интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Обозначение мощности сопротивления на схеме. Обозначение резисторов на схемах. Мощность резистора на схеме обозначение


Резистор. Обозначение и сопротивление резистора

Резисторы их сопротивление и обозначение

Резисторы

 

Резистор  от латыни resisto — сопротивляюсь — пассивный элемент электрической цепи. Наиболее распространенный элемент электрической цепи. Различают резисторы постоянные и переменные.

Резисторы изготавливают из проводящего материала – графита, тонкой металлической или графитовой пленки, или провода обладающего невысокой проводимостью. Резистор характеризуется величиной электрического сопротивления R=U/I; сопротивление R измеряется в омах. Это соотношение называется “Закон Ома”. Так же резисторы характеризуются мощностью рассеивания, допуском (точность), температурный коэффициент, уровень шума и т.д. Самые распространенные резисторы – углеродистые  композиционные, имеют сопротивление от 1 ома до ~ 22 Мом (мегаом). Резистор на схеме как вы уже знаете, обозначается буквой R  с порядковым номером на принципиальной схеме, например R123, под тем же номером обозначается на печатной плате.Сопротивление резисторов на схемах обозначается следующим образом:

  • если сопротивление в Ом, то за числовым значением ничего нет, или стоит буква Е,  например резистор на 5 Ом на схеме обозначается как 5, или 5Е.
  • если сопротивление в кОм, то за числовым значением может стоять только буква к, например резистор на 33 кОм на схеме обозначается как 33к.
  • если сопротивление в МОм, то за числовым значением может стоять только буква М, например резистор на 20 МОм на схеме обозначается как 20М.

Отечественные резисторы имели практически такое же обозначение на корпусе, но использовались некоторые дополнения:

  • нецелые сопротивления типа 1,5 обозначаются 1К5, 1Е5, 1М5.
  • сопротивление типа 200 кОм, могло обозначаться М200, 200 Ом имеет вид К200, аналогично и для Ом.

В настоящее время больше используется цветовая маркировка резисторов.

Резисторы используются в усилителях, в качестве нагрузки для активных устройств, в схемах смещения и в качестве элементов обратной связи. Совместно с конденсаторами используются для задания постоянной времени и работают как фильтры. В схемах питания резисторы используются для уменьшения напряжения за счет рассеивания мощности, для измерения токов и для разряда конденсатора.  В прецизионных схемах  они помогают устанавливать нужные токи, обеспечивать точные коэффициенты для напряжения, устанавливать точные коэффициенты усиления. В логических схемах резисторы выступают в качестве конечных элементов линий и шин, “понижающих”  и “повышающих” элементов.

Основные недостатки резисторов – это изменение сопротивления под действием температуры, напряжения, влажности, а так же наличие индуктивных свойств.

При замене резистора необходимо знать его номинальное сопротивление и мощность. Мощность резистора выбранного на замену должна быть не меньше чем у вышедшего из строя.

data-matched-content-rows-num="4,8" data-matched-content-columns-num="1,4" data-matched-content-ui-type="image_stacked" data-ad-format="autorelaxed">

xn--80aanab4adj2bicdg1q.xn--p1ai

Цветовое обозначение резистора. Обозначение мощности резисторов на схеме

В электрических цепях для регулировки тока применяются резисторы. Выпускается огромное количество различных их видов. Чтобы определиться во всём многообразии деталей, для каждой вводится условное обозначение резистора. Они маркируются различными способами, в зависимости от модификации.

Типы резисторов

Резистор ‒ это устройство, которое имеет электрическое сопротивление, его основное назначение ‒ ограничение тока в электрической цепи. Промышленность выпускает различные типы резисторов для самых разных технических устройств. Их классификация осуществляется разными способами, один из них ‒ характер изменения сопротивления. По этой классификации различают 3 типа резисторов:

  1. Постоянные резисторы. У них не имеется возможности произвольно изменять величину сопротивления. По назначению они делятся на два вида: общего и специального применения. Последние делятся по назначению на прецизионные, высокоомные, высоковольтные и высокочастотные.
  2. Переменные резисторы (их ещё называют регулировочными). Обладают возможностью изменять сопротивление с помощью управляющей ручки. По конструктивному исполнению они очень разные. Есть совмещённые с выключателем, сдвоенные, строенные (то есть на одной оси установлено два или три резистора) и множество других разновидностей.
  3. Подстроечные резисторы. Применяются только во время настройки технического устройства. Органы настройки у них доступны только под отвёртку. Производится большое количество различных модификаций этих резисторов. Они применяются во всевозможных электротехнических и электронных устройствах, начиная от планшетников и заканчивая большими промышленными установками.

Некоторые типы рассмотренных резисторов приведены на нижеприведённой фотографии.

Разные резисторы

Классификация компонентов по способу монтажа

Существует 3 основных вида монтажа электронных компонентов: навесной, печатный и для микромодулей. Для каждого вида монтажа предназначены свои элементы, они сильно различаются и по размерам, и по конструкции. Для навесного монтажа применяются резисторы, конденсаторы и полупроводниковые приборы. Они выпускаются с проволочными выводами, чтобы можно было их впаивать в схему. В связи с миниатюризацией электронных устройств этот метод постепенно утрачивает актуальность.Навесной монтажДля печатного монтажа применяются более малогабаритные детали, с выводами для впаивания в печатную плату или без них. Для соединения со схемой эти детали имеют контактные площадки. Печатный монтаж существенно способствовал сокращению размеров электронных изделий.

Печатный монтаж

Для печатного и микромодульного монтажа часто используются smd-резисторы. Они очень малы по размерам, легко встраиваются автоматами в печатную плату и микромодули. Они выпускаются различного номинального сопротивления, мощности и размеров. В новейших электронных устройствах преимущественно используются smd-резисторы.

Номинальное сопротивление и рассеваемая мощность резисторов

Номинальное сопротивление, выраженное в омах, килоомах или мегаомах, является основной характеристикой резистора. Эта величина приводится на принципиальных схемах, наносится непосредственно на резистор в буквенно-цифровом коде. В последнее время часто стало применяться цветовое обозначение резисторов.

Вторая важнейшая характеристика резистора - это рассеиваемая мощность, она выражается в ваттах. Любой резистор при прохождении через него тока нагревается, то есть рассеивает мощность. Если эта мощность превысит допустимую величину, наступает разрушение резистора. По стандарту обозначение мощности резисторов на схеме практически всегда присутствует, эта величина часто наносится и на его корпус.

