Блок питания из: Лабораторный блок питания своими руками

Анатомия. Из чего состоит блок питания? — i2HARD

Статьи

Евгений Серов

5 марта 2020

Он есть в каждом компьютере, ноутбуке и приставке. Он не влияет на вашу частоту кадров и майнинг биткоинов. У него нет миллиардов транзисторов, и в его производстве не используются новейшие полупроводниковые техпроцессы. Звучит скучно? Ничуть! Без этой штуки наши компьютеры абсолютно ничего бы не сделали.

БП, они же блоки питания (англ. PSU, Power Supply Units), не взрывают заголовки журналов как новейшие процессоры, но это интереснейшие технологии, заслуживающие нашего внимания. Так что надевайте белые халаты, маски, перчатки и приступим к вскрытию нашего скромного парнишки – блока питания, разберём его на части и рассмотрим, чем занимается каждый его орган.

И да, совсем недавно мы разбирались как правильно выбрать Блок питания. Рекомендуем к прочтению.

Что это и с чем это едят?

Многие компьютерные компоненты имеют названия, требующие чуточку технических знаний, чтобы понять, что это и зачем (например, твердотельный накопитель), но в случае блока питания всё довольно очевидно. Это блок, обеспечивающий питание.

Но мы же не можем на этом поставить точку, с гордостью заявив «статья готова». Наш цикл статей посвящен внутреннему строению, и на операционном столе у нас лежит подопытный –
Cooler Master G650M. Это довольно типичный представитель, с характеристиками, подобными десяткам других моделей, но у него есть одна особенность, встречающаяся не во всех блоках питания.


Официальное фото блока питания Cooler Master.

Это блок питания стандартного размера, соответствующий форм-фактору
ATX 12V v2.31, поэтому он подходит для многих компьютерных корпусов.

Есть и другие форм-факторы – например, для малых корпусов, либо вовсе уникальные по спецзаказу. Не каждый блок соответствует точным размерам, установленным стандартными форм-факторами – они могут быть одинаковой ширины и высоты, но отличаться по длине.

Этот блок питания от Cisco специально спроектирован для серверных стоек

В маркировке PSU обычно указывается их основной параметр – максимально обеспечиваемая мощность. В случае с нашим Cooler Master, это 650 Вт. Позже мы поговорим, что это на самом деле значит, а пока лишь заметим, что есть и менее мощные БП, поскольку не всем компьютерам требуется именно столько, а некоторым достаточно даже на порядок меньше. Но всё-ж большинство настольных компьютеров обеспечены питанием в диапазоне от 400 до 600 Вт.

Блоки питания вроде нашего собираются в прямоугольных, зачастую неокрашенных, металлических корпусах, отчего бывают достаточно увесистые. У ноутбуков блок питания практически всегда внешний, в пластиковом корпусе, но его внутренности очень схожи с тем, что мы увидим у рассматриваемого нами БП.


Источник фотографии nix.ru

Большинство типичных блоков питания оснащены сетевым выключателем и кулером для активной терморегуляции, хотя в ней не все БП нуждаются. И не у всех из них есть вентиляционная решётка – у серверных версий, в частности, это редкость.

Ну что-ж, как вы можете видеть на фото выше, мы уже вооружены отверткой и готовы приступить к вскрытию нашего экземпляра.

Немного теории

Но прежде чем мы начнем копаться во внутренностях, давайте зададимся вопросом, действительно ли блок питания настолько необходим? Почему нельзя подключить компьютер напрямую к розетке? Ответ заключается в том, что компьютерные комплектующие рассчитаны на совсем другое напряжение, нежели сетевое.

На графике ниже показано, каким должно быть электричество сети (в США = синяя и зеленая кривые; Великобритания = красная кривая). Ось X представляет время в миллисекундах, а ось Y – напряжение (voltage) в вольтах. Проще всего понять, что такое напряжение, глядя на разность энергий между двумя точками.

Если напряжение приложено к проводнику (например, к металлической проволоке), разница в энергии заставит электроны в материале проводника течь от более высокого энергетического уровня к более низкому. Электроны – составляющие атомов, из которых состоит проводник, и металлы имеют много электронов, которые могут свободно перемещаться. Этот поток электронов называется током (current) и измеряется в амперах.

Хорошую аналогию можно провести с садовым шлангом: напряжение сродни давлению, которое вы используете, а расход воды – это ток. Любые ограничения и препятствия в шланге – по сути как электрическое сопротивление.

Мы видим, что электричество в сети варьируется с течением времени, из-за чего оно называется напряжением переменного тока (AC, alternating current). В США сетевое напряжение меняется 60 раз в секунду, достигая пиковых значений 340 В или 170 В, в зависимости от местоположения и способа подключения. В Великобритании пиковые напряжения пониже, и частота этих колебаний также немного отличается. Большинство стран придерживаются схожих стандартов сетевого напряжения, и лишь в немногих странах пиковые напряжения более низкие или более высокие.

Потребность в блоке питания заключается в том, что компьютеры не работают с переменным током: им нужно постоянное напряжение, которое никогда не меняется, и кроме того – гораздо более низкое. На том же графике оно будет выглядеть примерно вот таким:

Но современному компьютеру требуется не одно постоянное напряжение, а четыре: +12 вольт, -12 вольт, +5 вольт и +3,3 вольта. И поскольку эти значения не меняются, такой ток называется постоянным (DC, direct current). Преобразование тока из переменного в постоянный (т.н. выпрямление) – одна из основных функций блока питания. Пришло время вскрыть его и посмотреть, как он это делает!

