрический потенциал проводника – это особая характеристика проводника, представленная в виде скалярного энергетического параметра потенциальной энергии, которой «наполнен» положительно заряженный единичный вариант пробного заряда, который поместили в конкретную точку на поле. Для измерения подобного значения используют Международную систему единиц (СИ), а именно Вольт (1В = 1Дж/Кл). Электрический потенциал равняется соотношению величины потенциальной энергии, указывающей на взаимодействие заряда и поля к размерности самого заряда. fb.ru При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается. Электрическим сопротивлением проводника, которое обозначается латинской буквой r, называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока. На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а. Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются как показано на рисунке 1, б. В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление. Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление. Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника. Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют. Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника. За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать "Сопротивление проводника равно 15 Ом", можно написать просто: r = 15 Ω.1 000 Ом называется 1 килоом (1кОм, или 1кΩ),1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ). При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток. Видео 1. Сопротивление проводников Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро). В таблице 1 даны удельные сопротивления некоторых проводников. Таблица 1 Удельные сопротивления различных проводников Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки. Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо. Сопротивление проводника можно определить по формуле: где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм². Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм². Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм². Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника. Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки. Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом. Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки. Материал проводника характеризует его удельное сопротивление. По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец. Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается. У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается. Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи. Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α. Если при температуре t0 сопротивление проводника равно r0, а при температуре t равно rt, то температурный коэффициент сопротивления Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C). Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2). Таблица 2 Значения температурного коэффициента для некоторых металлов Металл α Из формулы температурного коэффициента сопротивления определим rt: rt = r0 [1 ± α (t – t0)]. Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом. rt = r0 [1 ± α (t – t0)] = 100 (1 + 0,0066 × 200) = 232 Ом. Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи. До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью. Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные. Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g. Электрическая проводимость измеряется в (1/Ом) или в сименсах. Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость. Если r = 20 Ом, то Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление, Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом) Источник: Кузнецов М. И., "Основы электротехники" – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с. www.electromechanics.ruЭлектрическое сопротивление и проводимость. Чему равно сопротивление
Что такое электрическое сопротивление? :: SYL.ru
Что происходит в проводнике, когда по нему идет ток?
Что такое электрическое сопротивление?
По каким формулам его можно найти?
Величина Буква Единицы измерения Удельное сопротивление Ом * м Длина проводника l м Площадь, которую имеет поперечное сечение S м2 От чего и как зависит сопротивление?
Какие существуют резисторы?
Как на схемах выглядит резистор?
Для чего существует изоляция и зачем ее нужно измерять?
Примеры задач с решениями
Электрическое сопротивление | Физика
Электрическое сопротивление проводника
Рассмотрим сопротивление проводников на примере металлов. Металлы имеют внутреннее строение в виде кристаллической решетки. Эта решетка имеет строгую упорядоченность, а её узлами являются положительно заряженные ионы. Носителями заряда в металле выступают “свободные” электроны, которые не принадлежат определенному атому, а хаотично перемещаются между узлами решетки. Из квантовой физики известно, что движение электронов в металле это распространение электромагнитной волны в твердом теле. То есть электрон в проводнике движется со скоростью света (практически), и доказано, что он проявляет свойства не только как частица, но еще и как волна. А сопротивление металла возникает в результате рассеяния электромагнитных волн (то есть электронов) на тепловых колебаниях решетки и её дефектах. При столкновении электронов с узлами кристаллической решетки часть энергии передается узлам, вследствие чего выделяется энергия. Эту энергию можно вычислить при постоянном токе, благодаря закону Джоуля-Ленца – Q=I2Rt. Как видите чем больше сопротивление, тем больше энергии выделяется.
Удельное сопротивление
Зависимость удельного сопротивления от деформаций
Влияние температуры на удельное сопротивление
Электрическое сопротивление. Удельное сопротивление :: Класс!ная физика
Полное сопротивление | Формулы и расчеты онлайн
Z полное сопротивление, Ом R омическое (активное) сопротивление, Ом X реактивное сопротивление, Ом Y = 1/Z полная проводимость, сименс G активная проводимость, сименс B реактивная проводимость, сименс U полное напряжение (эффективное значение), Вольт I полный ток (эффективное значение), Ампер Полное сопротивление при последовательном соединении R и X
Полное сопротивление при параллельном соединение R и X
В помощь студенту
это что? Чему равно сопротивление проводника
Введение
Часть электрической цепи
Ток в проводнике
Понятие дрейфа
Явление сопротивления
Физический аспект явления
Сечение проводника
Потенциал
Электрическое сопротивление и проводимость
Электрическое сопротивление
Рисунок 1. Условное обозначение электрического сопротивления Удельное электрическое сопротивление
Материал проводника Удельное сопротивление ρ в СереброМедьАлюминийВольфрамЖелезоСвинецНикелин (сплав меди, никеля и цинка)Манганин (сплав меди, никеля и марганца)Константан (сплав меди, никеля и алюминия)РтутьНихром (сплав никеля, хрома, железа и марганца) 0,0160,01750,030,050,130,20,420,430,50,941,1 Металл α СереброМедьЖелезоВольфрамПлатина 0,00350,00400,00660,00450,0032 РтутьНикелинКонстантанНихромМанганин 0,00900,00030,0000050,000160,00005 Электрическая проводимость
Поделиться с друзьями: