интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Работа и мощность электрического тока. Работа и мощность эл тока


16) Работа и мощность тока

При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = I Δt. Электрическое поле на выделенном участке совершает работу

ΔA = (φ1 – φ2) Δq = Δφ12 I Δt = U I Δt,

где U = Δφ12– напряжение. Эту работу называют работой электрического тока.

Если обе части формулы

выражающей закон Ома для однородного участка цепи с сопротивлением R, умножить на IΔt, то получится соотношение

R I2 Δt = U I Δt = ΔA.

Это соотношение выражает закон сохранения энергии для однородного участка цепи.

Работа ΔA электрического токаI, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ΔQ, выделяющееся на проводнике.

ΔQ = ΔA = R I2Δt.- (1)

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем и носит название закона Джоуля–Ленца (количество выделившейся в проводнике теплоты пропорционально его сопротивлению , квадрату силы тока и времени ).

Мощность электрического токаравна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена:

Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт).

Соотношение (1) выражает закон Джоуля-Ленца в интегральной форме. Введем плотность тепловой мощности , равную энергии выделенной за единицу время прохождения тока в каждой единице объема проводника

где S - поперечное сечение проводника, - его длина. Используя (1.13) и соотношение, получим:

Но - плотность тока, а, тогда

с учетом закона Ома в дифференциальной форме , окончательно получаем

(17.14)

Формула (17.14) выражает закон Джоуля-Ленца в дифференциальной форме: объемная плотность тепловой мощности тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряженности электрического поля.

17) Магнитное поле в вакууме

Взаимодействие электрических токов между собой осуществляется через поле, называемое магнитным. В опыте Эрстеда ( первый опыт с магнитным полем ) проволока, по которой шел ток, была натянута над магнитной стрелкой, вращающейся на игле. При включении тока стрелка устанавливалась перпендикулярно к проволоке. Изменение направления тока взывало поворот стрелки в противоположную сторону. Из опыта Эрстеда следует, что магнитное поле имеет направленный характер и должно характеризоваться векторной величиной. Магнитное поле в отличии от электрического не оказывает действия на покоящийся заряд. Сила возникает лишь тогда, когда заряд движется. Магнитное поле порождается движущимися зарядами.

Магнитная индукция — это векторная физическая величина, являющаяся силовой характеристикой магнитного поля, численно равная максимальному вращающему моменту, действующему на контур с единичным магнитным моментом, и направленная вдоль положительной нормали к контуру.

Модуль магнитной индукции равен

Единицей магнитной индукции в СИ является тесла (Тл).

1 Тл = Н·м/(А·м2) = Н/(А·м) .

1 Тл — магнитная индукция такого однородного поля, в котором на контур с магнитным моментом 1 А·м2 действует вращающий момент 1 Н·м.

Магнитная индукция  B⃗  полностью характеризует магнитное поле. В каждой точке может быть найден ее модуль и направление.

Поле, в каждой точке которого модуль и направление магнитной индукции одинаковы ( B⃗ =const) , называется однородным магнитным полем.

Если магнитное поле образовано системой n проводников с токами, то, имеет место принцип суперпозиции магнитных полей: магнитная индукция поля системы токов равна геометрической сумме магнитных индукцией полей каждого из токов в отдельности:

 B⃗ =B⃗ 1+B⃗ 2+…+B⃗ n=∑ni=1B⃗ i.

Индукция в вакууме или воздухе равна     

 , где.

studfiles.net

Работа и мощность электрического тока.

Стр 1 из 17Следующая ⇒

ЭЛЕКТРОСТАТИКА.

Опытным путем установлено, что во всяком теле содержится большое количество электрически заряженных частиц вещества. Эти частицы или входят в состав молекул, или являются “свободными” (не входят в состав молекул). В обычных условиях в теле находится в среднем равное количество положительно и отрицательно заряженных частиц и тело является электрически нейтральным. Если же в теле преобладают положительные или отрицательные заряды, то тело называется электрически заряженным.

Если вблизи заряженного тела (частицы) находится другое заряженное тело (частица), то между ними возникают силы электрического взаимодействия.

Разноименные заряженные частицы притягиваются друг к другу, одноименные отталкиваются. Взаимодействие заряженных частиц объясняется тем, что каждая из них неразрывно связана с окружающим ее электрическим полем. Электрическое поле обладает энергией, которую называют электрической энергией. Электрическое поле неподвижных зарядов называют электростатическим.

Если в электрическое поле заряженной частицы внести другую заряженную частицу, то последняя будет испытывать действие силы поля, в свою очередь электрическое поле второй частицы будет действовать на первую частицу.

По силе взаимодействия можно определить величины электрических зарядов. Электрический заряд обозначается буквой Q и измеряется в кулонах. Один кулон численно равен количеству электричества, проходящего через поперечное сечение проводника при токе 1А за одну секунду (1 с.).

Напряженность электрического поля.

Каждая точка электрического поля характеризуется напряженностью электрического поля, т.е. силой с которой поле действует на единичный пробный заряд.

Напряженность электрического поля рассматривают как векторную величину. За направление вектора напряженности принимают направление силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку поля.

Поле изображают линиями со стрелками, которые указывают направление силы, действующей на единичные пробные заряды.

Примеры:

 

Опыты Шарля Кулона (1736-1806 г.г.) показали, что сила взаимодействия пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния R между ними, кроме того она зависит от среды в которой расположены оба заряда.

- закон Кулона

 

 

Силы взаимодействия неподвижных электрических зарядов называют электростатическими.

