Электрический ток (I) это направленное движение свободных носителей электрического заряда. В металлах свободными носителями заряда являются электроны, в плазме, электролите — ионы. Единица измерения силы тока – ампер (А). Условно за положительное направление тока во внешней цепи принимают направление от положительно заряженного электрода (+) к отрицательно заряженному (-). Если направление тока в ветви неизвестно, то его выбирают произвольно. Если в результате расчета режима цепи, ток будет иметь отрицательное значение, то действительное направление тока противоположно произвольно выбранному. Электрическое напряжение (U) это характеристика работы сил поля по переносу электрических зарядов через внешние элементы цепи. При этом электрическая энергия преобразуется в другие виды. Единица измерения – вольт (В). За положительное направление напряжения приемника принимают направление, совпадающее с выбранным положительным направлением тока. В электрических цепях и энергетических системах напряжение может иметь значения в пределах от нескольких вольт до сотен тысяч вольт. Электродвижущая сила Е (ЭДС) характеризует способность индуцированного поля вызывать электрический ток. Единица измерения – вольт (В). Источники энергии могут быть источниками ЭДС и тока. В данном пособии рассматриваются только источники ЭДС. Источник ЭДС характеризуется двумя параметрами: значениями ЭДС (Е) и внутреннего сопротивления (r0). Источник ЭДС, внутренним сопротивлением которого можно пренебречь, называют идеальным источником. Реальный источник ЭДС имеет определенное значение внутреннего сопротивления. У источника ЭДС внутренне сопротивление значительно меньше сопротивления нагрузки (RН) и электрический ток в цепи зависит главным образом от величины ЭДС и сопротивления нагрузки. Источник ЭДС имеет следующие графические обозначения. Вольтамперная характеристика источника ЭДС имеет вид: Рис. 1 Зависимость между напряжением на зажимах источника и его ЭДС имеет вид: U = E — r0× I (для реального источника ЭДС) U = E (для идеального источника). Электрическое сопротивление R это величина, характеризующая противодействие проводящей среды движению свободных электрических зарядов (току). Единица измерения – Ом. Величина, обратная сопротивлению, называется электрической проводимостью G. Единица измерения – сименс (См). Электрическое сопротивление проводника определяется по формуле R=ρl/S где l – длина;S – поперечное сечение;ρ — удельное сопротивление. По способности проводить электрический ток электротехнические материалы можно разделить на группы: проводники, диэлектрики и полупроводники. Проводниковые материалы (алюминий, медь, золото, серебро и др.) обладают высокой электропроводностью. Наиболее часто в проводах и кабелях используется алюминий, как наиболее дешевый. Медь имеет большую электропроводимость, но она дороже. Из проводников следует выделить группу материалов с большим удельным сопротивлением. К ним относятся сплавы ( нихром, фехраль и др.) они используются для изготовления обмоток нагревательных приборов и реостатов. Вольфрам используется в лампах накаливания. Константан и манганин используются в качестве сопротивлений в образцовых приборах. Электроизоляционные материалы (диэлектрики) имеют очень малую удельную электрическую проводимость. Они бывают газообразные, жидкие и твердые. Особенно большим разнообразием отличаются твердые диэлектрики. К ним относятся резина, сухое дерево, керамические материалы, пластмассы, картон, пряжа и др. материалы. В качестве конструкционных материалов применяются текстолит и гетинакс. Текстолит это диэлектрический материал основой которого является ткань, пропитанная феноло-формальдегидной смолой. Гетинакс это бумага, пропитанная феноло-формальдегидной смолой. Полупроводники по электропроводимости занимают промежуточное положение между проводниками и диэлектриками. Простые полупроводниковые вещества – германий, кремний, селен, сложные полупроводниковые материалы — арсенид галлия, фосфид галлия и др. В чистых полупроводниках концентрация носителей заряда – свободных электронов и дырок мала и эти материалы не проводят электрический ток. Если в полупроводниковый материал ввести примесь (донорную или акцепторную), то есть произвести легирование, то полупроводник становится обладателем или электронной (n) проводимости (избыток электронов), или дырочной (р) проводимости (избыток положительных зарядов – дырок). Если соединить два полупроводника с различными видами проводимости, получим полупроводниковый прибор (диод), который используется для выпрямления переменного тока. Мощность в электрической цепи характеризует интенсивность преобразования энергии из одного вида в другой в единицу времени. Единица измерения мощности – Ватт (Вт). Для цепи постоянного тока мощность источника Pист = E I. Мощность приемника Рпр = U × I = R × I2 = U2/R Закон электромагнитной индукции — устанавливает связь между электрическими и магнитными явлениями, был открыт в 1831 году М. Фарадеем, в 1873 году закон был обобщен и развит Д.