Содержание
Микросхема и другие компоненты драйвера мощного светодиода.
Перейти в магазин
Я публиковал несколько обзоров светодиодов, пришло время написать чем их можно кормить.
В обзоре учавствуют три позиции деталей (ссылки и цены присутствуют), но все они нужны для одной цели, сделать драйвер для светодиода.
Сразу извиняюсь за заглавное фото, оно упорно пытается масштабироваться по своему, исправить я не смог, более правильное на странице продавца.
Все знают, что светодиоды питаются током, желательно стабилизированным, что бы не менялась яркость при изменении напряжения. Для этой цели служит драйвер, по сути стабилизатор тока.
Ограничивать ток можно простыми микросхемами типа LM317 и специально предназначенными для этого стабилизаторами тока (на муське есть обзор одной такой детали), но они выделяют обычно достаточно много тепла, так как имеют низкий КПД. А ведь преимущество светодиодов как раз в высоком КПД.
Более интересными являются импульсные стабилизаторы тока, они посложнее, но имеют гораздо больший КПД, особенно если напряжение питания сильно отличается от напряжения на светодиоде.
Да, многие скажут что такой драйвер проще купить в Китае и не заморачиваться, соглашусь.
Но ведь всегда приятнее сделать что то своими руками. Собственно я так и решил, заказывая компоненты для драйвера.
Возможно я изобретаю велосипед. Но в обзоре учавствуют компоненты, которые пригодятся для многих других задач, и возможно многим будет полезна информация о том, что на продают и что мы получаем на самом деле.
Начну собственно с микросхемы. Это довольно хорошо известная любителям светодиодов PT4115. описание — www.micro-bridge.com/data/CRpowtech/PT4115E.pdf
Микросхема имеет вывод для управления яркостью. Вход, насколько я понял, может управляться и ШИМом или изменением напряжения. Вход довольно высокоомный, так как при прикосновении к этому выводу светодиод начинал мерцать с частотой 100Гц.
Стоимость лота из 10 штук — 2 доллара.
После заказа микросхемы продавец отписался что посылка будет без трека и спросил, устроит ли это меня, я решил что 2 доллара не те деньги что бы сильно беспокоиться и дал добро.
Через некоторое время в почтовом ящике я обнаружил конверт.
Внутри был пакетик с необходимыми мне микросхемами.
Микросхема и другие компоненты драйвера мощного светодиода.
Проверил одну микросхему, подключив ее навесным монтажом, отписал продавцу что все в порядке, подтвердил получение и стал ждать остальные детали.
После этого пришли дроссели — ссылка
Стоимость лота из 10 штук 1.66 доллара.
Их уже принесли мне на дом (впрочем как и следующий заказ).
Они были упакованы в картонную коробочку, хотя мне такая мера кажется излишней.
К слову у нас такие дроссели стоят значительно дороже, да и покупал я их не только для этого.
Собственно дроссели, Индуктивность 68 мкГн, ток 1.6 или 1.8 Ампера (у продавца не указано, потому ориентировочно), размеры 12х12х7мм.
Микросхема и другие компоненты драйвера мощного светодиода.
Замер индуктивности показал отклонение в пределах погрешности.
Микросхема и другие компоненты драйвера мощного светодиода.
Аналогично первому случаю подтвердил заказ, оставил хороший отзыв.
Ну и в конце пришли диоды Шоттки. Так как вещь в хозяйстве нужная, то заказал я их сотню.
Хотел больше, но не стал рисковать — ссылка
Цена лота из 100 штук 2.26 доллара. У нас они тоже стоят дороже.
Микросхема и другие компоненты драйвера мощного светодиода.
Диоды промаркированы как SS34, на самом деле они меньше, по габаритам и характеристикам полностью соответствуют диодам SS24. www.onsemi.ru.com/pub_link/Collateral/SS24-D.PDF
Сделал замер падения напряжения на диоде при токе в 1 Ампер и меня он устроил.
Микросхема и другие компоненты драйвера мощного светодиода.
На этом часть закупок на Алиэкспресс закончилась.
