интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Диодный мост. Напряжение после диодного моста и конденсатора


Диодный мост - Практическая электроника

Мост бывает через реку, через овраг, а также через дорогу. Но приходилось ли Вам слышать словосочетание «диодный мост»? Что  за такой мост? А вот на этот вопрос мы с вами попробуем найти ответ.

Словосочетание «диодный мост» образуется от слова «диод». Получается, диодный мост  должен состоять из диодов. Но если в диодном мосту есть диоды, значит, в одном направлении диод будет пропускать электрический ток, а в другом нет. Это свойство диодов мы использовали, чтобы определить их работоспособность. Кто не помнит, как мы это делали, тогда вам сюда.  Поэтому мост из диодов используется, чтобы из переменного напряжение получать постоянное напряжение.

       

А вот  и схема диодного моста:

Иногда в схемах его обозначают и так:

Как мы с вами видим, схема состоит из четырех диодов. Но чтобы схемка диодного моста заработала, мы должны правильно соединить диоды, и правильно подать на них переменное напряжение. Слева мы видим два значка «~».  На эти два вывода мы подаем переменное напряжение, а снимаем постоянное напряжение с других двух выводов: с плюса и минуса.

Для того, чтобы превратить переменное напряжение в постоянное можно использовать один диод для выпрямления, но не желательно. Давайте рассмотрим  рисунок:

Переменное напряжение изменяется со временем. Диод пропускает через себя напряжение только тогда, когда напряжение выше нуля, когда же оно становится ниже нуля, диод запирается. Думаю все элементарно и просто. Диод срезает отрицательную полуволну, оставляя только положительную полуволну, что мы и видим на рисунке выше.  А вся прелесть этой немудреной схемки состоит в том, что мы получаем постоянное напряжение из переменного. Вся проблема в том, что мы теряем половину мощности переменного напряжения. Ее тупо срезает диод.

       

Чтобы исправить эту ситуацию, была разработана схемка диодного моста. Диодный мост «переворачивает» отрицательную полуволну, превращая ее в положительную полуволну. Тем самым мощность у нас сохраняется. Прекрасно не правда ли?

На выходе  диодного моста у нас появляется постоянное пульсирующее напряжение с частой в два раза больше, чем частота сети: 100 Гц.

Думаю, не надо писать, как работает схема, Вам все равно это не пригодится, главное запомнить, куда цепляется переменное напряжение, а откуда выходит постоянное пульсирующее напряжение.

Давайте же на практике рассмотрим, как работает диод и диодный мост.

Для начала возьмем диод.

Я его выпаял из блока питания компа. Катод можно легко узнать по полоске. Почти все производители показывают катод полоской или точкой.

Чтобы наши опыты были безопасными, я взял понижающий трансформатор, который из 220 Вольт трансформирует 12 Вольт. Кто не знает как он это делает, можете прочитать статью устройство трансформатора.

На первичную обмотку цепляем 220 Вольт, со вторичной снимаем 12 Вольт. Мультик показывает чуть больше, так как  ко вторичной обмотке  не подцеплена никакая нагрузка. Трансформатор работает на  так называемом «холостом ходу».

Давайте же расмотрим осциллограмму, которая идет со вторичной обмотки транса. Максимальную амплитуду напряжение  нетрудно посчитать. Если не помните как расчитать, можно глянуть статейку Осциллограф. Основы эксплуатации. 3,3х5= 16.5В  — это максимальное значение напряжения.  А если разделить максимальное значение амплитуда на корень из двух, то получим где то 11.8 Вольт. Это и есть действующее значение напряжения. Осцилл не врет, все ОК.

Еще раз повторюсь, можно было использовать и 220 Вольт, но 220 Вольт  — это не шутки, поэтому я и понизил переменное напряжение.

Припаяем к одному концу  вторичной обмотки транса наш диод.

Цепляемся снова щупами осцилла

Смотрим на осцилл

А где же нижняя часть изображения? Ее срезал диод. Диод оставил только верхнюю часть, то есть та, которая положительная. А раз он срезал нижнюю часть, то он следовательно срезал и мощность.

Находим еще  три таких диода и спаиваем диодный мост.

Цепляемся ко вторичной обмотке транса по схеме диодного моста.

С двух других  концов снимаем постоянное пульсирующее напряжение щупами осцилла и смотрим на осцилл.

Вот, теперь порядок, и мощность у нас никуда не пропала :-).

Чтобы не замарачиваться с диодами, разработчики все четыре диода вместили в один корпус. В результате получился очень компактный и удобный диодный мост.  Думаю, вы догадаетесь, где импортный, а где советский ))).

А  вот и советский:

А как Вы догадались? 🙂 Например, на советском диодном мосте, показаны контакты,  на которые  надо подавать переменное напряжение ( значком » ~ «), и показаны контакты, с которых  надо снимать постоянное пульсирующее напряжение («+» и «-«).

Давайте проверим импортный диодный мост. Для этого цепляем два его контакта к переменке, а с двух других контактов снимаем показания на осцилл.

А вот  и осциллограмма:

Значит импортный диодный мостик работает чики-пуки.