Максвеллом: Если магнитный поток Ф, проходящий сквозь поверхность, ограниченную некоторым контуром, изменяется во времени t, в контуре индуцируется ЭДС e, равная скорости изменения потока Рис. 2 dprm.ru Данный раздел основных формул ТОЭ предназначен для начинающих, как для студентов высших учебных заведений изучающих курс физики по электротехники, так и просто для интересующихся общей электротехникой /ТОЭ/ с примерами и комментариями автора: Прежде чем перейти к формулам, обращу Ваше внимание на буквенное обозначение в ТОЭ, в разных учебниках по ТОЭ, мягко говоря, обозначение довольно произвольное, нет единого требования по данному вопросу в электротехнике. Особенно заметна разность обозначения в комплексных числах (как грибы в лесу, как только их не называют в разных местностях). Поэтому определимся сразу с буквенным обозначением: 😥 ФОРМУЛЫ ПОСТОЯННОГО ТОКА Закон Ома для участка цепи и всей цепи постоянного тока: Пример для расчета сопротивления проводника (подробнее можете посмотреть, что такое величина удельного сопротивления проводника на стр. понятия и определения): Мощность в цепи постоянного тока, здесь нет ничего сложного, как и все в постоянном токе, замечу только, что значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, единица мощности (Р) равна -1 кВт = 1000 Вт: ФОРМУЛЫ ПЕРЕМЕННОГО ТОКА В отличие от постоянного тока, особенностью переменного тока является то, что электрический ток с течением времени изменяется по величине и направлению. Элементы такой электрической цепи влияют на амплитуду тока и на его фазу. Условное обозначение переменного тока на электроприборах ̴ (англ. alternating current и обозначается латинскими буквами АС): См. также ниже продолжение раздела формулы: перейти: формулы тоэ 1 краткое описание страницы — электрический ток (I, ампер), электродвижущая сила (ЭДС, E=A/q=Дж/Кл=В, вольт), электрическое напряжение (U, вольт), электрическая энергия и мощность (Eq, Дж, джоуль) и ватт (Р, Вт, ватт)… перейти: формулы тоэ 2 краткое описание страницы — пассивные элементы цепи (резистор, катушка индуктивности и конденсатор), их основные характеристики и параметры… Автор сайта надеяться, что информация Вам будет полезна, как доступно простая, так и более углублённая в других разделах сайта. Не забывайте просмотреть рекламу от гугл, реклама для Вас бесплатно, а мне развитие сайта, удачи. energetik.com.ru Существует множество понятий, которые нельзя увидеть собственными глазами и потрогать руками. Наиболее ярким примером служит электротехника, состоящая из сложных схем и малопонятной терминологии. Поэтому очень многие просто отступают перед трудностями предстоящего изучения этой научно-технической дисциплины. Получить знания в этой области помогут основы электротехники для начинающих, изложенные доступным языком. Подкрепленные историческими фактами и наглядными примерами, они становятся увлекательными и понятными даже для тех, кто впервые столкнулся с незнакомыми понятиями. Постепенно продвигаясь от простого к сложному, вполне возможно изучить представленные материалы и использовать их в практической деятельности. Электрические законы и формулы требуются не только для проведения каких-либо расчетов. Они нужны и тем, кто на практике выполняет операции, связанные с электричеством. Зная основы электротехники можно логическим путем установить причину неисправности и очень быстро ее устранить. Суть электрического тока заключается в движении заряженных частиц, переносящих электрический заряд от одной до другой точки. Однако при беспорядочном тепловом движении заряженных частиц, по примеру свободных электронов в металлах, переноса заряда не происходит. Перемещение электрического заряда через поперечное сечение проводника происходит лишь при условии участия ионов или электронов в упорядоченном движении. Электрический ток всегда протекает в определенном направлении. О его наличии свидетельствуют специфические признаки: Электрический ток может быть постоянным и переменным. В первом случае все его параметры остаются неизменными, а во втором – периодически происходит изменение полярности от положительной к отрицательной. В каждом полупериоде изменяется направление потока электронов. Скорость таких периодических изменений представляет собой частоту, измеряемую в герцах При возникновении в цепи электрического тока, происходит постоянный перенос заряда через поперечное сечение проводника. Величина