Допуск номинального сопротивления и его зависимость от температуры

Большое значение имеет погрешность, или отклонение от номинальной величины, измеряемая в процентах. Невозможно абсолютно точно изготовить резистор с заявленной величиной сопротивления, обязательно будет отклонение от заданной величины. Погрешность указывается непосредственно на корпусе, чаще в виде кода из цветных полос. Оценивается она в процентах от номинального значения сопротивления.

Там, где существуют большие колебания температуры, немалое значение имеет зависимость сопротивления от температуры, или температурный коэффициент сопротивления, сокращённое обозначение — ТКС, измеряемый в относительных единицах ppm/°C. ТКС показывает, на какую часть от номинального меняется сопротивление резистора, если температура среды увеличивается (уменьшается) на 1°C.

Условное графическое обозначение резистора на схеме

При вычерчивании схем требуется соблюдение государственного стандарта ГОСТ 2.728-74 на условные графические обозначения (УГО). Обозначение резистора любого типа – это прямоугольник 10х4 мм. На его основе создаются графические изображения для других типов резисторов. Кроме УГО, требуется обозначение мощности резисторов на схеме, это облегчает её анализ при поиске неисправностей. В нижеприведённой таблице указаны УГО постоянных сопротивлений с указанием рассеиваемой мощности.

Постоянные резисторы

Ниже на фотографии изображены постоянные резисторы разной мощности.

Резисторы разной мощности

Условное графическое обозначение переменных резисторов

УГО переменных резисторов наносятся на принципиальную схему так же, как и постоянные резисторы, по государственному стандарту ГОСТ 2.728-74. В таблице приведено изображение этих резисторов.

Переменные резисторы

На фотографии ниже изображены переменные и подстроечные резисторы.

Переменные резисторы

Стандартное обозначение сопротивления резисторов

Международными стандартами принято обозначать номинальное сопротивление резистора на схеме и на самом резисторе немного по-разному. Правила этого обозначения вместе с образцами примеров приведены в таблице.

Полное обозначениеСокращённое обозначение
Единица измеренияОбозн. ед. изм.Предел номин. сопротивленияна схемена корпусеПредел номин. сопротивления
ОмОм999,90,51E51 или R5199,9
5,15E1; 5R1
5151E
510510E; K51
КилоомкОм999,95,1k5K199,9
51k51K
510k510K; M51
МегаомМОм999,95,1M5M199,9
51M51M
510M510M

Из таблицы видно, что обозначение на схемах резисторов постоянного сопротивления делаются буквенно-цифровым кодом, сначала идёт числовое значение сопротивления, затем указывается единица измерения. На корпусе резистора принято в цифровом обозначении вместо запятой использовать букву, если это омы, то ставится E или R, если же килоомы, то буква K. При обозначении мегаомов вместо запятой применяется буква M.

Цветовая маркировка резисторов

Цветовое обозначение резисторов было принято, чтобы проще было нанести информацию о технических характеристиках на их корпусе. Для этого наносится несколько цветовых полосок разного цвета. Всего в обозначении полосок принято 12 различных цветов. Каждый из них имеет своё определённое значение. Цветовой код резистра наносится с края, при низкой его точности (20%) наносится 3 полоски. Если точность выше, на сопротивлении можно увидеть уже 4 полоски.

Резистор 4 полоски

При высокой точности резистора наносится 5-6 полосок. У маркировки, содержащей 3-4 полоски, первые две обозначают величину сопротивления, третья полоска ‒ это множитель, на него умножается эта величина. Следующая полоска определяет точность резистора. Когда маркировка содержит 5-6 полосок, первые 3 соответствуют сопротивлению. Следующая полоска ‒ это множитель, 5-я полоска соответствует точности, а 6-я - температурному коэффициету.

Резистор 5 полосок

Для расшифровки цветовых кодов резисторов существуют справочные таблицы.

Резисторы для поверхностного монтажа

Поверхностный монтаж — это когда все детали располагаются на плате со стороны печатных дорожек. В этом случае не сверлятся отверстия для монтажа элементов, они припаиваются к дорожкам. Для этого монтажа промышленность выпускает широкий набор smd-компонентов: резисторы, диоды, конденсаторы, полупроводниковые приборы. Эти элементы гораздо меньше по размерам и технологически приспособлены для автоматизированного монтажа. Использование smd-компонентов позволяет существенно уменьшить размеры изделий электроники. Поверхностный монтаж в электронике практически уже вытеснил все другие виды.

smd резисторы

При всех достоинствах рассматриваемого монтажа он имеет ряд недостатков.

  1. Печатные платы, изготовленные по этой технологии, боятся ударов и других механических нагрузок, так как при этом повреждаются smd-компоненты.
  2. Эти компоненты боятся перегрева при пайке, потому что от сильных перепадов темературы они могут потрескаться. Этот дефект сложно обнаружить, он проявляется обычно во время работы.

Стандартное обозначение smd-резисторов

В первую очередь smd-резисторы различаются типоразмерами. Самый маленький типоразмер ‒ 0402, чуть больше – 0603. Самый ходовой типоразмер smd-резистора – 0805, и побольше - 1008, следующий типоразмер 1206 и самый большой - 1812. Резисторы самого малого типоразмера имеют и самую малую мощность.

Обозначение smd-резисторов осуществляется специальным цифровым кодом. Если резистор имеет типоразмер 0402, то есть самый маленький, то он никак не маркируется. Резисторы других типоразмеров добавочно различаются по допуску номинального сопротивления: 2, 5, 10%. Все эти резисторы имеют маркировку из 3 цифр. Первая и вторая из них показывают мантиссу, третья - множительный коэффициент. Например, код 473 читается так R=47∙103 Ом=47 кОм.

Все резисторы, которые имеют 1% допуск, а типоразмер больше 0805, имеют маркировку из четырёх цифр. Как и в предыдущем случае, первые цифры показывают мантиссу номинала, а на множитель указывает последняя цифра. Например, код 1501 расшифровывается так: R=150∙101=1500 Ом=1.5 кОм. Аналогично читаются и остальные коды.

Простейшая принципиальная схема

Правильное обозначение на схемах резисторов и других элементов – основное требование государственных стандартов при проектировании электронных и электротехнических изделий. Стандарт устанавливает правила на условные обозначения резисторов, конденсаторов, индуктивностей и других компонентов схем. На схеме указывается не только обозначение резистора или другого элемента схемы, но также его номинальное сопротивление и мощность, а для конденсаторов - рабочее напряжение. Ниже приведён пример простейшей принципиальной схемы с элементами, обозначенными по стандарту.

Схема

Знание всех условных графических обозначений и чтение буквенно-цифровых кодов к элементам схем позволит легко разобраться в принципе работы схемы. В данной статье рассмотрены только резисторы, а элементов схем довольно много.