Преобразование тока из переменного в постоянный – одна из основных функций PSU. Пришло время посмотреть, как он это делает!

Здесь мы должны предупредить вас, что в блоке питания есть элементы, накапливающие электричество, в том числе смертельное. Поэтому разбирать PSU потенциально опасно.


Официальное фото блока питания Cooler Master.

Принцип работы этого блока питания аналогичен многим другим, и хоть маркировки на различных деталях внутри будут отличаться, принципиальных различий это не делает.

Разъём сетевого шнура находится в верхнем левом углу фотографии, и ток по сути идет по часовой стрелке, пока не достигнет выхода из блока питания (пучок цветных проводов, нижний левый угол).


Источник фото techspot.com

Если мы перевернем плату, мы увидим, что по сравнению с материнской платой, проводники и соединения на ней более широкие и массивные – это потому, что они рассчитаны на более высокие токи. Также, бросается в глаза широкая полоса в середине, будто текущая по равнине река.

Это снова говорит о том, что все блоки питания имеют два четко разделённых узла: первичный и вторичный. Первый – это настройка входного напряжения, чтобы его можно было эффективно понижать; второй – это все настройки уже выпрямленного и пониженного напряжения.

Фильтрация

Первое, что блок питания делает с сетевым электричеством, это не выпрямление и не понижение, а выравнивание входного напряжения. Поскольку в наших домах, офисах и на предприятиях имеется множество электрических устройств и приборов, постоянно включающихся-выключающихся, а также излучающих электромагнитные помехи, переменный ток в сети часто бывает «скомканный» и со случайными скачками и перепадами (частота также не постоянна). Это не только затрудняет блоку питания выполнять преобразования, но может вывести из строя некоторые элементы внутри него.

Наш БП имеет две ступени так называемых входных фильтров (transient filter), первая из которых построена сразу на входе с помощью трёх конденсаторов. Она выполняет роль, похожую на роль «лежачего полицейского» на дороге – только вместо скорости, этот фильтр гасит внезапные скачки входного напряжения.


Источник фото techspot.com

Вторая ступень фильтра более сложная, но в сущности делает то же самое.

Желтые кирпичики – это снова конденсаторы, а вот зеленые кольца, обмотанные медным проводом, это индуктивные катушки (хотя при таком использовании их обычно называют дросселями). Катушки накапливают электрическую энергию в магнитном поле, но энергия при этом не теряется, а за счет самоиндукции плавно возвращается обратно. Таким образом, внезапно появившийся высокий импульс (скачок) поглощается магнитным полем дросселя, чтобы на выходе дать ровное напряжение без всяких скачков.

Два маленьких синих диска – ещё одни представители многообразия конденсаторов, а чуть ниже них (зелёный, с длинными ножками, обтянутыми черными изоляторами) – металлооксидный варистор (MOV). Они также используются для защиты от скачков входного напряжения. Подробнее о различных типах входных фильтров можно прочитать здесь.


Источник фото techspot.com

По этому узлу блока питания часто можно определить, насколько производитель сэкономил, или к какому бюджетному классу принадлежит девайс. Более дешевые будут иметь упрощённую фильтрацию входа, а самые дешёвые и вовсе не иметь таковой (избегайте таких!).

Теперь, когда напряжение выровнено и причёсано, ему дозволяется идти дальше – собственно, к преобразованию.

Преобразование

Как мы уже сказали, блоку питания нужно изменить напряжение переменного тока, которое в американских розетках обычно в районе 120 вольт (технически, это среднеквадратичные 120 вольт, но мы не будем так язык выламывать), получив на выходе постоянное напряжение 12, 5 и 3,3 вольт.

Первым делом осуществляется преобразование переменного тока в постоянный, и наш блок использует для этого выпрямительный мост. На фото ниже это плоский черный элемент, приклеенный к радиатору.


Источник фото techspot.com

Это еще одно место, где производитель блоков питания может сократить расходы, поскольку более дешевые выпрямители хуже справляются со своей задачей (например, сильнее греются). Теперь, если пиковое входное напряжение составляет 170 В (что имеет место для сети 120 В), то пройдя через выпрямительной мост, оно станет 170 В, но уже постоянного тока.

В таком виде оно поступает на следующую стадию, и в нашем блоке это активный модуль коррекции коэффициента мощности (APFC или Active PFC, Active Power Factor Correction converter). Этот узел также стабилизирует напряжение, сглаживая «провалы» за счет накапливающих конденсаторов; кроме того, он защищает от скачков выходной мощности.

Пассивные корректоры (PPFC или Passive PFC) выполняют по сути ту же работу. Они менее эффективны, но хороши для маломощных блоков питания.


Источник фото techspot.com

APFC на фото выше представлен в виде пары больших цилиндров слева – это конденсаторы, которые накапливают выровненный ток, прежде чем отправить его дальше по цепочке процессов в нашем блоке питания.

За APFC находится ШИМ, широтно-импульсный модулятор (PWM, Pulse Width Modulator). Его предназначение заключается в том, чтобы с помощью нескольких быстро переключающихся полевых транзисторов преобразовать постоянный ток обратно в переменный. Это нужно сделать потому, что на следующем шаге нас ждёт понижающий трансформатор. Эти устройства, основанные на электромагнитной индукции, состоят из двух обмоток с разным количеством витков на металлическом сердечнике, необходимых для понижения напряжения, и работают трансформаторы только с переменным током.

Частота переменного тока (скорость, с которой он изменяется; в герцах, Гц) значительно влияет на эффективность трансформатора – чем выше, тем лучше, поэтому частота исходного питания 50/60 Гц увеличивается примерно в тысячу раз. А чем эффективнее трансформатор, тем меньше его размер. Такой тип устройств, который использует эти сверхбыстрые частоты постоянного тока, называется импульсным источником питания (Switched Mode Power Supply, SMPS).

На фото ниже вы можете видеть 3 трансформатора – самый большой имеет на единственном выходе 12 вольт, а тот, что поменьше – 5 вольт (чуть поговорим ещё о нём позже). В других БП вы можете встретить один большой трансформатор сразу на все напряжения, то есть с несколькими выходами. А самый маленький трансформатор предназначен для защиты транзисторов ШИМ и подавления его помех.

|
Источник фото techspot.com

Можно по-разному реализовать получение необходимых напряжений, защиту ШИМ, и так далее. Всё зависит от бюджетного сегмента и мощности устройства. Однако, всем одинаково необходимо снять напряжения с трансформаторов и снова выпрямить.

На фото ниже мы видим алюминиевый радиатор низковольтных диодов, выполняющих это выпрямление. А также, конкретно в этом PSU, мы видим небольшую дополнительную плату в центре фото – это узел модулей регулирования напряжения (VRM, Voltage Regulation Modules), обеспечивающий выходы 5 и 3,3 вольт.


Источник фото techspot.com

И тут нам стоит поговорить о том, что такое пульсация.

В идеальном мире, с идеальными блоками питания, переменный ток будет преобразован в абсолютно ровный, без малейших колебаний, постоянный ток. В действительности же, такой 100%-ой точности не достигается, и напряжение постоянного тока имеет хоть и незначительные, но колебания.

Этот эффект называется пульсирующим напряжением, и в наших блоках питания мы бы хотели, чтобы оно было как можно меньше. Cooler Master не предоставляет информации о величине пульсирующего напряжения в спецификации к нашему подопытному PSU, поэтому мы прибегли к сторонним результатам тестирования. Один из таких анализов был выполнен
JonnyGuru.com, и они установили, что максимальное пульсирующее напряжение выхода +12 В – 0,042 В (42 милливольт).

График ниже демонстрирует отклонение фактически получаемого напряжения (синяя кривая; при этом её форма, конечно, не такая идеальная синусоида – ведь сама пульсация не постоянна) от требуемого ровного напряжения +12 В постоянного тока (красная прямая).

Это отклонение, по большей части, лежит на совести конденсаторов во всём PSU. Некачественные, дешёвые конденсаторы приводят к увеличению этой не нужной нам пульсации. Если она слишком большая, то некоторые электронные узлы компьютера, наиболее чувствительные к качеству питания, могут начать работать нестабильно. К счастью, в нашем примере 40 с лишним милливольт это нормально. Не супер, но и не плохо.

Но на получении приемлемых выходных напряжений дело ещё не заканчивается. Необходимо обеспечить управление выходами, чтобы питание на каждом из них было всегда полноценным и стабильным, независимо от мощности нагрузок на других выходах.


Источник фото techspot.com

Микросхема, которую вы видите на этом фото, называется супервизор (supervisor) и она следит за тем, чтобы на выводах не оказалось слишком высокого или низкого напряжения и тока. Работает бесхитростно – просто отключает блок питания при возникновении таких проблем.

Более дорогие PSU могут оснащаться ЦПОС, цифровым процессором обработки сигналов (DSP, Digital Signal Processor), который не только мониторит напряжения, но и может отрегулировать их при необходимости, а также отправлять подробные данные о состоянии БП на компьютер, его использующий. Для рядового пользователя эта функция достаточно спорная, но для серверов и рабочих станций – весьма желательная.

Выходы

Все блоки питания поставляются с длинными пучками проводов, торчащими сзади. Количество проводов и доступных разъёмов для запитывания устройств будут отличаться от модели к модели, но некоторые стандартные подключения должны обеспечивать все БП без исключения.

Так как напряжение – это величина разности потенциалов, то каждый выход подразумевает два провода: один для указанного напряжения (например, +12 В) и провод, относительно которого измеряется разность потенциалов. Этот провод называется заземлением, «землёй», «reference wire» или «общим» проводом, и два этих провода образуют петлю: от блока питания до устройства-потребителя, а затем обратно в БП.

Поскольку в некоторых таких замкнутых контурах токи небольшие, они могут использовать общие провода заземления.


Официальное фото блока питания Cooler Master.

Главным из обязательных разъёмов является 24-pin ATX12V v. 2.4, обеспечивающий основное питание с помощью нескольких выводов различных напряжений, а также имеющий ряд специальных выводов.

Из этих специальных отметим лишь вывод «+5 standby» – дежурное питание компьютера. Это напряжение подаётся на материнскую плату всегда, даже когда компьютер выключен, при условии, что он остаётся включен в розетку и его БП исправен. Дежурное питание нужно материнской плате для того, чтобы оставаться активной.

Большинство PSU также имеют дополнительный 8-pin разъём для материнской платы с двумя линиями +12 В, и по крайней мере один 6 или 8-pin разъём питания для PCI Express.

Со слота PCI Express видеокарты могут взять максимум 75 Вт, поэтому этот разъем обеспечивает дополнительную мощность для современных GPU.

Конкретно наш рассматриваемый блок питания по соображениям экономии фактически использует два разъема питания PCI Express на одной и той же линии. Поэтому, если у вас действительно мощная видеокарта, старайтесь выделить ей независимую линию питания, не делите её с другими устройствами.