Электрический потенциал, разность потенциалов (напряжение)

 

Возьмем положительный пробный заряд и переместим его от нижней до верхней пластины плоского конденсатора, как показано на рисунке. Действующая на этот пробный заряд электрическая сила постоянна и направлена в сторону, противоположную перемещению. Эта сила равна .

Работа, совершенная этой силой при перемещении электрического заряда, равна

где d- перемещение заряда между пластинами.

Работа, совершаемая при перемещении единичного положительного заряда, равна .

Эта работа, совершаемая над единичным зарядом при перемещении его из одной точки электрического поля в другую, называется разностью электрических потенциалов (или просто разностью потенциалов) в начальной и конечной точках. Разность потенциалов двух точек электростатического поля называется также электрическим напряжением (обозначение U) между этими точками.

Единица разности потенциалов называется вольтом.

, 1кВ=1000В.

Обратите внимание, что разность потенциалов характеризует не силу, действующую на заряды, а энергию, сообщаемую каждому кулону заряда при перемещении его от отрицательного полюса к положительному.

 

Накопление электрических зарядов- электрическая емкость

 

Электрическая емкость заряженного тела равна

, Ф

Электрическая емкость характеризует способность тела накапливать электрические заряды, измеряется в фарадах.

В электротехнике обычно используются микрофарады:

мкФ, и пикофарады пкФ.

Чаще всего для накопления электрических зарядов используют конденсаторы. Они представляют собой два проводника расположенные близко друг к другу и разделенные слоем диэлектрика. Чаще всего проводники выполняются в виде металлических пластин. В этом случае емкость конденсатора можно вычислить по формуле:

,

где

с- емкость,Ф;

S- площадь поперечного сечения пластин, м2;

d- расстояние между пластинами, м

Еа- абсолютная диэлектрическая проницаемость изоляции

,

где - электрическая постоянная, Е- относительная диэлектрическая проницаемость.

 

Табл. 1 Значения относительной диэлектрической проницаемости ряда веществ, используемых в конденсаторе

 

Материал Е
Бумага парафинированная 4,3
Вода дистиллированная 80,4
Масло минеральное 2,2
Мрамор 8,3
Резина 2,7
Слюда 6-7,5
Фарфор 5,8
Титанат стронция
Титанат бария 6000-12000 (!!!)
Воздух 1,00059

 

Лекция №2

 

Электропроводность вещества.

 

Окружающие нас вещества состоят из атомов и молекул, которые имеют положительно заряженные ядра и отрицательно заряженные электроны. Атомы и молекулы электрически нейтральны, т.к. заряд ядра равен суммарному заряду электронов, окружающих ядро. При некоторых условиях, например при увеличении температуры, атом или молекула теряют электрон. Такой атом (молекула) превращается в положительный ион. Оторвавшийся электрон может присоединиться и к другому атому (молекуле), так что образуется отрицательный ион, или остаться свободным. Процесс образования ионов называют ионизацией.

В веществе, помещенном в электрическое поле, под действием сил поля возникает процесс движения свободных электронов или ионов в направлении сил поля, называемый электрическим током.

Свойство вещества проводить электрический ток под действием электрического поля называется электропроводностью. Электропроводность вещества зависит от концентрации свободных электрически заряженных частиц. При высокой концентрации электропроводность вещества больше, чем при малой. Все вещества в зависимости от электропроводности делятся на проводники, диэлектрики (электроизоляционные материалы) и полупроводники.

 

Проводники

Обладают очень высокой электропроводностью. К проводникам первого класса, в которых возможно перемещение только электронов, относятся металлы и их сплавы. В металлах электроны, расположенные на внешних орбитах, сравнительно слабо связаны с ядрами атомов, от него часть электронов перемещается между атомами, переходя из сферы действия одного ядра в сферу действия другого и заполняя пространство между ними наподобие газа, который иногда называют «электронный газ».

В проводниках второго класса (водные растворы кислот, солей и пр.) под действием растворителя молекулы вещества распадаются на положительные и отрицательные ионы, которые подобно электронам в металлах могут перемещаться по всему объему проводника. Внутри проводника невозможно существование электростатического поля.

 

Диэлектрики

 

Вещества с ничтожно малой электропроводностью называются диэлектриками или изоляторами; к ним относятся газы, некоторые жидкости (например, минеральные масла и лаки) и почти все твердые материалы, за исключением металлов и угля.

Однако, при некоторых условиях в диэлектриках происходит расщепление молекул на ионы (например, под действием высокой температуры или в сильном поле) в этом случае диэлектрики теряют свои изолирующие свойства и становятся проводниками. Диэлектрики обладают свойством поляризоваться, и в них возможно длительное существование электростатического поля.

При нормальных условиях диэлектрик обладает незначительной электропроводностью. Это свойство сохраняется, пока напряженность электрического поля не увеличится до некоторого предельного для каждого диэлектрика значения. В сильном электрическом поле, происходит расщепление молекул диэлектрика на ионы и тело, которое в слабом поле было диэлектриком, становится проводником.

Напряженность электрического поля, при которой начинается ионизация молекул диэлектрика, называется пробивной напряженностью (электрической прочностью) диэлектрика.

Табл.

 

Материал Пробивная напряженность, кв/мм.
Бумага, пропитанная парафином 10-25
Воздух
Масло минеральное 5-15
Электрокартон 9-14
Фарфор 6-7,5

 

 

Полупроводники

 

Вещества, электропроводность которых занимает промежуточное положение между электропроводностью проводников и диэлектриков, называются полупроводниками. К ним относятся: кремний, германий, селен и др.