загрузка...

em-goldex.ru

Обозначение мощности сопротивления на схеме. Обозначение резисторов на схемах

Из предыдущих статей мы с вами узнали, что такое резистор, какие виды и типы реристоров выпускаются современной промышленностью. Как выглядят резисторы, вы тоже увидели, теперь рассмотрим обозначение резисторов на схемах или условно-графическое обозначение резисторов (УГО).

Условно-графическое обозначение резисторов на схемах отображается согласно ГОСТа 2.728-74.

На рисунке 1. показано общее обозначение постоянного резистора и приведены размеры, согласно которых резистор наносится на принципиальные схемы.

Рисунок 1. Общее обозначение резистора на схеме.

Над УГО резистора наносится его порядковый номер, латинская буква R показывает на принадлежность к классу резисторов. Под УГО наносится номинальное сопротивление резистора.

Все резисторы имеют значение номинальной мощности рассеяния. Это значение мощности тока на резисторе, при которой он может работать длительное время и не перегреваться (обычно берут в расчет комнатную температуру?23°).

Показано на рисунке 2.

Рисунок 2. Обозначение мощности резисторов на схеме. а)0,125 Вт; б)0,25 Вт; в)0,5 Вт; г)1 Вт; д)2 Вт; е)5 Вт.

Обозначение переменных резисторов на схемах показано на рисунке 3.

Рисунок 3. Обозначение переменных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)при неленейном регулировании.

Обозначение педстроечных резисторов на схемах показано на рисунке 4.

Рисунок 4. Обозначение подстроечных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)переменный с подстройкой.

Приведенные обозначения резисторов на схемах, как уже было сказано соответствуют ГОСТу, однако в настоящее время в летературе (особенно в зарубежной) можно встретить другие обозначения резисторов.

Эти обозначения приведены на рисунке 5.

Рисунок 5. Обозначение резисторов используемое в зарубежной литературе. а)постоянный резистор; б)переменный резистор.

Резисторы классифицируются по характеру изменения сопротивления (постоянные, переменные регулируемые, переменные подстроечные), по назначению (общего назначения, высокочастотные, высоковольтные и др.), по материалу резистивного элемента (проволочные, непроволочные).

Непроволочные резисторы в зависимости от материала токопроводящего слоя подразделяются на металлодиэлектрические, металлоокисные, углеродистые, лакопленочные, на проводящей пластмассе и др.

Новая система обозначений резисторов представлена в табл. 2. 1.

Таблица 2. 1 СИСТЕМА УСЛОВНЫХ ОБО-НАЧЕНИЙ РЕ-ИСТОРОВ

В старой системе обозначений резисторов первый элемент означает: С - резистор постоянный, СП - резистор переменный, СТ - терморезистор, СН - варистор; второй элемент:

1 - углеродистые и бороуглеродистые, 2 - металлодиэлектрические и металлоокисные, 3 - композиционные пленочные, 4 - композиционные объемные, 5 - проволочные.

Применяются резисторы и с более старыми обозначениями, например, непроволочные постоянные ВС, УЛМ, МЛТ, проволочные ПЭ.

Номинальными параметрами резистора являются номинальная мощность рассеяния Рном, номинальное сопротивление R, допускаемое отклонение сопротивления, или допуск, температурный коэффициент сопротивления (ТКЕ), который показывает относительное обратимое изменение сопротивления при изменении температуры резистора на 1 С. Чем меньше ТКС, тем большей температурной стабильностью обладает резистор. Номинальную мощность резистора можно узнать по маркировке на корпусе или в зависимости от размеров по табл. 2. 2.

Таблица 2. 2 ОПРЕДЕЛЕНИЕ МОЩНОСТИ РЕ-ИСТОРОВ ПО ИХ РА-МЕРАМ

На корпус резистора наносится маркировка, если позволяют его размеры, которая содержит сокращенное обозначение, номинальную мощность, номинальное сопротивление, допуск.

Номинальное сопротивление обозначается цифрами с указанием единицы измерения:

Ом (R или Е по-старому или без буквы) - омы; кОм (К) - килоомы, МОм (М) - мегаомы, ГОм (G) - гигаомы, ТОм (Т) - тераомы. Например,

220 Ом 680 кОм 3, 3 МОм 4, 7 ГОм 1 ТОм или 220 680к 3М3 4G7 1Т,

где буква между цифрами определяет положение запятой.

Коды допускаемых отклонений сопротивления показаны в табл. 2. 3.

Таблица 2. 3 КОДЫ ДОПУСКАЕМЫХ ОТКЛОНЕНИЙ СОПРОТИВЛЕНИЙ РЕ-ИСТОРОВ

Примеры маркировки резисторов показаны на рис. 2. 1.

Для иностранных резисторов цвет пояска означает цифру:

черный - 0,

electricligt.ru

Обозначение импортных резисторов. Резисторы - виды и обозначения на схемах

В электрических цепях для регулировки тока применяются резисторы. Выпускается огромное количество различных их видов. Чтобы определиться во всём многообразии деталей, для каждой вводится условное обозначение резистора. Они маркируются различными способами, в зависимости от модификации.

Типы резисторов

Резистор ‒ это устройство, которое имеет его основное назначение ‒ ограничение тока в электрической цепи. Промышленность выпускает различные типы резисторов для самых разных технических устройств. Их классификация осуществляется разными способами, один из них ‒ характер изменения сопротивления. По этой классификации различают 3 типа резисторов:

  1. Постоянные резисторы. У них не имеется возможности произвольно изменять величину сопротивления. По назначению они делятся на два вида: общего и специального применения. Последние делятся по назначению на прецизионные, высокоомные, высоковольтные и высокочастотные.
  2. Переменные резисторы (их ещё называют регулировочными). Обладают возможностью изменять сопротивление с помощью управляющей ручки. По конструктивному исполнению они очень разные. Есть совмещённые с выключателем, сдвоенные, строенные (то есть на одной оси установлено два или три резистора) и множество других разновидностей.
  3. Подстроечные резисторы. Применяются только во время настройки технического устройства. Органы настройки у них доступны только под отвёртку. Производится большое количество различных модификаций этих резисторов. Они применяются во всевозможных электротехнических и электронных устройствах, начиная от планшетников и заканчивая большими промышленными установками.

Некоторые типы рассмотренных резисторов приведены на нижеприведённой фотографии.

Классификация компонентов по способу монтажа

Существует 3 основных вида монтажа электронных компонентов: навесной, печатный и для микромодулей. Для каждого вида монтажа предназначены свои элементы, они сильно различаются и по размерам, и по конструкции. Для навесного монтажа применяются резисторы, конденсаторы и Они выпускаются с проволочными выводами, чтобы можно было их впаивать в схему. В связи с миниатюризацией электронных устройств этот метод постепенно утрачивает актуальность.