В принципе на этом можно было и обзор закончить, но купить детали и не опробовать их в деле было бы неправильно. Потому естественно было решено довести дело до какого то логического конца.
Когда был у нас на рынке, попутно купил smd резисторы 1206 сопротивлением 1 Ом для датчика тока.
Думал сначала купить сразу низкоомные резсторы как в даташите на микросхему, но они выходят значительно дороже и если захочется настроить на разные токи, то надо покупать несколько номиналов, в общем неудобно, а резисторы 1 Ом я и так иногда использую.
в итоге получилось, что 1 такой резистор примерно соответствует току 0.1 Ампера, два параллельно 0.2 Ампера и т.д. smd резисторы и конденсаторы удобно паяются друг на друга потому можно легко подбирать необходимый ток.
Конденсаторы на входной фильтр питания и обрезки текстолита у меня были, а больше ничего не требуется.
Ну в общем стал я изобретать свой велосипед драйвер. накидал побыстрому платку в Спринте, схема из даташита, потому придумывать ничего не пришлось.
подобрал кусочек текстолита что бы сделать сразу 5 плат (планирую переделать 5 галогеновых светильников на светодиоды).
Немного фоток процесса и схема
На выходе получилась такая платка, она больше по размерам чем продающиеся у китайцев, но имеет более мощный дроссель и два параллельных диода, соответственно меньшие потери и большую надежность, а габариты мне были совершенно некритичны.
Микросхема и другие компоненты драйвера мощного светодиода.
После этого естественно захотелось проверить (куда же без этого).
Проверял с этими светодиодами
Попутно выяснилось, что микросхема ток стабилизирует нормально, но все равно при полуторакратном повышении напряжения на входе, ток на выходе хоть несильно, но меняется.
Но я немного грешу на то, что может быть большая погрешность из-за пульсирующего тока (выходной ток измерял последовательно со светодиодом).
Можно было конечно померять ток при помощи резистора и осциллографа, но я счел это излишним, так как хорошо было заметно переход с линейного режима до ограничения тока, и последующий переход в режим стабилизации в режиме с ШИМ стабилизацией.
Номинал шунта был 1/6=0,166 Ома.
При таких параметрах на входе, на выходе был ток 0.7 Ампера.
Микросхема и другие компоненты драйвера мощного светодиода.
При таких ток на выходе был 0.65 Ампера
Микросхема и другие компоненты драйвера мощного светодиода.
Перед пороговым напряжением перехода в режим ШИМ стабилизации я получил максимальный ток —
Микросхема и другие компоненты драйвера мощного светодиода.
При плавном повышении напряжения питания, входной ток сначала плавно рос, после перехода в режим стабилизации и дальнейшем повышении начинал плавно падать, что говорит о работе ШИМ стабилизации.
Кстати, при очень плавном повышении напряжения питания заметен переход, яркость светодиода сначала плавно увеличивается, после перехода скачкообразно снижается процентов на 10, после этого (при дальнейшем повышении входного напряжения) больше не меняется.
Видимо так микросхема отрабатывает включение ШИМ стабилизации.
Нагрев при токе 600мА практически не чувствуется, бесконтактно мерять нечем, а контактное измерение внесет большую погрешность.
Пробовал давать на выход 1 Ампер, нагрев конечно увеличивался, но несильно. да и нагрев был только у микросхемы. В общем остался доволен.
Спросите почему не купил готовое на том же Али?
-Детали пригодятся и в других поделках.
-Хотелось немного «размять руки».
-Затраты на все компоненты получились примерно 1 доллар на 1 плату.
-Решил протестировать не готовое устройство, а детали, так как их применяют не только в драйверах.
-На выходе получил устройство надежнее, чем предлагают магазины Китая.
Очень надеюсь, что данный обзор будет полезен.
Перейти в магазин
Микросхема bp2836d схема включения
Содержание
- 1 Причины выхода из строя светодиодной лампы
- 2 Аналоги bp2831a
- 3 Как подобрать нужную микросхему для драйвера питания?
Светодиоды – наиболее оптимальный источник освещения. Они экономичны, долговечны, их спектр наиболее близок к естественному свету, поэтому наиболее комфортен для человека. Повсеместному распространению их препятствует лишь достаточно высокая стоимость, но даже при этом за время эксплуатации они окупятся многократно.
Иногда они выходят из строя раньше окончания эксплуатационного периода. Ну, не предусмотрел производитель, что напряжение в сети будет прыгать сильнее курса евро на валютной бирже. Никому не придёт в голову ремонтировать сгоревшую лампочку накаливания. Да и ремонт энергосберегающей лампы по стоимости будет часто сопоставим с покупкой нового экземпляра, поскольку большая часть её стоимости именно блок управления.
Причины выхода из строя светодиодной лампы
При перепаде напряжения чаще всего сгорает микросхема – драйвер питания. Выход из строя диодного моста либо сглаживающего конденсатора скорее казуистика.
В промышленных лампах чаще всего в качестве высоковольтного драйвера питания используют микросхему bp2831. Её задача – обеспечить стабильное напряжение, подаваемое на светодиоды.
Вот классическая схема питания для таких ламп. Понятно, что номинал радиодеталей может незначительно различаться, но общий принцип схемы будет одинаковым.
Назначение управляющих выводов:
VCC – положительный полюс питания;
GND – земля;
ROVP – ограничение напряжение;
CS – ограничение тока;
DRAIN – выход диммированного сигнала.
Эта микросхема представляет собой ШИМ-контроллер, управляющий сигнал, которого коммутируется через мощный мосфетовский полевой транзистор.
Вот так она выглядит на плате
Размещение bp2831 на плате
Аналоги bp2831a
Существует несколько распространённых микросхем для создания драйверов питания светодиодов, например bp3122, bp2832, bp2833. Следует отметить, что принцип работы у всех вариантов одинаковый, есть лишь небольшие различия в подключениях вывода.
Схема включения bp3122
Схема включения bp2831
Схема включения bp2832a
Схема включения bp2833
Различаются эти микросхемы лишь мощностью выходного каскада.
Параметры микросхем драйверов питания | |||
---|---|---|---|
Микросхема | Тип корпуса | Мощность выходного каскада, мА | |
36В | 72В | ||
bp9912/9913 | TO92/SOT23 | 75-160 | 90-200 |
bp2831 | SOP8 | 160 | 220 |
bp2832/2833 | SOP8 | 220 | 300 |
bp3122 | DIP7 | 240 | 320 |
Как подобрать нужную микросхему для драйвера питания?
Часто бывает, что при перегреве микросхемы маркировка на ней выгорает. Тогда потребуется произвести расчёт приблизительной мощности устройства.
Определяем мощность лампы.
Вариант 1. Смотрим маркировку на корпусе лапы в районе цоколя. Если она стёрлась, а в люстре несколько таких лампочек, скорее всего они одинаковой мощности. В том случае, когда ни на одной лампе не удалось обнаружить маркировку, сравните их яркость с обыкновенными лампами накаливания. Мощность светодиодной лампы приблизительно в пять раз меньше мощности аналога с нитью накаливания.
Вариант 2. Считаем количество светодиодов. Если их очень много – это cmd3528 с напряжением питания 3,3В и силой тока 20мА. Около 20 небольших — cmd 5050 на 3,3В и 60мА, крупные светодиоды — cmd5730 на 3,3В и 0,15А.
Соответственно мощность лампы = количество светодиодов * 3,3В * силу тока одного светодиода.
Лампа на 3Вт, 44 диода | Лампа на 4,5Вт, 22 диода | Лампа на 9Вт, 20 диодов |
48 х 0,02А х 3,3В = 2,9Вт | 22 х 0,06А х 3,3В = 4,3Вт | 20 х 0,15А х 3,3В = 9,9 Вт |
Пиковая мощность драйверов питания | ||
---|---|---|
Микросхема | Пиковая мощность выходного каскада, Вт | |
36В | 72В | |
bp9912/9913 | 2. 7-5.5 | 7-14 |
bp2831 | 6 | 16 |
bp2832/2833 | 8 | 21 |
bp3122 | 9 | 24 |
Светодиоды могут иметь последовательное соединение, либо несколько параллельных цепочек.