Для полупроводников характерно изменение электропроводности в широких пределах под действием различных факторов (например, температуры или электрического поля).

 

Электрические цепи постоянного тока

 

Для того, чтобы получить электрический ток в проводниках, нужно создать электрическую цепь. Электрическая цепь образуется из источников электрической энергии, в которых возбуждается электродвижущая сила,(сокращенно ЭДС) и потребителей электрической энергии.

При наличии тока в источниках энергии происходит непрерывное праобразование различных видов энергии в электрическую, в потребителях наоборот, электрическая энергия преобразуется в другие виды энергии. Источники и потребители энергии соединяются обычно медными или алюминиевыми проводами. При движении по проводникам заряды испытывают столкновения с другими частицами вещества и отдают им всю энергию. Полученную за счет электрического поля, или часть ее. Для поддержания движения зарядов в проводниках должно существовать электрическое поле, которое при продвижении зарядов совершает работу. Вследствие этого всякий проводник обладает сопротивлением электрическому току.

Чем больше столкновений испытывает каждый из подвижных зарядов, и чем меньше число этих зарядов, тем сильнее должно быть электрическое поле, чтобы поддерживать в проводнике ток нужной величины, т.е. тем больше сопротивление проводника.

Энергия, отдаваемая движущимися зарядами частицам тела, превращается в энергию их хаотического движения, т.е. в тепло. Происходит нагревание проводника протекающим по нему током.

В современной технике в качестве источников энергии применяют главным образом электрические генираторы, в которых механическая энергия преобразуется в электрическую,и первичные элементы и аккумуляторы, в которых происходит преобразование химической энергии в электрическую.

К потребителям электрической энергии относятся: электродвигатели (в которых электрическая энергия преобразуется в механическую), лампы накаливания, различные нагревательные приборы (в которых электрическая энергия преобразуется в тепловую), эдектролитические ванны, в которых происходит преобразование электрической энергии

в химическую и т.д.

В качестве вспомогательного оборудования в электрическую цепь входят аппараты для выключения и отключения (например рубильники), приборы для измерения электрических величин (например, амперметры, вольтметры), аппараты защиты (предохранители и др.).

Графическое изображение электрической цепи называется схемой электрической цепи.

 
 

Условные графические обозначения в электрических схемах.

 

 

 

Лекция №3

Электрический ток

Мерой электрического тока служит величина, измеряемая количеством электричества (зарядом), которое проходит через поперечное сечение проводника за 1 с.

Единицей тока называется ампер (А).

Ток («сила тока») в проводнике равен 1А, если через поперечное сечение проводника за 1 с. проходит электрический заряд, равный 1 кулон.

Если величина тока не изменяется с течением времени, то такой ток называется постоянным (обозначается прописной буквой I).

; где Q-заряд, проходящий через поперечное сечение проводника за время t.

Изменяющийся ток, в отличие от постоянного, обозначают строчной буквой i.

По международному соглашению, за направление тока условно принимается направление, в котором перемещаются положительно заряженные частицы, т. е. направление, противоположное перемещению электронов.

 

Величина, равная отношению тока к площади поперечного сечения проводника S, называется плотностью тока , измеряется в А/мм2.

 

Электродвижущая сила (ЭДС).

На электрические заряды могут действовать силы не только со стороны электрических полей других зарядов, но и электрических полей иного происхождения, возникающих в результате изменения магнитного поля или химических реакций. Эти причины могут вызывать движение электрических зарядов, т.е. электрический ток. Однако действие этих причин принципиально отлично от действия электрического поля зарядов. Чтобы разделить эти два типа причин силы, действующие со стороны электрических полей других зарядов, называют кулоновыми силами, а все остальные причины объединяют под общим названием сторонних электродвижущих сил или кратко ЭДС.

ЭДС измеряется в тех же единицах, что и разность потенциалов (т.е. в вольтах).

Существование ЭДС необходимо для поддержания электрических токов, и все источники тока являются, по существу, источниками ЭДС.

Количественные соотношения между ЭДС и силой тока в цепи даются законом Ома.

 

 

Закон Ома.

Георг Ом (1787-1854) установил, что ток в проводе прямо пропорционален напряжению между его концами. Т.е. если на участке цепи с сопротивлением R, действует напряжение U, то согласно закону Ома, по данному участку протекает ток.

Для электрической цепи, составленной из источника питания с ЭДС Е и внутренним сопротивлением r0, который замкнут на внешнюю цепь с сопротивлением R:

- Закон Ома для электрической цепи.

 

Сопротивление

 

 

Во всех элементах электрической цепи происходит преобразование энергии, т.е. элементы цепи обладают сопротивлением направленному движению свободных зарядов. С количественной стороны это явление характеризует величина, называемая – сопротивлением, и обозначаемая буквой R.

Единица сопротивления называется Ом.

Сопротивлением в 1 Ом обладает проводник, в котором устанавливается ток в 1 А при напряжении 1 В.

; 1кОм=103 Ом; 1 мОм=106 Ом.

Единица, обратная сопротивлению называется проводимостью.

 

Под удельным сопротивлением понимают величину, численно равную сопротивлению провода длиной 1 м, при поперечном сечении 1 мм2 и температуре 20оС.

 

 

Табл. Значения удельных сопротивлений для некоторых проводников

 

 

Материал Удельное сопротивление Ом мм2/м
Алюминий 0,029
Вольфрам 0,056
Железо 0,13-0,3
Медь 0,0175
Нихром 1,1

 

 

Провода из металлов с наименьшим удельным сопротивлением (медь, алюминий) используют для изготовления линий электропередач, обмоток электрических машин, трансформаторов и т. п.