заряда, перенесенная за определенную единицу времени, называется силой тока, измеряемой в амперах. Для того чтобы создать и поддерживать движение заряженных частиц, необходимо воздействие силы, приложенной к ним в определенном направлении. В случае прекращения такого действия, прекращается и течение электрического тока. Такая сила получила название электрического поля, еще она известна как напряженность электрического поля. Именно она вызывает разность потенциалов или напряжение на концах проводника и дает толчок движению заряженных частиц. Для измерения этой величины применяется специальная единица – вольт. Существует определенная зависимость между основными величинами, отраженная в законе Ома, который будет рассмотрен подробно. Важнейшей характеристикой проводника, непосредственно связанной с электрическим током, является сопротивление, измеряемое в омах. Данная величина является своеобразным противодействием проводника течению в нем электрического тока. В результате воздействия сопротивления происходит нагрев проводника. С увеличением длины проводника и уменьшением его сечения, значение сопротивления увеличивается. Величина в 1 Ом возникает, когда разность потенциалов в проводнике составляет 1 В, а сила тока – 1 А. Данный закон относится к основным положениям и понятиям электротехники. Он наиболее точно отражает зависимость между такими величинами, как сила тока, напряжение, сопротивление и мощность. Определения этих величин уже были рассмотрены, теперь нужно установить степень их взаимодействия и влияния друг на друга. Для того чтобы вычислить ту или иную величину, необходимо воспользоваться следующими формулами: Зависимость этих величин, для лучшего понимания сути процессов, часто сравнивается с гидравлическими характеристиками. Например, внизу бака, наполненного водой, устанавливается клапан с примыкающей к нему трубой. При открытии клапана вода начинает течь, поскольку существует разница между высоким давлением в начале трубы и низким – на ее конце. Точно такая же ситуация возникает на концах проводника в виде разности потенциалов – напряжения, под действием которого электроны двигаются по проводнику. Таким образом, по аналогии, напряжение представляет собой своеобразное электрическое давление. Силу тока можно сравнить с расходом воды, то есть ее количеством, протекающим через сечение трубы за установленный период времени. При уменьшении диаметра трубы уменьшится и поток воды в связи с увеличением сопротивления. Этот ограниченный поток можно сравнить с электрическим сопротивлением проводника, удерживающим поток электронов в определенных рамках. Взаимодействие тока, напряжения и сопротивления аналогично гидравлическим характеристикам: с изменением одного параметра, происходит изменение всех остальных. В электротехнике существуют еще и такие понятия, как энергия и мощность, связанные с законом Ома. Сама энергия существует в механической, тепловой, ядерной и электрической форме. В соответствии с законом сохранения энергии, ее невозможно уничтожить или создать. Она может лишь преобразовываться из одной формы в другую. Например, в аудиосистемах осуществляется преобразование электроэнергии в звук и теплоту. Любые электрические приборы потребляют определенное количество энергии на протяжении установленного промежутка времени. Эта величина индивидуальна для каждого прибора и представляет собой мощность, то есть объем энергии, который может потребить тот или иной прибор. Этот параметр вычисляется по формуле P = I x U, единицей измерения служит ватт. Он означает перемещение одного ампера одним вольтом через сопротивление в один ом. Таким образом, основы электротехники для начинающих помогут на первых порах разобраться с основными понятиями и терминами. После этого будет значительно легче использовать полученные знания на практике. electric-220.ruУчебные материалы. Мощность электротехника
Основные термины и определения электротехники
Электрический ток
Электрическое напряжение
Электродвижущая сила
Электрическое сопротивление
Проводниковые материалы
Электроизоляционные материалы (диэлектрики)
Полупроводники
Закон электромагнитной индукции
формулы тоэ | энергетик
меню сайта для мобильных приложений
ФОРМУЛЫ ТЕОРИИ ОСНОВ ЭЛЕКТРОТЕХНИКИ (ТОЭ)
Электромагнитные процессы, протекающие в электротехнических устройствах, как правило, достаточно сложны, поэтому далее формулы тоэ будут носить более учебный характер, чем практический, иначе говоря для учащихся и просто для любознательных.
Продолжение формулы тоэ: Основы электротехники для начинающих
Содержание: Понятия и свойства электрического тока
Основные токовые величины
Закон Ома
Энергия и мощность в электротехнике
Электрика для чайников: основы электроники
Поделиться с друзьями: