интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Постоянный и переменный ток. Получение электрического тока. Напряжение постоянного тока и переменного тока


Определение постоянного и переменного электрического тока

Электричество – это тип энергии, передаваемый движением электронов через проводящий материал. Например, металлы представляют собой материалы с высокой электропроводностью и позволяют легко перемещать электроны. Внутри проводящего материала электроны могут двигаться в одном или нескольких направлениях.

Электрический ток

Понятие о постоянном и переменном токе

Что такое постоянный ток, определяется из характера движения электрозарядов. Аналогично можно установить, что такое переменный ток.

  1. Когда поток электрозарядов задан в одном направлении, он считается постоянным током;
  2. Когда электронный поток меняет направление и интенсивность во времени, он называется переменным током. Причем изменения идут циклически, по синусоидальному закону.

Большинство современных электросетей используют переменный электрический ток, производящийся на электростанциях соответствующими генераторами.

Графики постоянного и переменного токов

Постоянный ток (DC) генерируется батареями, топливными элементами и фотоэлектрическими модулями. Существуют и генераторы постоянного тока. Другое его получение – преобразование из однофазного и трехфазного переменного тока (АС) с помощью выпрямительных устройств.

В обратном случае АС может быть получен из DC, используя инверторы, хотя технология здесь несколько сложнее.

История

В природе электричество встречается относительно редко: оно генерируется только несколькими животными и существует в некоторых природных явлениях. В поисках искусственной генерации потока электронов ученые поняли, что можно заставить электроны проходить через металлическую проволоку или другой проводящий материал, но только в одном направлении, так как они отталкиваются от одного полюса и притягиваются к другому. Так родились батареи и генераторы постоянного тока. Изобретение приписывается, в основном, Томасу Эдисону.

В конце 19-го века другой известный ученый, Никола Тесла, разрабатывал способы получения переменного тока. Основными причинами работ в этой области явились обнаруженные недостатки постоянного тока при передаче электроэнергии на большие дистанции. Оказалось, что для переменного тока гораздо проще повысить напряжение передающих линий, тем самым уменьшив потери и получив возможность транспортировки больших объемов электрической энергии, а эффективно повысить напряжение на линиях с постоянным током в те времена было неосуществимо.

Для получения переменного тока Тесла использовал вращающееся магнитное поле. Если МП изменяет направленность, направление электронного потока также варьируется, и генерируется переменный ток.

Изменение направления в электронном потоке осуществляется очень быстро, много раз в секунду. Измерения частоты производятся в герцах (равных циклам в секунду). Таким образом, переменный ток частоты 50 Гц можно представить, как выполнение 50 циклов в секунду. В каждом цикле электроны изменяют направление и возвращаются к первоначальному, поэтому поток электронов изменяет направленность 100 раз в секунду.

Сравнительные характеристики постоянного и переменного токов

Разница между двумя видами токов заключена в их природе и вытекающих из этого свойствах.

Отличие постоянного тока от переменного:

  1. При переменном токе изменяется направленность и интенсивность электронного потока, при постоянном – она неизменна;
  2. Частота постоянного тока не может существовать. Это понятие применимо только для переменного тока;
  3. Полюсы (плюс и минус) всегда одинаковы в электроцепи постоянного тока. В электроцепи переменного тока положительные и отрицательные полюса меняются с периодическими интервалами;
  4. При передаче переменного тока напряжение легко преобразуется и транспортируется с приемлемым уровнем потерь.

Изменение полярности подключения DC может привести к необратимому повреждению устройств. Чтобы этого избежать, на оборудовании обычно ставятся обозначения полюсов. Аналогично контакты отличаются традиционным использованием металлической пружины для отрицательного полюса и пластины – для положительного. В устройствах с перезаряжаемыми батареями трансформатор-выпрямитель имеет выход, так что соединение выполняется только одним способом, что предотвращает инверсию полярности.

Обозначение полярности на аккумуляторе

В крупномасштабных установках, например, на телефонных станциях и другом телекоммуникационном оборудовании, где имеется централизованное распределение постоянного тока, используются специальные соединительные и защитные элементы,

Постоянный и переменный ток имеют свои достоинства и недостатки, отражающиеся на области их применения. По преимуществу широта использования переменного тока объясняется легкостью его преобразования.

Различия при транспортировке

Когда ток течет, часть энергии электронов преобразуется в тепло, благодаря активному сопротивлению проводов. Электрические нагреватели тоже основаны на этом эффекте. В конце линии меньше энергии передается потребителю. Рассеиваемые мощности называются потерями. Для уменьшения потерь применяется повышение напряжения при транспортировке. Эти физические зависимости применимы и к постоянному, и к переменному току, однако при реализации схем передачи возникают различия.

Достоинства и недостатки переменного тока

При начале строительства передающих электросетей использование трансформаторов было единственной возможностью получать высокие напряжения и затем снижать их до нужного уровня при распределении к потребителям. Такая технология называлась трансформаторной, и до сих пор структура транспортировки электроэнергии не изменилась. Почти повсеместно используется переменный ток, который представляет собой трехфазные системы.

ЛЭП переменного тока

Позже стали конструироваться и линии постоянного тока, которые последние годы используются все шире. Возросший интерес к их применению объясняется существенными недостатками систем переменного тока: в длинных линиях потери электроэнергии значительны. Причинами их являются наличие емкостного и индуктивного сопротивлений.

  1. При быстрой смене направления потока электронов наблюдается похожий на перезарядку конденсаторов эффект. Возникают дополнительные емкостные токи. Особенно это сказывается на наземных и подводных кабелях, изолирующий слой которых обладает высоким конденсаторным эффектом;
  2. Индуктивное сопротивление линий появляется потому, что электрические токи генерируют магнитные поля, меняющиеся с частотой тока. Появляются индуктивные токи.

Важно! Оба вида реактивных сопротивлений возрастают с увеличением протяженности линий.

Достоинства переменного тока:

  • легкая трансформация напряжения;
  • возможность комбинирования различных систем передачи;
  • возможность использования общесистемной частоты.

Недостатки переменного тока:

  • необходимость компенсации реактивной мощности при транспортировке на значительные расстояния;
  • сравнительно высокие потери.

Достоинства и недостатки постоянного тока

В первую очередь, чем отличается переменный ток от постоянного, – это присутствием источников потерь на реактивную энергию. Однако постоянный электрический ток предполагает потери на нагрев. Точное их определение зависит от технологии и уровня напряжения. Для высоких напряжений – около 3% на 1000 км.

Другим источником потерь в системах электропередачи на постоянном токе служат подстанции для преобразования переменного тока в постоянный, и наоборот. Суммарные потери намного ниже, чем для переменного тока, но существенными являются материальные затраты на строительство этих подстанций.

Оборудование для высоковольтной ЛЭП постоянного тока

Важно! Для повышения рентабельности линий электропередачи на постоянном токе применяются ЛЭП большой длины.

Техническое развитие в последнее время получила передача электроэнергии на постоянном токе, благодаря разработке новых электронных компонентов для создания высоких уровней напряжения постоянного тока – высокопроизводительных тиристоров или биполярных транзисторов.

Интересно. Сегодня возможны системы передачи постоянного тока с напряжением до 800 кВ и пропускной способностью до 8000 мВт на расстояние более 2000 км.

Преимущества высоковольтных ЛЭП постоянного тока:

  • возможность передачи мощности по подводным, наземным и подземным кабельным линиям на большие расстояния;
  • нет потерь из-за реактивной мощности;
  • лучшее использование изоляции кабелей.

Недостатки высоковольтных ЛЭП постоянного тока:

  • недостаточно быстрая коммутация существующих каналов постоянного тока;
  • мало стандартизированной электротехники;
  • не развиты распределительные сети передачи электроэнергии, транспортировка ведется от пункта до пункта.

Другие варианты применения постоянного и переменного тока

  1. DC идеально подходит для зарядки аккумуляторов и батарей элементов. Им нужно такое питание, потому что зарядная мощность всегда должна идти в одном направлении. Соответственно, устройства, работающие от аккумуляторов, также нуждаются в DC, например, фонарик или ноутбук;
  2. Телевидение, радио, компьютерная техника используют DC;
  3. Используемые в промышленности и в быту электродвигатели работают как на АС, так и на DC. То же относится к плитам, утюгам, чайникам и лампам накаливания;
  4. DC нужен для установок электролиза, где важно наличие неизменных полюсов. Только иногда полярность соблюдать не обязательно, в частности при электролизе газов. Тогда может применяться переменный электроток;
  5. Около половины мировых контактных сетей железнодорожного транспорта используют DC. В начале развития электрифицированных железных дорог были попытки применения трехфазных двигателей, но создание контактной сети для них столкнулось с проблемами. На DC работает городской электротранспорт: трамваи, троллейбусы, метро. Другой способ устройства железнодорожных контактных сетей – применение одной фазы переменного тока;

Контактная сеть железных дорог

  1. Для измерения токов, напряжений и мощности существуют приборы. Есть работающие только на DC, как магнитоэлектрические амперметры, а также использующие только АС, как индукционные счетчики. Часто используют универсальную измерительную технику.

Оба вида тока востребованы и применяются в различных областях. Какой из них использовать, зависит от принципа работы электрооборудования и приборов.

Видео

Оцените статью:

elquanta.ru

Постоянный и переменный ток

 Уважаемые посетители сайта!!!

Все изложенное в рубрике «электротехника», — дается для Вас в более простой, доступной форме обучения.   Если вникать в теоретические основы электротехники, то переходить на такое обучение нужно не спонтанно, а постепенно.

Допустим, читаем формулировку правила: «Магнитный поток сквозь поверхность S равен линейному интегралу векторного потенциала по замкнутому контуру, ограничивающему эту поверхность».   Данное правило дает понятие об углубленном познании магнитного поля постоянных токов, такой курс обучения проходят в высших технических учебных заведениях.   Конечно-же, нужно стремиться к высшему познанию таких вещей, но для человека, которому допустим нужно починить электроплиту либо какой нибудь электроприбор, такие познания в общем-то просто ни к чему.

Полагаю, что если человек зашел на сайт, —  ему нужно получить конечный результат такого продукта — полезной информации.   В частности, для данной темы речь пойдет о способах получения электрического тока.

Получение переменного тока

Переменный ток вырабатывают генераторы, электрические машины, —  как их принято называть в электротехнике.   Следует не забывать и о том, что в зависимости от их применения генераторы бывают как переменного так и постоянного тока.   В зависимости от их устройства, генераторы вырабатывают:

  • трехфазный ток с выходным напряжением 380 Вольт;
  • однофазный ток с выходным напряжением 220 Вольт.

Где именно могут применяться трехфазные генераторы?   Да допустим для питания трехфазной тепловой пушки на 6 кВт 380 В для обогрева складского помещения.

Тогда где-же могут применяться однофазные генераторы?   Однофазные генераторы как и трехфазные, применяются допустим в больнице — при аварийном отключении электроэнергии.

Генератору, как нам известно, необходимо придать механическое вращение якоря.   Каким образом можно придать якорю генератора  механическое  вращение?   Такими источниками служат двигатели внутреннего сгорания:

  • газовые;
  • бензиновые;
  • дизельные

и другие источники,  чтобы привести якорь генератора в движение.      Другими  источниками получения электрической энергии являются:

  • ветряные электростанции;
  • водяные электростанции;
  • турбинные электростанции.

На рисунке  показано схематическое изображение устройства генератора переменного тока \рис.1\.   Рамку в этом примере можно представить как якорь, состоящий из одного витка провода.   Рамка обозначена сторонами А, Б, В, Г.   Два проводника \А и Б\ при вращении рамки,  пересекают магнитные  силовые линии постоянного магнита С, Ю.   При пересечении проводниками силовых линий, в проводниках наводится электродвижущая сила — ЭДС.   ЭДС двух проводников по своему значению противоположны друг другу в тот момент, когда они пересекают эти силовые линии.  

f598bb22f86eaa8e16c2baf236060b71[1]

рис.1 

Величина ЭДС \ри.3\, протекающего тока в рамке,  будет зависить:

  • от векличины магнитной индукции  постоянного магнита \ N,  S\;

  • длины проводника;

  • скорости пересечения проводником магнитных силовых линий

и угла наклона проводника \рис.4\  по отношению к силовым линиям постоянного магнита \sin угла альфа между направлением движения проводника и направлением магнитных силовых линий поля\. 1[1]

рис.3 

0004-001-Fbscos[1]

рис4 

При вращении рамки в магнитном поле, в ней наводится ЭДС двух противоположных значений  и ток, как мы можем заметить на графике \рис.5\ получается пульсирующим.   Один период Т  состоит из двух противоположных пульсаций тока, верхний полупериод — положительный и нижний полупериод — отрицательный.    Полупериод обозначен на графике как 1/2 Т.

 single_ac1[1]

рис.5 

Поэтому, ток в этом примере рассматривается как:

либо как еще его называют — переменный ток.

Получение постоянного тока

Постоянный ток мы получаем от следующих источников, это:

  • первичные источники \обыкновенные, простые  батарейки\;
  • электрохимические аккумуляторы;
  • генераторы постоянного тока. 

akkumulaytor_1[1]

 рис.6

Принцип устройства  электрохимических аккумуляторов изображен на рисунке 6.   Электрохимические аккумуляторы могут быть возвращены в первоначальное свое состояние под воздействием электрического тока — в процессе их зарядки либо подзарядки. 

0010-021-Ustrojstvo-galvanicheskogo-elementa[1]

 рис.7

Первичные источники \элементы\, разнообразные типы батареек \рис.7\, — не могут быть возвращены в свое первоначальное состояние в процессе их зарядки электрическим током, то-есть, такие источники по истечению своего срока эксплуатации подлежат только утилизации.

Различие между генератором переменного тока и генератором постоянного тока состоит в том, что в генераторе постоянного тока размещено большее количество витков  в пазах якоря \по сравнению с генератором переменного тока\,  а так-же,  укреплено  четное количество главных и добавочных полюсов на внутренней станине генератора.

Следующий рисунок из себя представляет схему подключения нагрузки к генератору постоянного тока \рис.8\, ток в данной цепи замыкается через нагрузку.

tep_138[1]

рис.8

На графике \рис.9\  показаны  пульсации тока, выдаваемые генератором постоянного тока.   По сравнению с генератором переменного тока, данные пульсации выглядят более сглаженно.

 tep_135[1]

рис.9

Применение постоянного тока

 alternator[1]

автомобильный генератор

 

generator_sadko_shema[1]

устройство автомобильного генератора 

 weld300tde_big[1]

электростанция для сварки постоянным током

Преобразование переменного тока в постоянный

Для выпрямления, преобразования переменного тока в постоянный \для однофазной цепи\,  применяются следующие выпрямители тока:

  • однополупериодная схема выпрямления;
  • двухполупериодная схема выпрямления

и мостовая схема.

Мостовая схема выпрямления тока изображена на рисунке 10.   Схема состоит из:

  • первичной обмотки трансформатора;
  • вторичной обмотки трансформатора;
  • магнитопровода трансформатора;
  • диодного моста

и нагрузки, подключенной к диагонали моста.   Одна диагональ моста подключена ко вторичной обмотке трансформатора, другая диагональ моста соединена с нагрузкой.   Электрическая цепь замыкается на нагрузке.94270_html_m47b98bb4[1]

 рис.10

Мостовая схема выпрямления тока будет выглядеть менее пульсирующей  \рис.11\,  по сравнению с такими схемами выпрямления как:

157776d1382961018-49225_html_296597d3[1]

 рис.11

Реактивным элементом в следующей мостовой  схеме \рис.12\ служит сглаживающий фильтр \конденсатор\, позволяющий получить ток на выходе —  с наименшей величиной пульсаций.cx_2[1]

рис.12

На этом пока все.   Следите за рубрикой. 

zapiski-elektrika.ru

Принцип работы, отличия постоянного от переменного электрического тока

Электрический ток— это направленное или упорядоченное движение заряженных частиц: электронов в металлах, в электролитах — ионов, а в газах — электронов и ионов.

Электрический ток может быть как постоянным, так и переменным.

Определение постоянного электрического тока, его источники

Постоянный ток используется в автомобилях и в домах, в многочисленных электронных приборах: ноутбуки, компьютеры, телевизоры и т. д. Перемеренный электрический ток  из розетки преобразуется в постоянный при помощи блока питания или трансформатора напряжения с выпрямителем.

Любой электроинструмент, устройство или прибор, работающие от батареек так же являются потребителями постоянного тока , потому что батарея или аккумулятор- это исключительно источники постоянного тока, который при необходимости преобразуется  в переменный с использованием специальных преобразователей (инверторов).

Принцип работы переменного тока

Принцип работы, отличия постоянного от переменного электрического токаПеременный ток  (AC по-английски Alternating Current)- это электрический ток, который изменяется по величине и направлению с течением времени. На электроприборах условно обозначается отрезком синусоиды « ~ ».Иногда после синусоиды могут указываться характеристики переменного тока — частота, напряжение, число фаз.

Переменный ток может быть как одно- , так и  трёхфазным, для которого мгновенные значения тока и напряжения меняются по гармоническому закону.

Основные характеристики переменного тока — действующее значение напряжения и частота.

Принцип работы, отличия постоянного от переменного электрического тока

Обратите внимание, как на левом графике для однофазного тока меняется направление и величина напряжения с переходом в ноль за период времени Т, а на втором графике для трехфазного тока существует смещение трех синусоид на одну третью периода. На правом графике 1 фаза обозначена буквой «а», а вторая буквой «б». Хорошо известно, что в домашней розетке 220 Вольт. Но мало кто знает, что это действующие значение переменного напряжения, но амплитудное или максимальное значение будет больше на корень из двух, т.е будет равно 311 Вольт.

Таким образом, если у постоянного тока величина напряжения и направление не изменяются в течении времени, то у переменного тока- напряжение постоянно меняется по величине и направлению (график ниже нуля это обратное направление).

И так мы подошли к понятию частота— это отношение числа полных циклов  (периодов) к единице времени периодически меняющегося  электрического тока. Измеряется в Герцах. У нас и в Европе частота равна 50 Герцам, в США- 60 Гц.

Что означает частота 50 Герц? Она означает, что у нас переменный ток меняет свое направление на противоположное и обратно (отрезок Т- на графике) 50 раз за секунду!

Источниками переменного тока являются все розетки в доме и все то, что подключено напрямую проводами или кабелями  к электрощиту. У многих возникает вопрос: а почему  в розетке не постоянный ток? Ответ прост. В сетях переменного тока легко и с минимальными потерями преобразовывается величина напряжения до необходимого уровня при помощи трансформатора в любых объемах. Напряжение необходимо увеличивать для возможности передачи электроэнергии на большие расстояния с наименьшими потерями в промышленных масштабах. Принцип работы, отличия постоянного от переменного электрического токаС электростанции, где стоят мощные электрогенераторы, выходит напряжение величиной 330 000-220 000 Вольт, далее возле нашего дома на трансформаторной подстанции оно преобразуется с величины 10 000 Вольт в трехфазное напряжение 380 Вольт, которое и приходит в многоквартирный дом, а к нам в квартиру приходит однофазное напряжение, т. к. между фазой и нулем или землей напряжение равняется 220 В, а между разноименными фазами в электрощите 380 Вольт.

И еще одним из важных достоинств переменного напряжения является то, что асинхронные электродвигатели переменного тока конструктивно проще и работают значительно надежнее, чем двигатели постоянного тока.

Как переменный ток сделать постоянным

Для потребителей, работающих на постоянном токе- переменный преобразуется при помощи  выпрямителей.

  1. Первоначальный этап преобразования— это подключение диодного моста, состоящего из 4 диодов достаточной мощности (на рисунке ниже), который срезает верхние границы переменных синусоид или делает ток однонаправленным.Принцип работы, отличия постоянного от переменного электрического тока
  2. Второй этап— это подключение параллельно на выход с диодного мостика конденсатора или сглаживающего фильтра, который исправляет провалы между пиками синусоид. Обратите внимание, как выглядит синусоида после прохождения через диодный мост (на рисунке выделена зеленным цветом).