Удельное сопротивление металлов зависит также от температуры. При нагревании металлов наблюдается рост удельного сопротивления, а значит и сопротивления всего провода (пример перегорания лампочек).

 

Правила Кирхгофа.

1) Сумма токов, направленных к точке разветвления, равна сумме токов, направленных от нее.

I1+I3+I5=I2+I4

Преобразуя это соотношение, получим:

I1+(-I2)+I3+(-I4)+I5=0

Т.е т.е. алгебраическая сумма токов в точке разветвления равна нулю.

При этом токи, направленные к узлу, считаются положительными, а токи, направленные от узла – отрицательными (или наоборот).

Узлом называют точку цепи из которой провода уходят больше чем в двух направлениях

Второе правило Кирхгофа:

В замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжения в отдельных сопротивлениях.

При этом положительными надо считать ЭДС, направления которых совпадают с произвольно выбранным направлением обхода по контуру.

Если контур не содержит источников, то .

 

Пример: Решение задачи методом непосредственного применения законов Кирхгофа.

 

Дано:

Е1=30 В; Е2=20 В; Е3=15 В.

R1=4 Ом; R2=2 Ом; R3=1 Ом; R4=10 Ом; R5=6 Ом; R6=3 Ом.

Решение:

1-е правило – число узловых уравнений должно быть на единицу меньше числа узлов электрической цепи.

2-е правило – недостающие уравнения составляются по второму Кирхгофа; при этом нужно выбирать наиболее простые контуры (с меньшим числом источников ЭДС и сопротивлений) в таком порядке, чтобы в каждом новом контуре содержалась, по меньшей мере, одна ветвь, не входившая в контуры, для которых уже составлены уравнения.

 

Лекция №4

 

Решение

 

1.Составим уравнения по первому закону Кирхгофа, т.к. в схеме четыре узла, то можем составить (4-1)=3 уравнения.

Узел «а» -I2 - I1 - I4 = 0

Узел «в» I2 + I6 - I5 = 0

Узел «с» I1 + I3 - I6 = 0

2. Составляем недостающие уравнения по второму закону Кирхгофа (для решения системы с 6-ю неизвестными необходимо 6 уравнений).

 

Контур «aвda» : I2R2 + I5R5 – I4R4 = E2

 

Контур «adca» : I4R4 + I3R3 – I1R1 = E3 – E1

 

Контур «abR6ca» : I2R2 – I6R6 – I1R1 = E2 – E1

 

Подставив значения E и R, получим систему уравнений:

- I2 – I1- I4 = 0

I2 + I6 – I5 = 0

I1 + I3 – I6 = 0

2I2 + 6I5 – 10I4 = 20

10I4 + I3 – 4I1 = 15 – 30

2I2 – 3I6 – 4I1 = 20 – 30

 

Далее решаем полученную систему уравнений любым возможным способом (можно на ЭВМ).

Решив систему уравнений, получим:

I1 = 1.18 A; I2 = - 0.1 A; I3 = 0.5 A; I4 = -1 A; I5 = 1.57 A; I6 = 1.68 A.

Решение системы уравнений, для сложной цепи, требует значительной затраты времени, поэтому можно использовать более простые методы.

 

Метод контурных токов.

 

Ik1 (R2 + R5 + R4) – Ik2 R4 – Ik3 R5 = E2

 

Ik2 (R4 + R3 + R1) – Ik1 R4 – Ik3 R3 = E3 – E1

 

Ik3 (R6 + R3 + R5) – Ik1 R5 – Ik2 R3 = - E3

 

Подставив значения, получим систему уравнений:

 

 

Ik1 (2 + 6 + 10) – Ik2 10 – Ik3 6 = 20

 

Ik2 (10 + 1 + 4) – Ik1 10 – Ik3 1 = 15 – 30

 

Ik3 (3 + 1+ 6) – Ik1 6 – Ik2 1 = - 15

 

18Ik1 – 10Ik2 – 6Ik3 = 20

15Ik2 – 10Ik1 – Ik3 = - 15

10Ik3 – 6Ik1 – Ik2 = -15

 

Решив систему уравнений, получим:

Ik1 = - 0.1 A; Ik2 = - 1.18 A; Ik3 = - 1.68 A

Чтобы проверить правильность расчета нужно составить баланс мощности, т.е. мощность источника должна быть равна мощности потребителя:

Е1 I1 + E2 I2 + E3 I3 = I12 R1 + I22 R2 + I32 R3 + I42 R4 + I52 R5 + I62 R6

30 1.18 – 20 0.1 + 15 0.5 = 40.9 Вт

1,182 4 + 0,12 2 + 0,52 1 + 12 10 + 1,572 6 + 1,682 3 = 39,1 Вт

(баланс сходится)

Если ток и напряжение совпадают, то работает в режиме генератора.

Мощность «+»

Если ток и напряжение встречны, то работает в режиме потребителя.

Мощность «-».

Метод узлового напряжения (применим только в цепи, имеющей два узла).

Дано: Е1 = 100В; Е2 = 150В; Е3 = 200В.

R1 = 1 Ом; R2 = 2 Ом; R3 = 10 Ом

 

Напряжение между узлами А и В (угловое напряжение) обозначим UAB. Его необходимо найти. Оно находится по формуле:

, где g – проводимость соответствующих ветвей

Т.е. «узловое напряжение» равно отношению алгебраической суммы произведений ЭДС на проводимости соответствующих ветвей к сумме проводимостей всех ветвей к сумме проводимостей всех ветвей, причем если какая-либо ЭДС направлена от узла А к узлу В, то в формулу она подставляется со знаком «минус».