Для печатного монтажа применяются более малогабаритные детали, с выводами для впаивания в или без них. Для соединения со схемой эти детали имеют контактные площадки. Печатный монтаж существенно способствовал сокращению размеров электронных изделий.

Для печатного и микромодульного монтажа часто используются smd-резисторы. Они очень малы по размерам, легко встраиваются автоматами в печатную плату и микромодули. Они выпускаются различного номинального сопротивления, мощности и размеров. В новейших электронных устройствах преимущественно используются smd-резисторы.

Номинальное сопротивление и рассеваемая мощность резисторов

Номинальное сопротивление, выраженное в омах, килоомах или мегаомах, является основной характеристикой резистора. Эта величина приводится на принципиальных схемах, наносится непосредственно на резистор в буквенно-цифровом коде. В последнее время часто стало применяться цветовое обозначение резисторов.

Вторая важнейшая характеристика резистора - это рассеиваемая мощность, она выражается в ваттах. Любой резистор при прохождении через него тока нагревается, то есть рассеивает мощность. Если эта мощность превысит допустимую величину, наступает разрушение резистора. По стандарту обозначение на схеме практически всегда присутствует, эта величина часто наносится и на его корпус.

Допуск номинального сопротивления и его зависимость от температуры

Большое значение имеет погрешность, или отклонение от номинальной величины, измеряемая в процентах. Невозможно абсолютно точно изготовить резистор с заявленной величиной сопротивления, обязательно будет отклонение от заданной величины. Погрешность указывается непосредственно на корпусе, чаще в виде кода из цветных полос. Оценивается она в процентах от номинального значения сопротивления.

Там, где существуют большие колебания температуры, немалое значение имеет зависимость сопротивления от температуры, или сокращённое обозначение — ТКС, измеряемый в относительных единицах ppm/°C. ТКС показывает, на какую часть от номинального меняется сопротивление резистора, если температура среды увеличивается (уменьшается) на 1°C.

Условное графическое обозначение резистора на схеме

При вычерчивании схем требуется соблюдение государственного стандарта ГОСТ 2.728

elects.ru

Цветовое обозначение резистора. Обозначение мощности резисторов на схеме

В электрических цепях для регулировки тока применяются резисторы. Выпускается огромное количество различных их видов. Чтобы определиться во всём многообразии деталей, для каждой вводится условное обозначение резистора. Они маркируются различными способами, в зависимости от модификации.

Типы резисторов

Резистор ‒ это устройство, которое имеет электрическое сопротивление, его основное назначение ‒ ограничение тока в электрической цепи. Промышленность выпускает различные типы резисторов для самых разных технических устройств. Их классификация осуществляется разными способами, один из них ‒ характер изменения сопротивления. По этой классификации различают 3 типа резисторов:

  1. Постоянные резисторы. У них не имеется возможности произвольно изменять величину сопротивления. По назначению они делятся на два вида: общего и специального применения. Последние делятся по назначению на прецизионные, высокоомные, высоковольтные и высокочастотные.
  2. Переменные резисторы (их ещё называют регулировочными). Обладают возможностью изменять сопротивление с помощью управляющей ручки. По конструктивному исполнению они очень разные. Есть совмещённые с выключателем, сдвоенные, строенные (то есть на одной оси установлено два или три резистора) и множество других разновидностей.
  3. Подстроечные резисторы. Применяются только во время настройки технического устройства. Органы настройки у них доступны только под отвёртку. Производится большое количество различных модификаций этих резисторов. Они применяются во всевозможных электротехнических и электронных устройствах, начиная от планшетников и заканчивая большими промышленными установками.

Некоторые типы рассмотренных резисторов приведены на нижеприведённой фотографии.

Разные резисторы

Классификация компонентов по способу монтажа

Существует 3 основных вида монтажа электронных компонентов: навесной, печатный и для микромодулей. Для каждого вида монтажа предназначены свои элементы, они сильно различаются и по размерам, и по конструкции. Для навесного монтажа применяются резисторы, конденсаторы и полупроводниковые приборы. Они выпускаются с проволочными выводами, чтобы можно было их впаивать в схему. В связи с миниатюризацией электронных устройств этот метод постепенно утрачивает актуальность.Навесной монтажДля печатного монтажа применяются более малогабаритные детали, с выводами для впаивания в печатную плату или без них. Для соединения со схемой эти детали имеют контактные площадки. Печатный монтаж существенно способствовал сокращению размеров электронных изделий.

Печатный монтаж

Для печатного и микромодульного монтажа часто используются smd-резисторы. Они очень малы по размерам, легко встраиваются автоматами в печатную плату и микромодули. Они выпускаются различного номинального сопротивления, мощности и размеров. В новейших электронных устройствах преимущественно используются smd-резисторы.

Номинальное сопротивление и рассеваемая мощность резисторов

Номинальное сопротивление, выраженное в омах, килоомах или мегаомах, является основной характеристикой резистора. Эта величина приводится на принципиальных схемах, наносится непосредственно на резистор в буквенно-цифровом коде. В последнее время часто стало применяться цветовое обозначение резисторов.

Вторая важнейшая характеристика резистора - это рассеиваемая мощность, она выражается в ваттах. Любой резистор при прохождении через него тока нагревается, то есть рассеивает мощность. Если эта мощность превысит допустимую величину, наступает разрушение резистора. По стандарту обозначение мощности резисторов на схеме практически всегда присутствует, эта величина часто наносится и на его корпус.

Допуск номинального сопротивления и его зависимость от температуры

Большое значение имеет погрешность, или отклонение от номинальной величины, измеряемая в процентах. Невозможно абсолютно точно изготовить резистор с заявленной величиной сопротивления, обязательно будет отклонение от заданной величины. Погрешность указывается непосредственно на корпусе, чаще в виде кода из цветных полос. Оценивается она в процентах от номинального значения сопротивления.

Там, где существуют большие колебания температуры, немалое значение имеет зависимость сопротивления от температуры, или температурный коэффициент сопротивления, сокращённое обозначение — ТКС, измеряемый в относительных единицах ppm/°C. ТКС показывает, на какую часть от номинального меняется сопротивление резистора, если температура среды увеличивается (уменьшается) на 1°C.

Условное графическое обозначение резистора на схеме

При вычерчивании схем требуется соблюдение государственного стандарта ГОСТ 2.728-74 на условные графические обозначения (УГО). Обозначение резистора любого типа – это прямоугольник 10х4 мм. На его основе создаются графические изображения для других типов резисторов. Кроме УГО, требуется обозначение мощности резисторов на схеме, это облегчает её анализ при поиске неисправностей. В нижеприведённой таблице указаны УГО постоянных сопротивлений с указанием рассеиваемой мощности.