Разница между 6 и 8-pin разъемами PCI Express – два дополнительных провода заземления. Это позволяет повысить силу тока, удовлетворяя потребности наиболее прожорливых видеокарт.

Последние несколько лет мы всё чаще стали замечать блоки питания с гордой припиской «модульный» (modular PSU). Это просто означает, что у них отстегивающиеся кабели, что позволяет использовать только необходимое количество кабелей и разъёмов, не подключая всё ненужное, освободив тем самым пространство внутри блока.


Источник фотографии nix.ru

Наш Cooler Master, как и большинство, использует довольно простую систему подключения модульных кабелей.

Каждый разъем имеет по одному проводу +12В, +5В и +3,3В, а также два провода заземления, и в зависимости от того, к какому устройству будет подключен кабель, разъем на другом конце будет использовать либо соответствующую, либо упрощённую распайку.

Представленный на фото выше разъем Serial ATA (SATA) используется для подключения питания жестких дисков, твердотельных накопителей и таких периферийных устройств, как DVD-приводы.

Этот всем знакомый разъём называется замысловато: «разъём питания AMP MATE-N-LOK 1-480424-0». Но все называют его просто Molex, невзирая на то, что это всего лишь название компании-разработчика этого разъёма. Он предоставляет по одному выводу +12В и +5В, и два провода заземления.

На выходных проводах производители тоже могут сэкономить или накрутить цену за счет более ярких или более мягких проводов. Сечение провода также играет важную роль, поскольку более толстые провода обладают меньшим сопротивлением, чем тонкие, поэтому меньше греются при прохождении тока по ним.

На что обращать внимание при выборе

В начале нашей статьи мы говорили, что большинство блоков питания имеют в названии значение своей максимальной мощности. Простым языком, электрическая мощность – это напряжение, умноженное на силу тока (например, 12 вольт x 20 ампер = 240 ватт). И хотя такое утверждение не совсем технически точное, для наших целей оно удовлетворительное.

Как и на большинстве моделей, на нашем блоке питания есть шильдик, содержащий основную информацию о том, сколько мощности может обеспечить каждая линия напряжения.


Источник фотографии nix.ru

Здесь мы видим, что суммарная максимальная мощность всех +12 В линий составляет 624 Вт. Приплюсовав все остальные мощности, мы в итоге получим 760 Вт, а не 650. Что тут не так? А дело просто в том, что линии +5 В (кроме дежурной) и +3,3 В создаются через VRM, используя одну из линий +12 В.

Ну и конечно, все выходные напряжения поступают из одного источника: сетевой розетки. Таким образом, мощность в 650 Вт – это максимум, который блок питания может обеспечить в целом по всем линиям. То есть, если у вас на линиях +12 В висит нагрузка в 600 Вт, то на все остальные линии у вас остается всего 50 Вт. К счастью, большинство оборудования в любом случае бо́льшую часть мощности берёт от линий 12 В, поэтому проблема неправильно подобранного БП встречается редко.

Правее от таблицы со спецификациями мощности на шильдике присутствует значок «80 Plus Bronze». Это рейтинг эффективности, используемый в отрасли в соответствии с требованиями к производителям блоков питания. Эффективность также отражает величину общей нагрузки, которую блок питания способен обслуживать.

20%, 50% и 100% – процент нагрузки по отношению к максимальной мощности для стандартных систем

Если наш Cooler Master нагрузить ровно на половину его максимальной мощности, то есть на 325 Вт, то его ожидаемый КПД будет в пределах 80-85% в зависимости от напряжения в сети (115/230 В).

Это означает фактическую нагрузку блока питания на сеть от 382 до 406 Вт. Более высокий рейтинг 80 PLUS не означает, что блок питания даст вам больше энергии, он просто более экономичный – меньше энергии теряет на всех этапах фильтрации, выпрямления и преобразования.

Также обратите внимание, что максимальная эффективность достигается в диапазоне между 50 и 100% нагрузки. Некоторые производители предоставляют графики, показывающие, какой КПД можно ожидать от их устройства при различных нагрузках и напряжениях в сети.


Официальное изображение Cooler Master.

График эффективности для блока питания Cooler Master V1300 Platinum. Вертикальная шкала – эффективность (КПД), горизонтальная – % нагрузки по отношению к максимальной мощности.

Иногда полезно обращать внимание на эту информацию, особенно если собираетесь раскошелиться на киловаттный блок питания. Если ваш компьютер будет потреблять близко к этому пределу мощности, то КПД блока питания будет несколько снижен.

Вы можете наткнуться на некие «одноканальные» и «многоканальные» (либо комбинированные – снабжённые переключателем) блоки питания. Термин «канал» в данном случае – просто другое слово для определенного напряжения, выдаваемого PSU. Наш Cooler Master имеет один канал 12 В и всевозможные разъёмы питания, обеспечивающие +12 В линии от этого канала. Многоканальный блок питания имеет две или более систем, обеспечивающих линии 12 вольт, однако существует большая разница в том, как это реализовано.

Многоканальные блоки питания широко применяются для серверов или дата-центров в целях отказоустойчивости – при выходе из строя одного из каналов, работоспособность системы не нарушится. Для обычных компьютеров тоже могут предлагаться многоканальные PSU, но скорее всего, вы столкнетесь с псевдо-многоканальностью, когда производитель просто разделит единственный канал на два или три якобы независимых канала. Например, наш подопытный выдает до 52 ампер по линии +12В, что эквивалентно 624 Вт электроэнергии. Дешевая «многоканальная» версия такого БП будет иметь в спецификации якобы два канала +12 В, но на самом деле это лишь два полуканала, каждый из которых будет обеспечивать только 26 А (или 312 Вт).

Хороший блок питания для настольного компьютера, использующий качественные компоненты, вовсе не требует многоканальности на +12 В, так что не беспокойтесь об этом!

Стоит ли переплачивать?

Блоки питания поставляются во всех ценовых диапазонах. Каталог на Amazon начинается с моделей от 15$ для стандартного блока 400 Вт, и доходит до полномодульных киловаттных PSU за 180-240$ от EVGA или Seasonic, и не заканчивается даже на этом. Что же вы получите за свои деньги? Что действительно стоит больше 200 долларов?

Очевидно, что чем мощнее, тем лучше, но вопрос ещё в том, как эта мощность реализована. Самые дешёвые 300 Вт модели выдают до 25 А на линиях +12В, в то время как киловаттная модель обеспечит втрое больше энергии. Современные процессоры и видеокарты практически все свои потребности удовлетворяют линиями +12 В. Уверены, что вам хватит 25 А?


Официальное фото блока питания Seasonic.

Учитывая, что актуальные аппетиты растут вместе с актуальным железом, то ваш новенький компьютер с 32-ядерным процессором в паре с 300-ваттной топовой видеокартой дешёвый блок питания явно не «затащит». С другой стороны, самые дорогие PSU легко справятся и будут иметь ещё приличный запас мощности. Ну а поскольку совокупная цена такого процессора и видеокарты может легко превысить 3500$, то стоит ли экономить ещё парой-другой сотен баксов сверху на обеспечение нормального питания для такого монстра.

Но на самом деле вы платите за качество компонентов в блоке питания. Взгляните на внутренности нашего Cooler Master в начале статьи. Вы не увидите там безумного количества всяких «шабашек», а поскольку каждый из тех немногочисленных элементов – критически важный компонент в работе устройства, нетрудно понять, почему не стоит гоняться за дешевизной.

На этом наше препарирование PSU закончено. Это очень интересное семейство устройств с на удивление сложным уровнем инженерии на всех этапах разработки и производства. Если у вас есть какие-либо вопросы о блоках питания в целом, или конкретно о вашем, смело спрашивайте в комментариях ниже. До новых встреч в нашем анатомическом кружке.

Блоки питания и их характеристики. Как выбрать блок питания.. Информация — Диод КМВ

Диод КМВ • Информация • Блоки питания и их характеристики. Как выбрать блок питания.

Блок питания в широком смысле — это электротехническое устройство, преобразующее электроэнергию сети переменного тока в электроэнергию с необходимыми параметрами (ток, напряжение, частота, форма напряжения), для питания других устройств, требующих эти параметры. То есть блок питания — это преобразователь.

Устройство.

В простейшем классическом варианте блок питания — это трансформатор, понижающий или повышающий переменное напряжение за счет электромагнитной индукции. Если требуется преобразование формы напряжения из переменного (AC) в постоянное (DC) — блок питания AC-DC, то используется выпрямитель напряжения. Также, в классическом блоке питания AC-DC присутствует фильтр пульсаций, создаваемых выпрямителем.

Трансформатор классического блока питания.

Классический вариант во многом оправдан благодаря своей простоте, надежности, доступности компонентов и отсутствию создаваемых радиопомех. Но из-за большого веса и габаритов, увеличивающихся пропорционально мощности, металлоемкости, а также низкого КПД при стабильном выходном напряжении, классические трансформаторные блоки питания уходят в прошлое. На смену им приходят импульсные блоки питания, о которых подробно и пойдет речь.

Импульсные блоки питания представляют собой инверторную систему, в которой входящее электричество сначала выпрямляется, после преобразуется в ток высокой частоты и определенной скважности с амплитудой прямоугольных импульсов, а потом происходит преобразование трансформатором и пропускание через фильтр низкой частоты. За счет повышения эффективности работы трансформатора с ростом частоты, снижаются требования к габаритам и металлоемкости по сравнению с классическими блоками питания.

Устройство импульсного блока питания.

Импульсные блоки питания получили широкое распространение благодаря ряду достоинств: значительно меньшие габариты и вес при сравнимой мощности; намного более высокий КПД (до 98%), благодаря устойчивости состояния ключевых элементов — потери возникают только при включении или выключении; меньшая стоимость — это стало возможным из-за повсеместного выпуска необходимых конструктивных элементов и разработке транзисторов повышенной мощности; сравнительная надежность; больший диапазон входных частот и напряжений — импульсный блок питания одинаково стабильно работает в диапазоне от 110 до 250 вольт и при частоте 50-60 Гц, что делает возможным использование техники с импульсными блоками питания повсеместно; безопасность при коротком замыкании.

Справедливости ради стоит сказать, что импульсные блоки питания не лишены минусов — сложность или невозможность ремонта, наличие высокочастотных радиопомех. Благодаря современным технологиям, эти минусы преодолимы, о чем свидетельствует широкое распространение, популярность и востребованность таких блоков на рынке.

Но, благодаря широкому распространению и большому разнообразию импульсных блоков питания в продаже, отличающихся функционально и характеристиками, иногда очень сложно подобрать необходимый. Попробуем разобраться в основных отличиях импульсных блоков, в их характеристиках и особенностях, а также ответим на вопрос: на что нужно обратить внимание, если вы хотите купить блок питания.

Особенности характеристик импульсных блоков питания.

В первую очередь, блоки питания делятся по функциональности преобразования. Одни блоки питания преобразуют электроэнергию таким образом, что на выходе получается стабилизированное напряжение при необходимой мощности — это AC-DC блоки питания. Другие преобразуют электроэнергию так, что на выходе получается стабилизированный ток постоянного значения в заданных диапазонах напряжения — это, так называемые, драйверы.

И те и другие блоки питания имеют определенную максимальную выходную мощность. Но, если в первом случае постоянным остается напряжение при возрастании тока в зависимости от мощности потребителей электроэнергии, то во втором случае постоянной остается сила тока, а в зависимости от мощности потребителей меняется напряжение на выходе. Диапазон изменения в драйверах ограничен, поэтому они распространены менее широко. Используются, в основном, в светотехнике, где заранее известны необходимые параметры тока.

Проще говоря, если вам нужен блок питания с необходимым током, например 700мА, при определенной мощности, то вам нужно выбирать драйвер. Если же вам нужен источник питания заданного напряжения и мощности, то нужен AC-DC блок питания.

При подборе блока питания важно учитывать его основные характеристики. С драйверами проще: все, что нужно о них знать, как правило, известно в рамках спецификации потребителя энергии. Встречаются драйверы в основном в составе готовых электротехнических изделий.

Чуть сложнее с AC-DC блоками питания. Современные блоки питания могут иметь различные характеристики выходного напряжения. Как правило, это: 5 вольт, 12 вольт, 24 вольта. Встречаются блоки питания и с другими выходными характеристиками: 3,3 вольта, 18 вольт, 32 вольта и прочие, но они менее распространены в отличие от первых, которые популярны в наружной и интерьерной рекламе и в декоративном освещении. Блоки питания необходимы, в большинстве случаев, для подключения светодиодных модулей, лент, линеек, для питания другой декоративной светотехники.

В зависимости от количества потребляемой электроэнергии и мощности подключаемых потребителей выбирается мощность блока питания. Тут необходимо учитывать, что при включении и выключении характеристики блока нестабильны, а также то, что в процессе работы в ту или иную сторону могут меняться характеристики входного электричества, поэтому блок подбирается с запасом по мощности, который составляет 1,2 — 1,3 от мощности подключаемых потребителей. Перегрузка блока по мощности может вывести его из строя или приведет к неправильному функционированию.

Другим важным критерием выбора, когда вы собираетесь купить блок питания, является область его использования. Это также актуально для драйверов. Блок может использоваться внутри помещения или на улице. Во втором случае он может быть размещен на стене или на горизонтальной плоскости, в тени или на солнце, может подвергаться, атмосферному воздействию в виде осадков снега и прочего, либо может быть размещен под крышей или козырьком. Все это влияет на то, с какой степенью защиты IP и в каком корпусе выбрать блок питания.

Для внутреннего использования, а также для размещения в закрытых щитках лучшим выбором будут блоки питания с защитой IP20, то есть не влагозащищенные, в защитном кожухе в виде сетки, исключающей прямой контакт с опасными элементами.

При выборе таких блоков питания следует обратить внимание на наличие EMI фильтра — это позволит избежать или свести к минимуму радиочастотные помехи, возникающие при работе блока питания. Иногда производители этим грешат в погоне за конкурентной ценой, поэтому покупая сравнительно недорогой блок питания, стоит уделить внимание этому вопросу.

Также может быть полезным наличие регулировки выходных параметров тока (в случае с драйверами) или напряжения, то есть наличие подстроечного резистора.

Иногда на выбор влияет размер блока питания. В настоящее время можно встретить блоки питания с одинаковыми характеристиками, но с большой разницей в габаритах. Меньшие по габаритам блоки, как правило, имеют в названии определения компакт (compact), слим (slim), экстра-слим (extra-slim). Меньшие габариты достигаются за счет развития технологий — более плотной компоновки и более совершенной элементной базы.

Часто блоки питания с защитой IP20 имеют активное охлаждение в виде вентилятора, работающего постоянно, либо срабатывающего при превышении определенной температуры. Удобством практически всех блоков в корпусах-сетках является достаточное количество винтовых контактов для подключения потребителей.

Для наружного использования нужны влагозащищенные блоки питания. Степень их защиты начинается с IP53. Это так называемые блоки rain proof или блоки с защитой от дождя. Представляют собой компромисс между влагозащищенными блоками и “сетками”, поскольку имеют неизолированные контакты, закрытые лишь крышкой, и должны располагаться только на стене в вертикальном положении. В местах, подверженных осадкам, их размещать не стоит.

Следующие по защищенности блоки питания выполнены в пластиковом или алюминиевом корпусе и могут иметь степень защиты IP66-67. Их можно размещать где угодно, но стоит учитывать, что пластик более подвержен деформации, поэтому в местах с прямым попаданием солнечных лучей блоки в алюминиевом корпусе предпочтительнее. Также блоки в пластиковых корпусах имеют ограничения по мощности: как правило, это максимум 150Вт. Как в варианте с пластиком, так и в варианте с алюминием, блок питания заполнен специальным составом, обеспечивающим герметичность и рассеивающим тепло. Открытых контактов у влагозащищенных блоков нет, вместо этого используются выводы в виде кабеля. Их может быть несколько для обеспечения необходимого суммарного сечения и удобства монтажа. Выводы подключены к одной силовой шине. Поэтому, при необходимости, они могут быть объединены.

Блоки питания в алюминиевых корпусах также, как и “сетки” могут быть выполнены в размерах compact, slim или extra-slim. Хотя, в зависимости от производителя, название может быть другим. Смысл в том, что это блок меньшего размера.

Покупая блок питания также нужно обращать внимание и на другие особенности. Производители блоков могут предлагать различные варианты защиты, от этого может зависеть цена на блок питания, но тот или иной вариант может быть полезным. У всех современных блоков существует защита от короткого замыкания. Полезной может быть защита от перегрузок, например Mean Well предлагает такую защиту, как Hiccup mode — при возникновении перегрузок блок питания, чтобы избежать перегрева переходит в режим редкой пульсации, пока характеристики перегрузок не придут в норму. В некоторых случаях критичен цвет блока питания — он может быть не обязательно белым или металлическим. Встречаются блоки питания черного цвета — это подойдет для тех мест, где светлый цвет блока бросается в глаза.

Особенностей и характеристик немало, но в них не так сложно разобраться, как кажется на первый взгляд. Зная эти особенности и руководствуясь нужными характеристиками, вы сможете без проблем подобрать и купить блок питания, наилучшим образом подходящий для ваших целей и задач.

Мы предлагаем более шестидесяти моделей блоков питания. При покупке блока питания у нас, мы всегда подробно ответим на все интересующие вас вопросы.

Что такое блок питания? (Основы электроснабжения) | Tech

Источники питания обычно относятся к генераторам, электростанциям, батареям и солнечным элементам (фотогальваническим элементам).
В этом разделе описываются базовые знания о блоках питания (схемах питания), которые преобразуют мощность в мощность, пригодную для электроприборов.

Многие электронные устройства используют напряжение постоянного тока.
Однако коммерческая мощность, подаваемая из розетки, представляет собой переменный ток (AC) с фиксированным напряжением 100 В или 200 В.
Поэтому блок питания (схема питания) используется для работы электронных устройств для преобразования переменного тока в постоянный и регулирования напряжения.
Например, в качестве источника питания обычно используется адаптер переменного тока.
Источники питания, встроенные в электронное оборудование, также называются источниками питания переменного/постоянного тока или импульсными источниками питания.
Некоторые схемы источников питания известны как источники питания постоянного/постоянного тока для преобразования нестабильного постоянного тока в стабилизированный постоянный ток.
Эти блоки питания имеют постоянное выходное напряжение, которое нельзя изменить.

Адаптер переменного тока

Мы часто видим дома адаптеры переменного тока .
Они используются для электронных устройств, таких как компьютеры и зарядное устройство для смартфонов.
Многие из них имеют компактный квадратный дизайн, и мы можем подключить их напрямую к розетке или подключить к шнуру, который втыкается в розетку.

Раньше адаптеры были слишком большими и тяжелыми для переноски. Благодаря инновационным методам преобразования напряжения к ним можно применить более компактную и легкую конструкцию.
Устройства, которые обеспечивают определенное напряжение, частоту и т. д., должны использовать специальные устройства.

Блок питания переменного/постоянного тока

Источник питания переменного/постоянного тока

обычно относится к устройству питания, которое преобразует переменный ток в постоянный.
Электронное оборудование, использующее постоянный ток, включает в себя цепь питания для питания от розетки.
Адаптер переменного тока также является источником питания переменного/постоянного тока.
Импульсный блок питания
Импульсный источник питания имеет режим переключения для преобразования переменного тока в постоянный, аналогично источнику питания переменного/постоянного тока.
Новые достижения в конструкции адаптера переменного тока привели к повышению эффективности с меньшими и более легкими устройствами, как указано в адаптере переменного тока. Фактически это связано с тем, что метод переключений заменил линейный метод.
Блок питания постоянного/постоянного тока
Источник питания постоянного тока, также называемый преобразователем постоянного тока, предназначен для ввода постоянного напряжения и вывода другого постоянного напряжения.
Поскольку рабочие напряжения различаются в зависимости от электронных устройств, напряжение необходимо преобразовать в соответствующее напряжение для работы соответствующих устройств.

Различные источники питания используются при разработке и оценке электрического оборудования и производственных линий.

Источником питания, который мы используем в повседневной жизни, является розетка.
Однако электричество, подаваемое из электрической розетки, создает шум после кратковременных перепадов напряжения.
Частота сети переменного тока составляет 50 Гц или 60 Гц, а электрическое напряжение обычно составляет 100 В или 200 В.

Стабильное, бесшумное электричество необходимо при использовании электроэнергии для эксплуатации и тестирования различного электрооборудования. А разные напряжения, частоты, причем не только переменного, но и постоянного тока необходимы для таких целей.
Блок питания используется для обеспечения стабильного электричества.

Устройство преобразует и подает электроэнергию необходимого напряжения и частоты, исключая шум от электричества, полученного от электрической розетки.
Блоки питания классифицируются по приложениям для доступных диапазонов постоянного, переменного и выходного напряжения.

Программируемый источник питания постоянного тока

Программируемый источник питания используется для стабильного питания постоянным током.
В Matsusada Precision программируемые источники питания постоянного тока относятся к источникам питания постоянного тока.
В отличие от упомянутых ниже высоковольтных источников питания, изделия с выходным напряжением до 1000 В относятся к источникам питания постоянного тока.

Они используются в экспериментах с электронными схемами, заводской эксплуатации производственного оборудования, проверках и исследованиях.

Кроме того, возможно воспроизведение электроэнергии, подаваемой аккумулятором, во время осмотра и тестирования оборудования, работающего от аккумуляторов.

Программируемые источники питания далее подразделяются на последовательные и импульсные источники питания с регулятором на основе схемного метода.
Источник питания с последовательным регулятором также называется линейным источником питания, и он преобразует переменное напряжение в постоянное с помощью трансформатора.

С другой стороны, импульсный источник питания имеет функцию преобразования тока переключения в высокочастотный переменный ток с помощью катушек и полупроводников, а затем обратно в постоянный ток для управления.

Различия между линейными и импульсными источниками питания см. в разделе «Разница между линейными источниками питания и импульсными источниками питания». независимо от того, стабилизировано ли выходное напряжение или выходной ток.
Как правило, напряжение и ток в цепи источника питания изменяются при изменении нагрузки (сопротивления) в соответствии с законом Ома.

Следовательно, работа схемы зависит от того, какая из двух стабилизируется при изменении нагрузки.
Другими словами, источник постоянного напряжения постоянного тока имеет стабильное выходное напряжение даже при изменении нагрузки, а источник постоянного тока постоянного тока имеет стабильный выходной ток.

Высоковольтный источник питания

Высоковольтный источник питания представляет собой программируемый источник питания постоянного тока, обеспечивающий высокое выходное напряжение от тысяч до десятков тысяч вольт.

Он имеет различные формы, подходящие для различных применений: настольные, для монтажа в стойку, для модулей и для монтажа на печатной плате.
Некоторые модели имеют вход переменного/постоянного тока.

Высоковольтные источники питания подходят для сканирующих электронных микроскопов, систем рентгеновского контроля, рентгеновского компьютерного томографа и т. д.
Поскольку эти устройства используются для электронного обнаружения или управления, им требуется очень сильное электрическое поле для обнаружения и управления электронами в процессе работы. Для создания такого сильного электрического поля необходимо высокое напряжение.

Если уровень шума и стабильности по-прежнему удовлетворительны, то устройства будут оказывать серьезное негативное влияние на изображения из-за шума.
Источники питания высокого напряжения обеспечивают высокую стабильность и низкий уровень пульсаций.

Программируемый источник питания переменного тока (источник питания переменного тока)

Программируемый источник питания обеспечивает стабильное и надежное питание переменного тока.
В то время как программируемые источники питания постоянного тока должны обеспечивать стабильное напряжение, программируемые источники питания переменного тока также должны обеспечивать стабильные формы сигналов переменного тока.

Программируемые источники питания переменного тока можно разделить на два основных типа: стабилизаторы напряжения переменного тока и преобразователи частоты.
Стабилизаторы переменного тока используются для стабилизации выходного напряжения и выходных сигналов.
Преобразователи частоты имеют возможность поддерживать постоянную выходную частоту или выдавать произвольную частоту.

Стабилизаторы переменного тока подразделяются на скользящие, переключающие и фазовые. Преобразователи частоты широко классифицируются по методам линейного усилителя и инвертора.
Некоторые преобразователи частоты также могут выводить постоянный ток.

Тип Метод Компактный размер Эффективность Экономичный Быстрый отклик Качество сигнала Особенности
AVR
Стабилизатор переменного тока
Метод Слидака      
Способ переключения ответвлений    
Метод фазового контроля Высоконадежный
Имеющий высокие искажения
Метод линейного усилителя Превосходная форма выходного сигнала
Преобразователь частоты CV/CF Система линейных усилителей Хорошее качество выходного сигнала
Изменение выходного напряжения и частоты в любое время.
Метод переключения     Выдающееся качество сигнала, размер, эффективность и экономичность Хорошо сбалансированный
Источники питания переменного тока Matsusada: серии DRK, DRS, DRJ
Инверторный метод
(Однодиапазонный)
  Выход постоянного тока доступен для некоторых типов
Инверторный метод
(широкий диапазон)
  Выход постоянного тока доступен для некоторых типов

Оценочная шкала:
: Превосходно
: Отлично
: Хороший

: Плохо

Рекомендуемые продукты

Matsusada Precision производит и продает различные устройства электропитания, которые можно использовать при разработке, оценке и производстве электрического оборудования.

Источники питания | Аллен-Брэдли

Источники питания

Мы предлагаем широкий спектр решений для электропитания. От импульсных и промышленных источников бесперебойного питания до трансформаторов, каждый продукт разработан для обеспечения надежности и безотказной работы.

Импульсные источники питания

Наши импульсные источники питания Bulletin 1606 включают четыре семейства продуктов, которые отвечают большинству глобальных требований к однофазным и трехфазным приложениям. Эти устройства спроектированы и изготовлены для работы в широком диапазоне входных напряжений как переменного, так и постоянного тока и прошли испытания на соответствие мировым стандартам безопасности.

Блоки питания ArmorPower On-Machine

Наш бюллетень 1607-XT Блоки питания ArmorPower™ On-Machine™ предназначены для приложений, в которых падение напряжения происходит из-за потерь в линии, а компактный размер, высокая эффективность и надежность имеют решающее значение. Доступные в моделях мощностью 50–200 Вт, эти блоки питания со степенью защиты IP67 отражают тенденцию отказа от традиционных корпусов для установки на машинах и в заводских условиях. Эти блоки питания имеют вакуумную герметизацию для обеспечения максимальной устойчивости к ударам, вибрации и влажности.

информация о продукте

Источники бесперебойного питания

Источники бесперебойного питания Bulletin 1609 разработаны специально для промышленного применения. Они соответствуют мировым требованиям промышленного и общего назначения до 10 кВА. Эти устройства сертифицированы во всем мире для обеспечения резервного питания переменного тока для преодоления провалов, просадок или кратковременных потерь напряжения в линии.

Трансформаторы цепей управления

Наши глобальные трансформаторы цепей управления предназначены для снижения напряжения питания цепей управления, обеспечивая большую безопасность операторов. Для дополнительной безопасности на рабочем месте все устройства снабжены защитными крышками клемм IP2X и крышками предохранителей.