 

Решение

 

; ; ; .

Проверка:

I1 + I2 + I3 + I4 = 32.4 + 41.2 - 66.9 – 6.7 = 0.

 

Лекция №5

 

 

Векторная диаграмма.

 

Синусоидальные величины можно графически изображать вращающимися векторами.

 

Где и - начальная фаза (т.е. при t=0).

Длина вектора в масштабе выражает амплитуду синусоиды; угол, образованный вектором с положительным направлением оси абсцисс, в начальный момент равен начальной фазе; скорость вращения вектора равна угловой частоте. Мгновенные значения синусоидальной величины выражаются вектора на ось ординат.

Совокупность нескольких векторов, изображающих синусоидальные величины одинаковой частоты в начальный момент времени называется векторной диаграммой.

При сравнении синусоидально изменяющихся величин начало отсчета времени можно выбрать произвольно, т.е. один из векторов можно направит произвольно, остальные векторы нужно располагать по отношению к первому под углами, равными соответствующим углам сдвига фаз, причем положительные углы откладываются в направлении, обратном движению часовой стрелки.

 

Векторная диаграмма.

 

 

.

Разделим правую и левую части выражения на

- закон Ома для действующих значений в цепи с резистивным элементом.

 

б) Мгновенная мощность.

Произведение мгновенного значения напряжения и мгновенного значения тока для произвольно выбранного момента времени называется мгновенной мощностью: .

Подставив в формулу выражение тока и напряжения, получим:

Т.е мгновенная мощность равна сумме двух величин: постоянной составляющей и переменной , имеющей амплитуду и изменяющейся с двойной частотой.

 

 

в) активная мощность.

Среднюю за период мощность называют активной, она характеризует среднюю скорость преобразования электрической энергии в тепловую, механическую или другие виды энергии.

В цепи переменного тока активная мощность равна произведению действующего значения тока и напряжения.

 

Резонанс токов.

 

 

При параллельном соединении элементов колебательного контура (индуктивности и ёмкости) может иметь резонанс токов, для которого характерна возможность возникновения токов в индуктивной и ёмкостной ветвях, значительно превышающий ток, получаемый от источника.

Закон Ома для параллельного соединения выражается формулой

Общее условие резонанса токов – это равенство емкостной и индуктивной реактивных проводимостей

В этом случае I = UG, т.е. при резонансе общий ток I принимает минимальное значение и совпадает по фазе с напряжением.

В этих условиях источник переменного тока и провода, соединяющие его с колебательным контуром, совершенно разгружены от реактивного тока, который замыкается в кольце, образуемом индуктивностью и ёмкостью. Цепь ведет себя как бы е одним резистивным элементом.

 

 

 

Мгновенные мощности индуктивной и емкостной ветвей также противоположны по фазе, т.е. когда энергия накапливается в магнитном поле индуктивности, она убывает в электрическом поле емкости. В такой системе энергия колеблется между индуктивностью и емкостью, а источник от этих колебаний разгружен, и он только дает энергию, нужную для покрытия потерь в активной ветви.

если то S=P

В случае резонанса токов

Следовательно, резонанс токов можно использовать для повышения приемника. Для этого к приемнику с преобладающим индуктивным сопротивлением параллельно подключается конденсатор.

Работать с меньшими токами и большим выгоднее. (В первую очередь для предприятий занимающихся передачей электрической энергии, т.к. в этом случае уменьшаются потери от нагрева проводов.)

 

Лекция №8.

Электромагнетизм.

Магнитное поле электрического поля.

 

Магнитное поле, как и электрическое поле, является общим из видов материи. Оно возникает, например, при движении электрически заряженных частиц вещества и вокруг проводников с током. Магнитное поле обладает энергией, которая называется энергией магнитного поля. Поэтому, если в магнитное поле, окружающее провод с электрическим током, внести другой провод с током, то последний испытывает действие силы магнитного поля. В свою очередь, магнитное поле второго провода с током действует на первый. Под действием сил поля провод с током может перемещаться; в этом случае производится работа за счет энергии магнитного поля.

Электрический ток в проводе и магнитное поле вокруг него – неразрывно связанные явления.

 

Магнитная индукция.

 

Интенсивность магнитного поля в каждой его точке характеризуется магнитной индукцией (обозначается буквой В).

Закон Био и Савара – Лапласа.

 

Т.е. индукция dB прямо пропорциональна длине элемента dl, величине тока I, синусу угла между направлением тока и радиусом – вектором, соединяющим данный элемент с точкой поля, и обратно пропорциональна квадрату длины радиуса – вектора.

 

Магнитная индукция по системе СИ измеряется в теслах

Магнитная индукция – векторная величина. Вектор dB направлен перпендикулярно плоскости S, в которой расположены радиус – вектор r и элемент dl. Направление вектора dB определяется по правилу Буравчика.

Магнитное поле, в различных точках которого индукция имеет различные значения, называется неоднородным, и наоборот, магнитное поле называется однородным, если во всех точках поля векторы магнитной индукции имеют одинаковую величину и направлены друг к другу.

 

Магнитная проницаемость.

Для того, чтобы получить представление о магнитных свойствах среды, нужно сравнить магнитное поле вокруг повода с током в данной среде с магнитным полем вокруг того же провода, но находящегося в вакууме. Материалы или среды, в которых поле получается сильнее, чем в вакууме, называется – парамагнитными, а в которых слабее – диамагнитными.

Магнитные свойства среды характеризует абсолютная магнитная проницаемость , имеющая различную величину для разных веществ.