Постоянные резисторы

Ниже на фотографии изображены постоянные резисторы разной мощности.

Резисторы разной мощности

Условное графическое обозначение переменных резисторов

УГО переменных резисторов наносятся на принципиальную схему так же, как и постоянные резисторы, по государственному стандарту ГОСТ 2.728-74. В таблице приведено изображение этих резисторов.

Переменные резисторы

На фотографии ниже изображены переменные и подстроечные резисторы.

Переменные резисторы

Стандартное обозначение сопротивления резисторов

Международными стандартами принято обозначать номинальное сопротивление резистора на схеме и на самом резисторе немного по-разному. Правила этого обозначения вместе с образцами примеров приведены в таблице.

Полное обозначениеСокращённое обозначение
Единица измеренияОбозн. ед. изм.Предел номин. сопротивленияна схемена корпусеПредел номин. сопротивления
ОмОм999,90,51E51 или R5199,9
5,15E1; 5R1
5151E
510510E; K51
КилоомкОм999,95,1k5K199,9
51k51K
510k510K; M51
МегаомМОм999,95,1M5M199,9
51M51M
510M510M

Из таблицы видно, что обозначение на схемах резисторов постоянного сопротивления делаются буквенно-цифровым кодом, сначала идёт числовое значение сопротивления, затем указывается единица измерения. На корпусе резистора принято в цифровом обозначении вместо запятой использовать букву, если это омы, то ставится E или R, если же килоомы, то буква K. При обозначении мегаомов вместо запятой применяется буква M.

Цветовая маркировка резисторов

Цветовое обозначение резисторов было принято, чтобы проще было нанести информацию о технических характеристиках на их корпусе. Для этого наносится несколько цветовых полосок разного цвета. Всего в обозначении полосок принято 12 различных цветов. Каждый из них имеет своё определённое значение. Цветовой код резистра наносится с края, при низкой его точности (20%) наносится 3 полоски. Если точность выше, на сопротивлении можно увидеть уже 4 полоски.

Резистор 4 полоски

При высокой точности резистора наносится 5-6 полосок. У маркировки, содержащей 3-4 полоски, первые две обозначают величину сопротивления, третья полоска ‒ это множитель, на него умножается эта величина. Следующая полоска определяет точность резистора. Когда маркировка содержит 5-6 полосок, первые 3 соответствуют сопротивлению. Следующая полоска ‒ это множитель, 5-я полоска соответствует точности, а 6-я - температурному коэффициету.

Резистор 5 полосок

Для расшифровки цветовых кодов резисторов существуют справочные таблицы.

Резисторы для поверхностного монтажа

Поверхностный монтаж — это когда все детали располагаются на плате со стороны печатных дорожек. В этом случае не сверлятся отверстия для монтажа элементов, они припаиваются к дорожкам. Для этого монтажа промышленность выпускает широкий набор smd-компонентов: резисторы, диоды, конденсаторы, полупроводниковые приборы. Эти элементы гораздо меньше по размерам и технологически приспособлены для автоматизированного монтажа. Использование smd-компонентов позволяет существенно уменьшить размеры изделий электроники. Поверхностный монтаж в электронике практически уже вытеснил все другие виды.

smd резисторы

При всех достоинствах рассматриваемого монтажа он имеет ряд недостатков.

  1. Печатные платы, изготовленные по этой технологии, боятся ударов и других механических нагрузок, так как при этом повреждаются smd-компоненты.
  2. Эти компоненты боятся перегрева при пайке, потому что от сильных перепадов темературы они могут потрескаться. Этот дефект сложно обнаружить, он проявляется обычно во время работы.

Стандартное обозначение smd-резисторов

В первую очередь smd-резисторы различаются типоразмерами. Самый маленький типоразмер ‒ 0402, чуть больше – 0603. Самый ходовой типоразмер smd-резистора – 0805, и побольше - 1008, следующий типоразмер 1206 и самый большой - 1812. Резисторы самого малого типоразмера имеют и самую малую мощность.

Обозначение smd-резисторов осуществляется специальным цифровым кодом. Если резистор имеет типоразмер 0402, то есть самый маленький, то он никак не маркируется. Резисторы других типоразмеров добавочно различаются по допуску номинального сопротивления: 2, 5, 10%. Все эти резисторы имеют маркировку из 3 цифр. Первая и вторая из них показывают мантиссу, третья - множительный коэффициент. Например, код 473 читается так R=47∙103 Ом=47 кОм.

Все резисторы, которые имеют 1% допуск, а типоразмер больше 0805, имеют маркировку из четырёх цифр. Как и в предыдущем случае, первые цифры показывают мантиссу номинала, а на множитель указывает последняя цифра. Например, код 1501 расшифровывается так: R=150∙101=1500 Ом=1.5 кОм. Аналогично читаются и остальные коды.

Простейшая принципиальная схема

Правильное обозначение на схемах резисторов и других элементов – основное требование государственных стандартов при проектировании электронных и электротехнических изделий. Стандарт устанавливает правила на условные обозначения резисторов, конденсаторов, индуктивностей и других компонентов схем. На схеме указывается не только обозначение резистора или другого элемента схемы, но также его номинальное сопротивление и мощность, а для конденсаторов - рабочее напряжение. Ниже приведён пример простейшей принципиальной схемы с элементами, обозначенными по стандарту.

Схема

Знание всех условных графических обозначений и чтение буквенно-цифровых кодов к элементам схем позволит легко разобраться в принципе работы схемы. В данной статье рассмотрены только резисторы, а элементов схем довольно много.

загрузка...

meetmarket.ru

Цветовое обозначение резистора. Обозначение мощности резисторов на схеме

В электрических цепях для регулировки тока применяются резисторы. Выпускается огромное количество различных их видов. Чтобы определиться во всём многообразии деталей, для каждой вводится условное обозначение резистора. Они маркируются различными способами, в зависимости от модификации.

Типы резисторов

Резистор ‒ это устройство, которое имеет электрическое сопротивление, его основное назначение ‒ ограничение тока в электрической цепи. Промышленность выпускает различные типы резисторов для самых разных технических устройств. Их классификация осуществляется разными способами, один из них ‒ характер изменения сопротивления. По этой классификации различают 3 типа резисторов:

  1. Постоянные резисторы. У них не имеется возможности произвольно изменять величину сопротивления. По назначению они делятся на два вида: общего и специального применения. Последние делятся по назначению на прецизионные, высокоомные, высоковольтные и высокочастотные.
  2. Переменные резисторы (их ещё называют регулировочными). Обладают возможностью изменять сопротивление с помощью управляющей ручки. По конструктивному исполнению они очень разные. Есть совмещённые с выключателем, сдвоенные, строенные (то есть на одной оси установлено два или три резистора) и множество других разновидностей.
  3. Подстроечные резисторы. Применяются только во время настройки технического устройства. Органы настройки у них доступны только под отвёртку. Производится большое количество различных модификаций этих резисторов. Они применяются во всевозможных электротехнических и электронных устройствах, начиная от планшетников и заканчивая большими промышленными установками.