Внимательно осмотрите монтажную плату. Если на ней последовательно соединено по 22 элемента, напряжение питания цепочки – 72В, когда по 11 – 36В.
Соответственно, сила тока в цепи – номинальный ток диода * количество параллельных цепочек.
- Цена: $8.84 (сейчас продавец поднял цену до $9.40)
- Перейти в магазин
Как Вы видите, как сама плата со светодиодами, так и драйвер имеют магнитные крепления, позволяющие легко установить начинку светильника на металлическое основание лампы.
Заказ сделал за свои кровные деньги. Скрин заказа Вы можете увидеть по спойлером:
Товар был отправлен с отслеживаемым трек-номером и доехал довольно быстро. Дата заказа 17 марта, на таможне посылка засветилась 2 апреля… Оказалось, что фирма-производитель практически мои соседи, и г. Урумчи (КНР), а это почти рядом с г. Алматы. Обычно продавцы из Южного Китая, а тут первый раз промежуточный пункт доставки Урумчи (обычно все посылки из Китая в Казахстан идут через этот город), оказался пунктом отправления.
Получил посылку, все упаковано в несколько слоев «пупырки», в посылке была светодиодная плата, драйвер, пружинная колодка и некоторое количество болтиков М3 и гаек, в которые встроены магниты. Собранный вариант готовый для инсталляции на фото:
Драйвер легко разборный, держится на защелках. Внутри обычный китайский драйвер, с одним отличием, что это все спрятано в белую пластмассовую коробочку:
Как мы видим, драйвер построен на микросхеме BP2836D по типовой схеме с даташит. Это не имеющий развязки от сети понижающий светодиодный драйвер, с фиксированным током на выходе.
Надо иметь ввиду, что на светодиодной плате присутствует сетевое напряжение. Потому не надо засовывать пальцы в розетку, нужно соблюдать технику безопасности.
Убираем из лампы всю мою прошлую электронную поделку:
И примеряем светодиодную плату… В общем, последнее время, я стал часто ошибаться в выборе размеров и т.п. Промахнулся я и с размером светодиодной платы… Она оказалась больше чем основание лампы, но в принципе магниты цепляют металл, в двух местах, потому особых проблем нет, может оно даже к лучшему… Так как у большей по размеру платы, большая мощность, а декоративное стекло прижмет плату, и у нее нет шансов вывалится на голову.
Закрываем все это плафоном и включаем…
Светит лампа визуально ярко… Даже очень ярко… Замерить световой поток нечем, да и какой смысл, на балконе светло, все хорошо видно. Если поставить экспозицию по самой лампе, то становится видно световые пятна идущие по кругу, что довольно симпатично…
Поскольку нынче обзор у меня «потребительский», то я не буду проводить измерения напряжения, тока драйвера. Тот, кому это нужно, легко найдет информацию в даташит, там все подробно расписано. Расскажу только про температуру платы с светодиодами. Я оставил гореть светильник на 2 часа, потом полез за термопарой, что бы измерить температуру платы, но передумал, т.к температура платы была примерно 42-45С, рукой ощущается как теплая, соответственно у светодиодов достаточный теплоотвод, и необходимости что то придумывать нет. Визуального мерцания светодиодов тоже нет, да и не должно быть, т.к используется нормальный драйвер с нормальным электролитическим конденсатором на входе.
В общем всем, кто ищет хорошее готовое решение, на замену в штатный светильник, с минимальной переделкой – рекомендую подобные платы с драйвером. Всем мира и добра!
Это не п.18… )))) Мне действительно понравилось это решение, за вменяемые деньги.
UPD: По многочисленным просьбам измерил напряжение и ток светодиодов. Напряжение 80В Ток 0.25А. Итого реальная мощность светильника 20W Чуть не дотягивает до заявленной.