Абсолютная магнитная проницаемость вакуума называется магнитной постоянной .

Отношение абсолютной магнитной проницаемости какого – либо вещества к магнитной постоянной называется магнитной проницаемостью вещества.

Для диамагнитных веществ <1 (медь ), для парамагнитных >1 (воздух ).

Читайте также:

lektsia.com

формулы и задачи по теме :: SYL.ru

Как определяется работа электрического тока, рассчитывается мощность прибора? А может быть, последнюю можно измерить? И как применить полученные знания при решении задач?

Такие вопросы возникают у многих восьмиклассников при изучении темы «Электричество». Ответить на них достаточно просто. Да и запоминать формулы долго не придется. Потому что они очень похожи друг на друга или используют уже изученные раньше.

Первая величина: работа тока

Сначала требуется договориться об обозначениях. Потому что в них могут быть различия.

ОбозначениеНазвание величиныЕдиницы измерения в СИ
Iсила токаА
Uэлектрическое напряжениеВ
tвремяс
А (в англоязычных источниках W)работа электрического токаДж
РмощностьВт
Qколичество выделяющейся теплотыДж
Rэлектрическое сопротивлениеОм
qзаряд, который переносится токомКл

Каждый источник тока создает электрическое поле, которое заставляет двигаться свободные электроны. То есть возникает ток. В этот момент говорят, что электрическое поле совершает работу. Именно ее принято называть работой тока.

Электрическое поле, создаваемое источником тока, характеризуется напряжением. Оно влияет на то, какая работа электрического тока совершается при перемещении единичного заряда. Поэтому вводится формула для напряжения:

U = А/q.

Из нее легко вывести формулу работы:

А = U * q.

Теперь стоит вспомнить равенство, которое вводится для силы тока. Она равна отношению перемещаемого заряда ко времени его движения:

I = q/t.

Отсюда q = I * t. Заменив букву q в формуле для работы последним выражением, получаем такую формулу:

А = U * I * t.

Это общий вид равенства, по которому может быть вычислена работа электрического тока. Формула несколько изменится, если применить закон Ома. По нему напряжение равно произведению силы тока на сопротивление. Тогда верным будет такое равенство:

А = I2 * R * t.

Можно заменить не напряжение, а силу тока. Оно равно частному U и R. Тогда формула работы станет выглядеть так:

А = (U2 * t)/R.

Вторая величина: мощность тока

Общая формула для нее такая же, как в механике. То есть определяется как работа, совершенная за единицу времени.

Р = А / t.

Отсюда видно, что работа и мощность электрического тока взаимосвязаны. Чтобы получить более конкретное равенство, потребуется заменить числитель, воспользовавшись общей формулой для работы. Тогда становится понятно, как определить мощность, зная силу тока и напряжение цепи.

Р = U * I.

К тому же мощность может быть измерена. Для этой цели существует специальный прибор, который называется ваттметром.

Закон Джоуля-Ленца

Явление нагрева проводника было обнаружено французским ученым А. Фуркуа. Произошло это еще в 1880 году. 41 год спустя оно было описано английским физиком Дж. П. Джоулем и через год подтверждено на опыте русским физиком Э.Х. Ленцем. Именно по фамилиям двух последних ученых стали называть обнаруженную закономерность.

В ней связаны две величины: количество теплоты и работа электрического тока. Закон Джоуля-Ленца утверждает, что вся работа в неподвижном проводнике идет на его нагревание. То есть проводник с током выделяет количество теплоты, равное произведению его сопротивления, времени и квадрата силы тока. Формула выглядит так же, как одна из тех, которые приведены для работы:

Q = I2 * R * t.

Задача на определение работы

Условие. Сопротивление лампочки карманного фонарика равно 14 Ом. Напряжение, которое дает батарейка, составляет 3,5 В. Чему будет равна работа тока, если фонарик работал 2 минуты?

Решение. Поскольку известны напряжение, сопротивление и время, то необходимо воспользоваться такой формулой: А = (U2 * t)/R. Только сначала потребуется перевести время в единицы СИ, то есть секунды. Таким образом, в формулу нужно подставлять не 2 минуты, а 120 секунд.

Простые расчеты приводят к такому значению работы тока: 105 Дж.

Ответ. Работа равна 105 Дж.

Задача на определение мощности

Условие. Необходимо определить, чему равны работа и мощность электрического тока в обмотке электродвигателя. Известно, что сила тока в нем имеет значение 90 А при напряжении 450 В. Включенным электродвигатель остается на протяжении одного часа.

Решение. Сначала можно сосчитать значение работы. Для этого пригодится такая формула: А = U * I * t. Первые две величины даны в единицах СИ, а вот время снова нужно перевести в секунды, то есть взять 3600 с.

После подстановки значений и выполнения простых арифметических действий получается такое значение для работы: 145800000 Дж. Записать его в ответе удобнее в более крупных единицах. Например, мегаджоулях. Для этого результат нужно разделить на миллион. Работа оказывается равной 145,8 МДж.

Теперь нужно вычислить мощность электродвигателя. Расчеты будут выполняться по формуле: Р = U * I. После умножения получится число: 40500 Вт. Для того чтобы записать его в киловаттах, потребуется разделить результат на тысячу.

Ответ. А = 145,8 МДж, Р = 40,5 кВт.

Задача на вычисление напряжения

Условие. Электроплитка включена в сеть в течение 20 минут. Каково напряжение в сети, если при силе тока в 4 А работа оказывается равной 480 кДж?

Решение. Поскольку известны работа и сила тока, нужно использовать такую формулу: А = U * I * t. Здесь напряжение — неизвестный множитель. Его необходимо вычислить, как частное произведения и известного множителя, то есть: U = А /( I * t).

До проведения расчетов нужно перевести величины в единицы СИ. А именно, работу в Джоули и время в секунды. Это будут 480000 Дж и 1200 с. Теперь осталось все сосчитать.

Ответ. Напряжение равно 100 В.

www.syl.ru

Конспект "Работа и мощность электрического тока"

«Работа и мощность электрического тока»

Работа и мощность электрического тока. Электрический ток, проходя по цепи, производит разные действия: тепловое, механическое, химическое, магнитное. При этом электрическое поле совершает работу. В результате электрическая энергия превращается в другие виды энергии: внутреннюю, механическую, энергию магнитного поля…

Как было рассказано ранее, напряжение (U) на участке цепи равно отношению работы (F), совершаемой при перемещении электрического заряда (q) на этом участке, к заряду: U = A/q. Отсюда А = qU.

Поскольку заряд равен произведению силы тока (I) и времени (t) q = It, то А = IUt. То есть работа электрического тока на участке цепи равна произведению напряжения на этом участке, силы тока и времени, в течение которого совершается работа.

Единицей работы является джоуль (1 Дж): [А] = 1 Дж = 1В • 1А • 1с.

Для измерения работы используют три измерительных прибора: амперметр, вольтметр и часы. Однако, в реальной жизни для измерения работы электрического тока используют счётчики электрической энергии.

Если нужно найти работу тока, но при этом сила тока или напряжение неизвестны, то можно воспользоваться законом Ома, выразить неизвестные величины и рассчитать работу по формулам: А = U2t/R или А = I2Rt.

Колесо тока. Закон Ома

Мощность электрического тока

Мощность электрического тока равна отношению работы ко времени, за которое она совершена: Р = A/t или Р = IUt/t  =>  Р = IU.  То есть мощность электрического тока равна произведению напряжения и силы тока в цепи.

Единицей мощности является ватт (1Вт): [Р] = 1А • 1В = 1Вт.

Используя закон Ома, можно получить другие формулы для расчета мощности тока: Р = U2P/R = I2R.

Значение мощности электрического тока в проводнике можно определить с помощью амперметра и вольтметра. Но можно для измерения мощности использовать специальный прибор — ваттметр. В нем объединены амперметр и вольтметр.

Сила тока. Напряжение. Работа и мощность электрического тока. Таблица

Конспект урока «Работа и мощность электрического тока».

Следующая тема: «Закон Джоуля-Ленца».

Работа и мощность электрического тока

5 (100%) 1 vote

uchitel.pro

Работа и мощность электрического тока :: Класс!ная физика

Занимательные фишки - 7 класс Занимательные фишки - 8 класс Занимательные фишки - 9 класс 10-11 класс Диафильмы по физике

Работа электрического тока показывает, какая работа была совершена электрическим полем при перемещении зарядов по проводнику.

Зная две формулы:

I = q/t ..... и ..... U = A/q можно вывести формулу для расчета работы электрического тока:

Работа электрического тока равна произведению силы тока на напряжение и на время протекания тока в цепи.

Единица измерения работы электрического тока в системе СИ:

[ A ] = 1 Дж = 1A.B.c

НАУЧИСЬ, ПРИГОДИТСЯ

При расчетах работы электрического тока часто применяется внесистемная кратная единица работы электрического тока: 1 кВт.ч (киловатт-час).

1 кВт.ч = 3 600 000 Дж

В каждой квартире для учета израсходованной электроэнергии устанавливаются специальные приборы-счетчики электроэнергии, которые показывают работу электрического тока, совершенную за какой-то отрезок времени при включении различных бытовых электроприборов. Эти счетчики показывают работу электрического тока ( расход электроэнергии) в "кВт.ч".

Необходимо научиться рассчитывать стоимость израсходованной электроэнергии!Внимательно разбираемся в решении задачи на странице 122 учебника (параграф 52)!

МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА

Мощность электрического тока показывает работу тока, совершенную в единицу времени и равна отношению совершенной работы ко времени, в течение которого эта работа была совершена.

(мощность в механике принято обозначать буквой N, в электротехнике — буквой Р так как А = IUt, то мощность электрического тока равна:

Единица мощности электрического тока в системе СИ:

[P] = 1 Вт (ватт) = 1 А.B

КНИЖНАЯ ПОЛКА

Как работает электрочайник? Как работает электроутюг? Электрический мотор за 10 секунд!

ИНТЕРЕСНО

В свое время в качестве единицы мощности Дж. Уатт предложил такую единицу, как «лошадиная сила». Эта единица измерения дожила до наших дней. Но в Англии в 1882 г. Британская ассоциация инженеров решила присвоить имя Дж. Уатта единице мощности. Теперь имя Джеймса Уатта можно прочесть на любой электрической лампочке.Это был первый в истории техники случай присвоения собственного имени единице измерения.С этого случая и началась традиция присвоения собственных имен единицам измерения

Рассказывают, что ...одну из паровых машин Уатта купил пивовар, чтобы заменить ею лошадь, которая приводила в действие водяной насос. При выборе необходимой мощности паровой машины пивовар определил рабочую силу лошади как восьмичасовую безостановочную работу до полного изнеможения лошади. Расчет показал, что каждую секунду лошадь поднимала 75 кг воды на высоту 1 метр, что и было принято за единицу мощности в 1 лошадиную силу.