Некоторые типы рассмотренных резисторов приведены на нижеприведённой фотографии.

Разные резисторы

Классификация компонентов по способу монтажа

Существует 3 основных вида монтажа электронных компонентов: навесной, печатный и для микромодулей. Для каждого вида монтажа предназначены свои элементы, они сильно различаются и по размерам, и по конструкции. Для навесного монтажа применяются резисторы, конденсаторы и полупроводниковые приборы. Они выпускаются с проволочными выводами, чтобы можно было их впаивать в схему. В связи с миниатюризацией электронных устройств этот метод постепенно утрачивает актуальность.Навесной монтажДля печатного монтажа применяются более малогабаритные детали, с выводами для впаивания в печатную плату или без них. Для соединения со схемой эти детали имеют контактные площадки. Печатный монтаж существенно способствовал сокращению размеров электронных изделий.

Печатный монтаж

Для печатного и микромодульного монтажа часто используются smd-резисторы. Они очень малы по размерам, легко встраиваются автоматами в печатную плату и микромодули. Они выпускаются различного номинального сопротивления, мощности и размеров. В новейших электронных устройствах преимущественно используются smd-резисторы.

Номинальное сопротивление и рассеваемая мощность резисторов

Номинальное сопротивление, выраженное в омах, килоомах или мегаомах, является основной характеристикой резистора. Эта величина приводится на принципиальных схемах, наносится непосредственно на резистор в буквенно-цифровом коде. В последнее время часто стало применяться цветовое обозначение резисторов.

Вторая важнейшая характеристика резистора - это рассеиваемая мощность, она выражается в ваттах. Любой резистор при прохождении через него тока нагревается, то есть рассеивает мощность. Если эта мощность превысит допустимую величину, наступает разрушение резистора. По стандарту обозначение мощности резисторов на схеме практически всегда присутствует, эта величина часто наносится и на его корпус.

Допуск номинального сопротивления и его зависимость от температуры

Большое значение имеет погрешность, или отклонение от номинальной величины, измеряемая в процентах. Невозможно абсолютно точно изготовить резистор с заявленной величиной сопротивления, обязательно будет отклонение от заданной величины. Погрешность указывается непосредственно на корпусе, чаще в виде кода из цветных полос. Оценивается она в процентах от номинального значения сопротивления.

Там, где существуют большие колебания температуры, немалое значение имеет зависимость сопротивления от температуры, или температурный коэффициент сопротивления, сокращённое обозначение — ТКС, измеряемый в относительных единицах ppm/°C. ТКС показывает, на какую часть от номинального меняется сопротивление резистора, если температура среды увеличивается (уменьшается) на 1°C.

Условное графическое обозначение резистора на схеме

При вычерчивании схем требуется соблюдение государственного стандарта ГОСТ 2.728-74 на условные графические обозначения (УГО). Обозначение резистора любого типа – это прямоугольник 10х4 мм. На его основе создаются графические изображения для других типов резисторов. Кроме УГО, требуется обозначение мощности резисторов на схеме, это облегчает её анализ при поиске неисправностей. В нижеприведённой таблице указаны УГО постоянных сопротивлений с указанием рассеиваемой мощности.

Постоянные резисторы

Ниже на фотографии изображены постоянные резисторы разной мощности.

Резисторы разной мощности

Условное графическое обозначение переменных резисторов

УГО переменных резисторов наносятся на принципиальную схему так же, как и постоянные резисторы, по государственному стандарту ГОСТ 2.728-74. В таблице приведено изображение этих резисторов.

Переменные резисторы

На фотографии ниже изображены переменные и подстроечные резисторы.

Переменные резисторы

Стандартное обозначение сопротивления резисторов

Международными стандартами принято обозначать номинальное сопротивление резистора на схеме и на самом резисторе немного по-разному. Правила этого обозначения вместе с образцами примеров приведены в таблице.

Полное обозначениеСокращённое обозначение
Единица измеренияОбозн. ед. изм.Предел номин. сопротивленияна схемена корпусеПредел номин. сопротивления
ОмОм999,90,51E51 или R5199,9
5,15E1; 5R1
5151E
510510E; K51
КилоомкОм999,95,1k5K199,9
51k51K
510k510K; M51
МегаомМОм999,95,1M5M199,9
51M51M
510M510M

Из таблицы видно, что обозначение на схемах резисторов постоянного сопротивления делаются буквенно-цифровым кодом, сначала идёт числовое значение сопротивления, затем указывается единица измерения. На корпусе резистора принято в цифровом обозначении вместо запятой использовать букву, если это омы, то ставится E или R, если же килоомы, то буква K. При обозначении мегаомов вместо запятой применяется буква M.

Цветовая маркировка резисторов

Цветовое обозначение резисторов было принято, чтобы проще было нанести информацию о технических характеристиках на их корпусе. Для этого наносится несколько цветовых полосок разного цвета. Всего в обозначении полосок принято 12 различных цветов. Каждый из них имеет своё определённое значение. Цветовой код резистра наносится с края, при низкой его точности (20%) наносится 3 полоски. Если точность выше, на сопротивлении можно увидеть уже 4 полоски.

Резистор 4 полоски

При высокой точности резистора наносится 5-6 полосок. У маркировки, содержащей 3-4 полоски, первые две обозначают величину сопротивления, третья полоска ‒ это множитель, на него умножается эта величина. Следующая полоска определяет точность резистора. Когда маркировка содержит 5-6 полосок, первые 3 соответствуют сопротивлению. Следующая полоска ‒ это множитель, 5-я полоска соответствует точности, а 6-я - температурному коэффициету.

Резистор 5 полосок

Для расшифровки цветовых кодов резисторов существуют справочные таблицы.

Резисторы для поверхностного монтажа

Поверхностный монтаж — это когда все детали располагаются на плате со стороны печатных дорожек. В этом случае не сверлятся отверстия для монтажа элементов, они припаиваются к дорожкам. Для этого монтажа промышленность выпускает широкий набор smd-компонентов: резисторы, диоды, конденсаторы, полупроводниковые приборы. Эти элементы гораздо меньше по размерам и технологически приспособлены для автоматизированного монтажа. Использование smd-компонентов позволяет существенно уменьшить размеры изделий электроники. Поверхностный монтаж в электронике практически уже вытеснил все другие виды.

smd резисторы

При всех достоинствах рассматриваемого монтажа он имеет ряд недостатков.

  1. Печатные платы, изготовленные по этой технологии, боятся ударов и других механических нагрузок, так как при этом повреждаются smd-компоненты.
  2. Эти компоненты боятся перегрева при пайке, потому что от сильных перепадов темературы они могут потрескаться. Этот дефект сложно обнаружить, он проявляется обычно во время работы.

Стандартное обозначение smd-резисторов

В первую очередь smd-резисторы различаются типоразмерами. Самый маленький типоразмер ‒ 0402, чуть больше – 0603. Самый ходовой типоразмер smd-резистора – 0805, и побольше - 1008, следующий типоразмер 1206 и самый большой - 1812. Резисторы самого малого типоразмера имеют и самую малую мощность.

Обозначение smd-резисторов осуществляется специальным цифровым кодом. Если резистор имеет типоразмер 0402, то есть самый маленький, то он никак не маркируется. Резисторы других типоразмеров добавочно различаются по допуску номинального сопротивления: 2, 5, 10%. Все эти резисторы имеют маркировку из 3 цифр. Первая и вторая из них показывают мантиссу, третья - множительный коэффициент. Например, код 473 читается так R=47∙103 Ом=47 кОм.

Все резисторы, которые имеют 1% допуск, а типоразмер больше 0805, имеют маркировку из четырёх цифр. Как и в предыдущем случае, первые цифры показывают мантиссу номинала, а на множитель указывает последняя цифра. Например, код 1501 расшифровывается так: R=150∙101=1500 Ом=1.5 кОм. Аналогично читаются и остальные коды.

Простейшая принципиальная схема

Правильное обозначение на схемах резисторов и других элементов – основное требование государственных стандартов при проектировании электронных и электротехнических изделий. Стандарт устанавливает правила на условные обозначения резисторов, конденсаторов, индуктивностей и других компонентов схем. На схеме указывается не только обозначение резистора или другого элемента схемы, но также его номинальное сопротивление и мощность, а для конденсаторов - рабочее напряжение. Ниже приведён пример простейшей принципиальной схемы с элементами, обозначенными по стандарту.

Схема

Знание всех условных графических обозначений и чтение буквенно-цифровых кодов к элементам схем позволит легко разобраться в принципе работы схемы. В данной статье рассмотрены только резисторы, а элементов схем довольно много.

загрузка...

skv-tv.ru

обозначение на схеме, как увеличить, что делать, если нет подходящего

В схемах радиоэлектронной аппаратуры одним из наиболее часто встречающихся элементов является резистор, другое его название это сопротивление. У него есть целый ряд характеристик, среди которых есть мощность. В этой статье мы поговорим о резисторах, что делать, если у вас нет подходящего по мощности элемента, и почему они сгорают.

Мощность резистора

Характеристики резисторов

1. Основной параметр резистора – это номинальное сопротивление.

2. Второй параметр, по которому его выбирают – это максимальная (или предельная) рассеиваемая мощность.

3. Температурный коэффициент сопротивления – описывает, насколько изменяется сопротивление, при изменении его температуры на 1 градус Цельсия.

4. Допустимое отклонение от номинала. Обычно разброс параметров резистора от одного заявленного в пределах 5-10%, это зависит от ГОСТ или ТУ по которому он произведен, существуют и точные резисторы с отклонением до 1%, обычно стоят дороже.

5. Предельное рабочее напряжение, зависит от конструкции элемента, в бытовых электроприборах с напряжением питания 220В могут применяться практически любые резисторы.

6. Шумовые характеристики.

7. Максимальная температура окружающей среды. Это такая температура, которая может быть при достижении максимальной рассеиваемой мощности самого резистора. Об этом подробнее поговорим позже.

8. Влаго- и термоустойчивость.

Есть еще две характеристики, о которых начинающие чаще всего не знают, это:

1. Паразитная индуктивность.

2. Паразитная ёмкость.

Оба параметра зависят от типа и конструктивных особенностей резистора. Индуктивность имеет в любом проводнике, вопрос в её величины. Типовые величины паразитных индуктивностей и емкостей приводить бессмысленно. Паразитные составляющие следует учитывать при проектировании и ремонте высокочастотных приборах.

На низких частотах (например, в пределах звукового диапазона до 20 кГц), существенного влияния в работу схемы они не вносят. В высокочастотных приборах, с рабочими частотами в сотни тысяч и выше герц существенное влияние вносит даже расположение дорожек на плате и их форма.

Резисторы на макетной плате

Мощность резистора

Из курса физики многие отлично помнят формулу мощности для электричества, это: P=U*I

Отсюда следует, что она линейно зависит от тока и напряжения. Ток же через резистор зависит от его сопротивления и приложенного к нему напряжению, то есть:

I=U/R

Падение напряжения на резисторе (сколько на его выводах остаётся напряжения от приложенного к цепи, в которой он установлен), так же зависит от тока и сопротивления:

I=U/R

Теперь объясним простыми словами, что такое мощность у резистора и куда она выделяется.

У любого металла есть своё удельное сопротивление, это такая величина, которая зависит от структуры этого самого металла. Когда носители зарядов (в нашем случае электроны), под воздействием электрического тока протекают через проводник, они сталкиваются с частицами, из которого состоит металл.

В результате этих столкновений затрудняется движение тока. Если очень обобщенно сказать, то получается, так, что чем плотнее структура металла, тем сложнее протекать току (тем больше сопротивление).

На картинке пример кристаллической решетки, для наглядности.

Пример кристаллической решетки

Из-за этих столкновений выделяется тепло. Это можно представить, как если бы вы шли через толпу (большое сопротивление), где вас еще и толкают, или если бы шли по пустому коридору, где вы сильнее вспотеете?

То же самое происходит и с металлом. Мощность выделяется в виде тепла. В некоторых случаях это плохо, потому что так снижается коэффициент полезного действия прибора. В других ситуациях – это полезное свойство, например в работе ТЭНов. В лампах накаливания за счет своего сопротивления спираль раскаляется до яркого свечения.

Но как это относится к резисторам?

Дело в том, что резисторы применяют для ограничения тока при питании каких-либо устройств, или элементов цепи, или для задания режимов работы полупроводниковым приборам. Мы описывали это в статье о биполярных транзисторах. Из формулы выше станет ясно, что ток снижается, за счет снижения напряжения. Лишнее напряжение можно сказать, что сгорает в виде тепла на резисторе, мощность при этом считается по той же формуле, что и общая мощность:

P=U*I

Здесь U – это количество вольт «сожженных» на резисторе, а I – это ток, который через него протекает.