    Принцип работы, отличия постоянного от переменного электрического тока

    И как уменьшаются пульсации (изменения напряжения) после подключения конденсатора- на рисунке выделено синим цветом.

  3. Далее при необходимости для уменьшения уровня пульсаций,  дополнительно могут применяются стабилизаторы тока или  напряжения.

Преобразователь постоянного тока в переменный

Принцип работы, отличия постоянного от переменного электрического токаЕсли с преобразованием переменного тока в постоянный не возникает сложностей, то со обратным преобразованием все гораздо сложнее. В домашних условиях для этого используется инвертор — это генератор периодического напряжения из постоянного, по форме приближённого к синусоиде.

Инвертор технически сложное устройство, поэтому и цены на него не маленькие. Стоимость зависит напрямую от выходной максимальной мощности переменного тока.

Как правило, преобразование постоянного тока требуется в редких случаях. Например, для подключения от бортовой электросети автомобиля домашних электроприборов, инструмента и т. п. в походе, на даче и т. д.

Что такое фаза, ноль, заземление читайте в следующей нашей статье.

olimp23.com

Постоянный и переменный ток - Великие физики

В начале XIX века появился гальванический элемент, а с ним и электрический ток.

В цепи с этим элементом течет постоянный электрический ток. Но со временем появился генератор переменного тока, так он стал основой современной электроэнергетики.

Переменный ток

Без него не было бы радиосвязи, телевидения и т. д. Переменный ток – это электрический ток, который периодически изменяется по модулю и направлению. Он то возрастает, достигая максимума - амплитудного значения, то спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется. Время, за которое проходит цикл, называется периодом переменного тока. Количество периодов за определенное время – частота, которая измеряется в герцах. Переменный ток получается за счет вращения рамки в магнитном поле, а с обмоток статора снимается переменное напряжение.

Постоянный ток

При постоянном токе его сила, свойства и направление не меняется даже со временем. Постоянный ток используют в технике: подавляющее большинство электронных схем в качестве питания используют постоянный ток. Источниками постоянного тока служат: гальванический элемент, аккумулятор, электромашинный генератор, выпрямитель, сглаживающий фильтр, стабилизатор напряжения. К основным законам постоянного тока относят:

  • закон Ома: "сила тока I для участка цепи прямо пропорциональна приложенному напряжению U к участку цепи и обратно пропорциональна сопротивлению R проводника этого участка цепи : I=U/R".
  • закон Джоуля — Ленца, определяющий количество тепла, выделяемого током в проводнике.
  • Расчёт разветвленных цепей постоянного тока производится с помощью Кирхгофа правил.

Переменный или постоянный ток?

Преимущества переменного тока:

  • применяя трансформатор, легко можно изменить напряжение в сетях переменного тока;
  • асинхронные электродвигатели переменного тока надежнее тех, которые используются при постоянном токе. Так, девяносто процентов электроэнергии вырабатывается именно ими;
  • используется для удобной передачи.

Но при этом провода, по которым протекает ток, должны соответствовать его максимальному значению, к тому же в проводах он распределяется неравномерно, вблизи поверхности. Вокруг находится переменное магнитное поле, которое способно вызвать в соседних проводах и в других проводящих материалах электрические токи, а это приводит к бесполезной трате энергии. Несмотря на эти недостатки, переменный ток используют чаще. А связано это с тем, что электрическая энергия проходит длинное расстояние от станции к дому потребителя, при этом часть ее теряется, но, чтобы уменьшить потери, следует использовать высокое напряжение. Поднять напряжение у станции (а при передаче к потребителю уменьшить) возможно лишь при переменном токе и с помощью трансформаторов. Но можно ли использовать постоянный ток для передачи электрической энергии? Достаточно сложно – сначала переменное напряжение преобразовать в постоянное, а потом на другом конце линии электропередач превратить переданное постоянное напряжение в переменное.Так или иначе, нельзя утверждать, что постоянный или переменный ток лучше или хуже, ведь в нашей жизни мы используем и тот и другой.

www.phisiki.com


Каталог товаров
    .