Недавно один знакомый попросил меня помочь с проблемой. Он занимается разработкой LED ламп, попутно ими приторговывая. У него скопилось некоторое количество ламп, работающих неправильно. Внешне это выражается так – при включении лампа вспыхивает на короткое время (менее секунды) на секунду гаснет и так повторяется бесконечно. Он дал мне на исследование три таких лампы, я проблему решил, неисправность оказалась очень интересной (прямо в стиле Эркюля Пуаро) и я хочу рассказать о пути поиска неисправности.
LED лампа выглядит вот так:
Рис 1. Внешний вид разобранной LED лампы
Разработчик применил любопытное решение – тепло от работающих светодиодов забирается тепловой трубкой и передается на классический алюминиевый радиатор. По словам автора, такое решение позволяет обеспечить правильный тепловой режим для светодиодов, минимизируя тепловую деградацию и обеспечивая максимально возможный срок службы диодов. Попутно увеличивается срок службы драйвера питания диодов, так как плата драйвера оказывается вынесенной из теплового контура и температура платы не превышает 50 градусов Цельсия.
Такое решение – разделить функциональные зоны излучения света, отвода тепла и генерации питающего тока – позволило получить высокие эксплуатационные характеристики лампы по надежности, долговечности и ремонтопригодности.
Минус таких ламп, как ни странно, прямо вытекает из ее плюсов – долговечная лампа не нужна производителям :). Историю о сговоре производителей ламп накаливания о максимальном сроке службы в 1000 часов все помнят?
Ну и не могу не отметить характерный внешний вид изделия. Мой «госконтроль» (жена) не разрешил мне ставить эти лампы в люстру, где они видны.
Вернемся к проблемам драйвера.
Вот так выглядит плата драйвера:
Рис 2. Внешний вид платы LED драйвера со стороны поверхностного монтажа
И с обратной стороны:
Рис 3. Внешний вид платы LED драйвера со стороны силовых деталей
Изучение ее под микроскопом позволило определить тип управляющей микросхемы – это MT7930. Это микросхема контроля обратноходового преобразователя (Fly Back), обвешанная разнообразными защитами, как новогодняя елка – игрушками.
В МТ7930 встроены защиты:
• от превышения тока ключевого элемента
• понижения напряжения питания
• повышения напряжения питания
• короткого замыкания в нагрузке и обрыва нагрузки.
• от превышения температуры кристалла
Декларирование защиты от короткого замыкания в нагрузке для источника тока носит скорее маркетинговый характер 🙂
Принципиальной схемы на именно такой драйвер добыть не удалось, однако поиск в сети дал несколько очень похожих схем. Наиболее близкая приведена на рисунке:
Рис 4. LED Driver MT7930. Схема электрическая принципиальная
Анализ этой схемы и вдумчивое чтение мануала к микросхеме привело меня к выводу, что источник проблемы мигания – это срабатывание защиты после старта. Т.е. процедура начального запуска проходит (вспыхивание лампы – это оно и есть), но далее преобразователь выключается по какой-то из защит, конденсаторы питания разряжаются и цикл начинается заново.
Внимание! В схеме присутствуют опасные для жизни напряжения! Не повторять без должного понимания что вы делаете!
Для исследования сигналов осциллографом надо развязать схему от сети, чтобы не было гальванического контакта. Для этого я применил разделительный трансформатор. На балконе в запасах были найдены два трансформатора ТН36 еще советского производства, датированные 1975 годом. Ну, это вечные устройства, массивные, залитые полностью зеленым лаком. Подключил по схеме 220 – 24 – 24 -220. Т.е. сначала понизил напряжение до 24 вольт (4 вторичных обмотки по 6.3 вольта), а потом повысил. Наличие нескольких первичных обмоток с отводами дало мне возможность поиграть с разными напряжениями питания – от 110 вольт до 238 вольт. Такое решение конечно несколько избыточно, но вполне пригодно для одноразовых измерений.
Рис 5. Фото разделительного трансформатора
Из описания старта в мануале следует, что при подаче питания начинает заряжаться конденсатор С8 через резисторы R1 и R2 суммарным сопротивлением около 600 ком. Два резистора применены из требований безопасности, чтобы при пробое одного ток через эту цепь не превысил безопасного значения.
Итак, конденсатор по питанию медленно заряжается (это время порядка 300-400 мс) и когда напряжение на нем достигает уровня 18,5 вольт – запускается процедура старта преобразователя. Микросхема начинает генерировать последовательность импульсов на ключевой полевой транзистор, что приводит к возникновению напряжения на обмотке Na. Это напряжение используется двояко – для формирования импульсов обратной связи для контроля выходного тока (цепь R5 R6 C5) и для формирования напряжения рабочего питания микросхемы (цепь D2 R9). Одновременно в выходной цепи возникает ток, который и приводит к зажиганию лампы.
Почему же срабатывает защита и по какому именно параметру?
Срабатывание защиты по превышению выходного напряжения?
Для проверки этого предположения я выпаял и проверил резисторы в цепи делителя (R5 10 ком и R6 39 ком). Не выпаивая их не проверить, поскольку через обмотку трансформатора они запараллелены. Элементы оказались исправны, но в какой-то момент схема заработала!
Я проверил осциллографом формы и напряжения сигналов во всех точках преобразователя и с удивлением убедился, что все они – полностью паспортные. Никаких отклонений от нормы…
Дал схеме поработать часок – все ОК.
А если дать ей остыть? После 20 минут в выключенном состоянии не работает.
Очень хорошо, видимо дело в нагреве какого-то элемента?
Но какого? И какие же параметры элемента могут уплывать?
В этой точке я сделал вывод, что на плате преобразователя имеется какой-то элемент, чувствительный к температуре. Нагрев этого элемента полностью нормализует работу схемы.
Что же это за элемент?
Подозрение пало на трансформатор. Проблема мыслилась так – трансформатор из-за неточностей изготовления (скажем на пару витков недомотана обмотка) работает в области насыщения и из-за резкого падения индуктивности и резкого нарастания тока срабатывает защита по току полевого ключа. Это резистор R4 R8 R19 в цепи стока, сигнал с которого подается на вывод 8 (CS, видимо Current Sense) микросхемы и используется для цепи ОС по току и при превышении уставки в 2.4 вольта отключает генерацию для защиты полевого транзистора и трансформатора от повреждений. На исследуемой плате стоит параллельно два резистора R15 R16 с эквивалентным сопротивлением 2,3 ома.
Но насколько я знаю, параметры трансформатора при нагреве ухудшаются, т.е. поведение системы должно быть другим – включение, работа минут 5-10 и выключение. Трансформатор на плате весьма массивный и тепловая постоянная у него ну никак не менее единиц минут.
Может, конечно в нем есть короткозамкнутый виток, который исчезает при нагреве?
Перепайка трансформатора на гарантированно исправный была в тот момент невозможна (не привезли еще гарантированно рабочую плату), поэтому оставил этот вариант на потом, когда совсем версий не останется :). Плюс интуитивное ощущение – не оно. Я доверяю своей инженерной интуиции.
К этому моменту я проверил гипотезу о срабатывании защиты по току, уменьшив резистор ОС по току вдвое припайкой параллельно ему такого же – это никак не повлияло на моргание лампы.
Значит, с током полевого транзистора все нормально и превышения по току нет. Это было хорошо видно и по форме сигнала на экране осциллографа. Пик пилообразного сигнала составлял 1,8 вольта и явно не достигал значения в 2,4 вольта, при котором микросхема выключает генерацию.
К изменению нагрузки схема также оказалась нечувствительна – ни подсоединение второй головки параллельно, ни переключение прогретой головы на холодную и обратно ничего не меняло.
Я исследовал напряжение питания микросхемы. При работе в штатном режиме все напряжения были абсолютно нормальными. В мигающем режиме тоже, насколько можно было судить по формам сигналов на экране осциллографа.
По прежнему, система мигала в холодном состоянии и начинала нормально работать при прогреве ножки трансформатора паяльником. Секунд 15 погреть – и все нормально заводится.
Прогрев микросхемы паяльником ничего не давал.
И очень смущало малое время нагрева… что там может за 15 секунд измениться?
В какой-то момент сел и методично, логически отсек все гарантированно работающее. Раз лампа загорается — значит цепи запуска исправны.