В заключении хотелось бы добавить, что диодный мост используется почти во всей радиоаппаратуре, которая кушает напряжение из сети, будь то простой телевизор или даже зарядка для сотового телефона. Проверяется диодный мост исправностью всех его диодов.  Как проверить диод, можете прочитать в этой статье.

www.ruselectronic.com

ВЫПРЯМИТЕЛИ

   В этой статье мы разберем какие бывают выпрямители, для какой цели служат, в чем заключаются особенности того или иного выпрямителя. Если мы решаем собрать какое-либо устройство или просто необходимо запитать готовое, то мы можем использовать питание от гальванических элементов (батареек), либо воспользоваться для этих целей аккумуляторами. Но как быть, если радиоустройство не планируется носить с собой и оно потребляет значительный ток? В таких случаях запитывают устройство от сети 220 вольт.

Фото трансформаторный блок питания

Фото трансформаторный блок питания

   Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер.

Фото трансформатора

Фотография трансформатора

   Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.

Однополупериодный выпрямитель

Схема однополупериодный выпрямитель

Схема однополупериодный выпрямитель

   Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:

Выпрямленный ток после однополупериодного выпрямителя

Выпрямленный ток после однополупериодного выпрямителя

   На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:

Электролитический конденсатор большой емкости

Электролитический конденсатор большой емкости

    Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.

Выпрямленный ток в однополупериодном выпрямителе после конденсатора

Выпрямленный ток в однополупериодном выпрямителе после конденсатора

Двухполупериодный выпрямитель со средней точкой

Схема двухполупериодный выпрямитель со средней точкой

Схема двухполупериодный выпрямитель со средней точкой

   Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1, во время отрицательного полупериода работает вторая часть схемы обозначенная В2. Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

График двухполупериодного выпрямителя

График двухполупериодного выпрямителя

Двухполупериодный выпрямитель, мостовая схема

Схема двухполупериодный выпрямитель мостовая схема

Схема двухполупериодный выпрямитель мостовая схема

   И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы диодного моста:

Диодный мост рисунок

Диодный мост рисунок

   Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один, ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому. 

Объяснение работы диодного моста

Объяснение работы диодного моста

   Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:

График мостого выпрямителя

График мостого выпрямителя

   При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:

Еще одно изображение диодного моста

Еще одно изображение диодного моста

   Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:

Фото импортного диодного моста

Фото импортного диодного моста

   На фото далее изображен отечественный диодный мост КЦ405.

Фото диодный мост кц-405

Фото диодный мост кц405

Трехфазные выпрямители

   Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.

Фото трехфазного трансформатора

Фото трехфазного трансформатора

   Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича, имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.

Схема Миткевича

Схема Миткевича

   Вторая схема, известная как Схема Ларионова, нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.

Схема Ларионова

Схема Ларионова

   Схема Ларионова может использоваться как "звезда-Ларионов” и "треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи - AKV.

   Форум

   Обсудить статью ВЫПРЯМИТЕЛИ

radioskot.ru

Насколько увеличивается напряжение после диодного моста? — domino22

Насколько увеличивается напряжение после диодного моста?

  1. диодный мост просто срезает верхни еграницы переменных синусоид, конденсатор испарвляет провалы межды пиками синусоид
  2. Напряжение после диодного моста не увеличится. Вот если после моста поставить электролитический конденсатор, то тогда напряжение повысится в 1,4 раза.
  3. После однофазного диодного моста постоянное напряжение Ud на выходе блока питания составит: 2*(корень из 2) / ПИ = 0,901 от Uвх, т. е. как Сергей Половной сказал меньше входного. Увеличить его действующее значение можно только сглаживанием полупериодов с помощь параллельно подключенных конденсаторов или последовательно включенных дросселей. В этом случае напряжение на выходе при максимальном сглаживании может вырасти до 4*(корень из 2) / ПИ = 1,8 от Uвх. После трехфазного диодного моста (мост Ларионова) постоянное напряжение Ud на выходе блока питания составит: 3*(корень из 2) / ПИ = 1,35 от Uвх, т. е. больше входного. Напряжение на выходе при максимальном сглаживании может вырасти до 3*(корень из 6) / ПИ =2,34 от Uвх. В первом случае число выпрямленных фаз меньше и напряжение изменяется от 0 до до амплитудного начения — действующее значение на выходе составит: площадь полупериода (считается через интеграл) , поделенная на длительность полупериода. При сглаживании площадь полупериода увеличивается за счет того, при переходе синусоиды через ноль энергия, накопленная в конденсаторе или катушке разряжается на нагрузку и не дает напряжению на выходе опускаться до 0. Во втором случае число выпрямленных фаз больше и проиходит перекрытие полупериодов при выпрямлении, в этом случае площадь полупериода больше (см. средние диаграммы).
  4. Когда идт речь про 220 вольт переменного напряжения, имеется в виду его действующее значение. Однако амплитудное (пиковое) значение этого переменного напряжения равно 311 вольт (220 * sqrt2) . Когда это напряжение выпрямляется двухполупериодным выпрямителем, после которого стоит конденсатор достаточной мкости, то этот конденсатор будет заряжаться именно до амплитудного значения, если ток в нагрузку не течт. А обратно в сеть конденсатор не разряжается, так как диоды не дают. Вот и получается, что после нормального выпрямителя с хорошим конденсатором напряжение оказывается выше, чем то, которое поступает на вход выпрямителя.
  5. ни насколько всегда будет меньше а конденсаторы и дросели уменьшают пульсации можно увеличить если вместо диодного моста поставить умножитель на 2. 4 итак далее
Внимание, только СЕГОДНЯ!

www.domino22.ru


Каталог товаров
    .