Выделение тепла на резисторе объясняется законом Джоуля-Ленца, который связывает количество выделенной теплоты с током и сопротивлением. Чем больше первое или второе, тем больше выделится тепла.

Чтобы было удобно из этой формулы, путем подстановки закона Ома для участка цепи, выведено еще две формулы.

Для определения мощности через приложенное напряжение к резистору:

P=(U^2)/R

Для определения мощности через ток, протекающий через резистор:

P=(I^2)/R

Немного практики

Для примера, давайте определим, какая мощность выделяется на резистор номиналом в 1 Ом, подключенного к источнику напряжения в 12В.

Для начала посчитаем ток в цепи:

I=12/1=12А

Теперь мощность по классической формуле:

P=12*12=144 Вт.

Одного действия при расчетах можно избежать, если пользоваться вышеупомянутыми формулами, давайте это проверим:

P=12^2/1=144/1=144 Вт.

Всё сходится. Резистор будет выделять тепло с мощностью в 144Вт. Это условные значения, взятые в качестве примера. На практике таких резисторов вы не встретите в радиоэлектронной аппаратуре, исключением являются большие сопротивления для регулирования двигателей постоянного тока или пуска мощных синхронных машин в асинхронном режиме.

Какие бывают резисторы и как они обозначаются на схеме

Ряд мощностей резисторов стандартен: 0.05 (0.62) – 0.125 – 0.25 – 0.5 – 1 – 2 – 5

Это типовые номиналы распространенных резисторов, бывают и большие значения, или другие величины. Но этот ряд наиболее распространен. При сборке электроники используют схему электрическую принципиальную, с порядкового номера элементов. Реже указываться номинальное сопротивление, еще реже указывается номинальное сопротивление и мощность.

Чтобы быстро определить мощность резистора на схеме были введены соответствующие УГО (условные графические обозначения) по ГОСТ. Внешний вид таких обозначений и их расшифровка представлены в таблице ниже.

Условные обозачения резисторов на схемах

Вообще эти данные, а также название конкретного типа резистора указываются в перечне элементов, там же указывается и разрешенный допуск в %.

Внешне, они отличаются размером, чем мощнее элемент, тем больше его размер. Больший размер увеличивает площадь теплообмена резистора с окружающей средой. Поэтому тепло, которое выделяется при прохождении тока через сопротивление, быстрее отдаётся воздуху (если окружающая среда воздух).

Это значит, что резистор может греться с большей мощностью (выделять определенное количество тепла в единицу времени). Когда температура сопротивления достигает определенного уровня, сначала начинает выгорать внешний слой с маркировкой, дальше сгорает резистивный слой (пленка, проволока или что-то другое).

Чтобы вы оценили, как сильно может греться резистор, взгляните на нагрев спирали разобранного мощного резистора (более 5 Вт) в керамическом корпусе.

Как греется резистор

В характеристиках был такой параметр, как допустимая температура окружающей среды. Она указывается, для правильного подбора элемента. Дело в том, что раз мощность резистора ограничена способностью отдать тепло и, при этом, не перегреться, а для отдачи тепла, т.е. охлаждения элемента путем конвекции или принудительным потоком воздуха должна быть как можно большая разница температур элемента и окружающей среды.

Поэтому если вокруг элемента слишком жарко он быстрее нагреется и сгорит, даже если электрическая мощность на нем ниже максимально рассеиваемой. Нормальной температурой является 20-25 градусов Цельсия.

В продолжение этой темы:

Как понизить напряжение с помощью резистора

Расчет и подбор резистора для светодиода

Расчет делителя напряжения на резисторах

Применение добавочных резисторов

Что делать, если нет резистора нужной мощности?

Частой проблемой радиолюбителей является отсутствия резистора нужной мощности. Если у вас есть резисторы мощнее, чем нужно – ничего страшного в этом нет, можно ставить не задумываясь. Лишь бы он влез по размеру. Если все имеющиеся резисторы по мощности меньше, чем нужно – это уже проблема.

На самом деле решить этот вопрос достаточно просто. Вспомните законы последовательного и параллельного соединения резисторов.

1. При последовательном соединении резисторов сумма падений напряжений на всей цепочке равняется сумме падений на каждом из них. А ток, протекающий через каждый резистор равен общему току, т.е. в цепи из последовательно соединенных элементов протекает ОДИН ток, но приложенные к каждому из них напряжения РАЗНЫЕ, определяются по закону Ома для участка цепи (см. выше) Uобщ=U1+U2+U3

2. При параллельном соединении резисторов падение на всех напряжения равны, а ток, протекающий в каждой из ветвей обратно пропорционален сопротивлению ветви. Общий ток цепочки из параллельно соединенных резисторов равен сумме токов каждой из ветвей.

На этой картинке изображено всё вышесказанное, в удобной для запоминания форме.

Последовательное и параллельное соединение резисторов

Так, как при последовательном соединении резисторов снизится напряжение на каждом из них, а при параллельном соединении ток, то если P=U*I

Мощность, выделяемая на каждом из них, снизится соответствующим образом.

Поэтому, если у вас нет резистора 100 Ом на 1 Вт, его можно почти всегда заменить 2 резисторами на 50 Ом и 0.5 Вт соединенными последовательно, или 2 резисторами на 200 Ом и 0.5 Вт соединенными параллельно.

Пример замены резисторов

Я не просто так написал «ПОЧТИ ВСЕГДА». Дело в том, что не все резисторы одинаково хорошо переносят ударные токи, в некоторых цепях, например связанные с зарядом конденсаторов большой ёмкости, в первоначальный момент времени переносят большую ударную нагрузку, которая может повредить его резистивный слой. Такие связки нужно проверять на практике или путем долгих расчетов и чтением технической документации и ТУ на резисторы, чем почти никогда и никто не занимается.

Резисторы в электронной схеме

Заключение

Мощность резистора – это величина не менее важная, чем его номинальное сопротивление. Если не уделять внимания подбору сопротивлений нужно мощности, то они будут перегорать и сильно греться, что плохо в любой цепи.

При ремонте аппаратуры, особенно китайской, ни в коем случае не пытайтесь ставить резисторы меньшей мощности, лучше поставить с запасом, если есть такая возможность поместить его по габаритам на плате.

Для стабильной и надежной работы радиоэлектронного устройства нужно подбирать мощность, как минимум, с запасом в половину от предполагаемой, а лучше в 2 раза больше. Это значит, что если по расчетам на резисторе выделяется 0.9-1 Вт, то мощность резистора или их сборки должна быть не меньше, чем 1.5-2 Вт.

Алексей Бартош

elektruk.elektruk.info


Каталог товаров
    .