Раз нагревом платы удается запустить систему и она часами работает — значит и силовые системы исправны.
Остывает и перестает работать — что-то зависит от температуры…
Трещина на плате в цепи обратной связи? Остывает и сжимается, контакт нарушается, нагревается, расширяется и контакт восстанавливается?
Пролазил тестером холодную плату — нет обрывов.
Что же еще может мешать переходу от режима запуска в рабочий режим.
От полной безнадеги интуитивно припаял параллельно электролитическому конденсатору 10 мкф на 35 вольт по питанию микросхемы такой же.
И тут наступило счастье. Заработало!
Замена конденсатора 10 мкф на 22 мкф полностью решило проблему.
Вот он, виновник проблемы:
Рис 6. Конденсатор с неправильной емкостью
Теперь стал понятен механизм неисправности. Схема имеет две цепи питания микросхемы. Первая, запускающая, медленно заряжает конденсатор С8 при подаче 220 вольт через резистор в 600 ком. После его заряда микросхема начинает генерировать импульсы для полевика, запуская силовую часть схемы. Это приводит к генерации питания для микросхемы в рабочем режиме на отдельной обмотке, которое поступает на конденсатор через диод с резистором. Сигнал с этой обмотки также используется для стабилизации выходного тока.
Пока система не вышла в рабочий режим — микросхема питается запасенной энергией в конденсаторе. И ее не хватало чуть-чуть — буквально пары-тройки процентов.
Падения напряжения оказалось достаточно, чтобы система защиты микросхемы срабатывала по пониженному питанию и отключала все. И цикл начинался заново.
Отловить эту просадку напряжения питания осциллографом не получалось — слишком грубая оценка. Мне казалось, что все нормально.
Прогрев же платы увеличивал емкость конденсатора на недостающие проценты — и энергии уже хватало на нормальный запуск.
Понятно, почему только некоторая часть драйверов отказала при полностью исправных элементах. Сыграло роль причудливое сочетание следующих факторов:
• Малая емкость конденсатора по питанию. Положительную роль сыграл допуск на емкость электролитических конденсаторов (-20% +80%), т.е. емкости номиналом 10 мкф в 80% случаев имеют реальную емкость около 18 мкф. Со временем емкость уменьшается из-за высыхания электролита.
• Положительная температурная зависимость емкости электролитических конденсаторов от температуры. Повышенная температура на месте выходного контроля — достаточно буквально пары-тройки градусов и емкости хватает для нормального запуска. Если предположить, что на месте выходного контроля было не 20 градусов, а 25-27, то этого оказалось достаточно для практически 100% прохождения выходного контроля.
Производитель драйверов сэкономил конечно, применив емкости меньшего номинала по сравнению с референс дизайн из мануала (там указано 22 мкф) но свежие емкости при повышенной температуре и с учетом разброса +80% позволили партию драйверов сдать заказчику. Заказчик получил вроде бы работающие драйверы, которые со временем стали отказывать по непонятной причине. Интересно было бы узнать – инженеры производителя учли особенности поведения электролитических конденсаторов при повышении температуры и естественный разброс или это получилось случайно?
Обзор светодиодной лампы Philips 6 Вт
С 1989 г.
Освещение
Сегодня я купил новую светодиодную лампу Philips в местном магазине. Это тратит мне 21 юань (3,5 доллара). Для большинства из нас стоимость высока, по сравнению с КЛЛ и лампой накаливания! Но когда вы найдете тот же тип в Ecommerce. Он тратит меньше, его цена составляет около 14 юаней (около 2 долларов США). Черт! Когда я смотрю на его корпус, этот тип светодиодной лампы может быть новой версией. Как мы знаем, стандарт IEC/EN был пересмотрен, рынок сильно изменился.
Более того, я ищу эту светодиодную лампочку, но не могу ее найти. Кажется, эта новая версия не продается в других странах? Это реально?
Рейтинг:
Марка | Филипс |
Модель | BPZ500-S730E27U- 92 044А |
Входное напряжение | 220–240 В переменного тока |
Входной ток | 55 мА |
Мощность | 6 Вт |
Коэффициент мощности | н/д |
ССТ | 3000 к |
Частота | 50/60 Гц |
Вес | 48,3 г (лампы накаливания: 31,0 г) |
Люмен | 500 лм (равнозначно: 10 Вт КЛЛ, 44 Вт лампы накаливания) |
Срок службы | 8000 ч |
Затемнение | № |
Стандарт | Рохс/GB 24906(IEC. EN 62560)/IEC 62471 (ЭМС?) |
Размер | 59 x 106 мм |
Пакет Передняя сторона
Сторона пакета
Сторона пакета
Сторона пакета
Top Top Dise хорошо среди марки светодиодных ламп. большинство брендов не показывают данные светодиодной лампы, не сообщают сертификат продукта.
Проверка входа
Входное напряжение (В) | Входной ток (мА) | Мощность (Вт) | ПФ |
---|---|---|---|
100 | 0,90 | 5,9 | 0,66 |
120 | 0,81 | 6,3 | 0,64 |
220 | 0,50 | 6.1 | 0,53 |
230 | 0,49 | 6,0 | 0,53 |
240 | 0,49 | 6.1 | 0,53 |
254 | 0,48 | 6. 1 | 0,51 |
Результат входного теста
Соответствует рейтингу на упаковке из результата входного теста, на рынке Китая вы не можете найти хорошее качество. Многие бренды продают плохие продукты.
Теперь я знаю, почему не продают в развитых странах!
Проверьте ключевую вещь — коэффициент мощности! Менее 0,6 при входном напряжении 220–240 В переменного тока. Требования Energy Star выше 0,8, ЦИК выше 0,9! Должно ли правительство Китая сделать больше для энергетики!
Проверьте требования ERP ЕС, не может соответствовать стандарту, например срок службы.
Термическое испытание
Мы проводим тепловое испытание светодиодной лампы. Цоколь лампы поднят, работает 2 часа, температура корпуса достигает 50°C при температуре окружающей среды 18°C. Это может быть терпимо, если вы прикоснетесь к корпусу.
Оптический тест
Эта деталь дорогая, извините. Я не тестирую эту часть.
Разборка
С помощью плоской отвертки медленно и осторожно оторвите диффузор из ПММА. Когда вы открываете это, до вас доносится неприятный запах, возможно, от клея.
Когда вы посмотрите на светодиодную часть, я запутался со светодиодной платой. Что за чертовщина.
Вот крупный план светодиодов на печатной плате.
При включении света там видны какие-то SMD компоненты. Есть 3 резистора, 2 конденсатора, 1 диод и 1 выпрямитель. Почему? Если вы разобрали несколько светодиодных лампочек, это покажется вам странным. Не так много производителей будут проектировать так! Это интегрированная светодиодная плата. Все компоненты встроены в печатную плату. На самом деле, технический дизайн не является зрелым. Светодиодная плата крепится 3 винтами. Я не могу найти номер файла UL на плате светодиодов. Светодиодная плата выглядит без сертификата UL.
Я использовал острогубцы, чтобы раздавить цоколь лампы E27. И снимите кнопку на металлическом винте. Будьте осторожны, не навредите себе. Там есть два небольших провода (может быть провод 24 AWG), подключенных к металлическим частям основания винта, один к кончику основания и один к металлической обертке.
Теперь светодиодная лампа встанет. Вы можете увидеть индукторы и alimuimn конденсатор внутри. Предохранитель-резистор на проводе L.
Потратив 5-10 минут, я, наконец, снял светодиодную плату. Между платой светодиодов и металлической частью корпуса много клея. Как вы можете видеть металлическую форму на картинке ниже. Теперь снаружи корпуса есть 3 выпуклости.
Вот выпрямитель. Номер MBL10SDE45, там 2 конденсатора, катушка индуктивности и 1 триод. Вы можете обнаружить, что светодиодная печатная плата представляет собой односторонний ламинат с медным покрытием, формованную печатную плату.
Триодный вид. Номер BP9912C 15F34A F46P от Bright Power Semiconductor.
Эта схема лампы похожа на типичную схему применения.