ЗНАЕШЬ ЛИ ТЫ

Ток, протекающий в спиралях электроламп, нагревает их до очень высокой температуры. Поэтому, чтобы спирали служили дольше, их заключают в стеклянные баллоны, заполненные в лампах большой мощности инертным газом.

В баллонах ламп малой мощности (до 40 Вт) - вакуум. Чтобы лампа работала дольше, температура спирали таких ламп ниже, а свет имеет желтый оттенок.

___

Атмосферное электричество опасно проявлением в виде линейных разрядов (молний), которых возникает на нашей планете примерно 100 каждую секунду. Атмосферные электрические заряды могут иметь напряжение до 1 миллиарда вольт, а сила тока молнии достигать 200 тысяч ампер. Время существования молнии оценивается от 0,1 до 1 секунды.Температура достигает 6-10 тысяч градусов Цельсия. И если предположить, что электрическая энергия одной молнии может составлять 2500 квт/час, а одна семья из трех человек потребляет в месяц 250 квт/час электричества, то энергии одной молнии хватило бы, чтобы удовлетворить потребность этой семьи на 10 месяцев.

СУМЕЕШЬ ЛИ ТЫ РЕШИТЬ

Две электрические лампы, мощность которых 40 и 100 Вт, рассчитаны на одно и то же напряжение.Сравните по сопротивлениям нити накала обеих ламп.

Комната освещена с помощью 40 электрических ламп от карманного фонаря, соединенных последовательно и питаемых от городской сети. После того как одна лампа перегорела, оставшиеся 39 снова соединили последовательно и включили в сеть.Когда в комнате было светлее: при 40 или 39 лампах?

___

Последовательно соединенные медная и железная проволоки одинаковых длины и сечения подключены к аккумулятору. В какой из них выделится большее количество теплоты за одинаковое время?

Два проводника различной длины, но одинакового сечения и материала включены параллельно друг другу в цепь электрического тока. В каком из них будет выделяться большее количество теплоты?

Все бежим к задачкам!

Устали? - Отдыхаем!

Вверх

class-fizika.ru

Работа и мощность тока

При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = I Δt. Электрическое поле на выделенном участке совершает работу

ΔA = (φ1 – φ2) Δq = Δφ12 I Δt = U I Δt,

где U = Δφ12 – напряжение. Эту работу называют работой электрического тока.

Если обе части формулы

выражающей закон Ома для однородного участка цепи с сопротивлением R, умножить на IΔt, то получится соотношение

R I2 Δt = U I Δt = ΔA.

Это соотношение выражает закон сохранения энергии для однородного участка цепи.

Работа ΔA электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ΔQ, выделяющееся на проводнике.

 

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем и Эмилием Ленцем и носит название закона Джоуля–Ленца.

Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена:

Работа электрического тока в СИ выражается в Джоулях (Дж), мощность – в Ваттах (Вт).

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой  и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. Закон Ома для полной цепи записывается в виде

(R + r) I = .

Умножив обе части этой формулы на Δq = IΔt, мы получим соотношение, выражающее закон сохранения энергии для полной цепи постоянного тока:

R I2Δt + r I2Δt =  IΔt = ΔAст.

Первый член в левой части ΔQ = R I2Δt – тепло, выделяющееся на внешнем участке цепи за время Δt, второй член ΔQист = r I2Δt – тепло, выделяющееся внутри источника за то же время.

Выражение  IΔt равно работе сторонних сил ΔAст, действующих внутри источника.

При протекании электрического тока по замкнутой цепи работа сторонних сил ΔAст преобразуется в тепло, выделяющееся во внешней цепи (ΔQ) и внутри источника (ΔQист).

ΔQ + ΔQист = ΔAст =  IΔ

Следует обратить внимание, что в это соотношение не входит работа электрического поля. При протекании тока по замкнутой цепи электрическое поле работы не совершает; поэтому тепло производится одними только сторонними силами, действующими внутри источника. Роль электрического поля сводится к перераспределению тепла между различными участками цепи.

Внешняя цепь может представлять собой не только проводник с сопротивлением R, но и какое-либо устройство, потребляющее мощность, например, электродвигатель постоянного тока. В этом случае под R нужно понимать эквивалентное сопротивление нагрузки. Энергия, выделяемая во внешней цепи, может частично или полностью преобразовываться не только в тепло, но и в другие виды энергии, например, в механическую работу, совершаемую электродвигателем. Поэтому вопрос об использовании энергии источника тока имеет большое практическое значение.

Полная мощность источника, то есть работа, совершаемая сторонними силами за единицу времени, равна

Во внешней цепи выделяется мощность

Отношение   равное

называется коэффициентом полезного действия источника.

На рис. 1.11.1 графически представлены зависимости мощности источника Pист, полезной мощности P, выделяемой во внешней цепи, и коэффициента полезного действия η от тока в цепи I для источника с ЭДС, равной , и внутренним сопротивлением r. Ток в цепи может изменяться в пределах от I = 0 (при ) до   (при R = 0).

Рисунок 1.11.1.

Зависимость мощности источника Pист, мощности во внешней цепи P и КПД источника η от силы тока

Из приведенных графиков видно, что максимальная мощность во внешней цепи Pmax, равная

достигается при R = r. При этом ток в цепи

а КПД источника равен 50 %. Максимальное значение КПД источника достигается при I → 0, т. е. при R → ∞. В случае короткого замыкания полезная мощность P = 0 и вся мощность выделяется внутри источника, что может привести к его перегреву и разрушению. КПД источника при этом обращается в нуль.

questions-physics.ru

Работа и мощность электрического тока

·  При последовательном включении в электрическую цепь не­скольких источников энергии с различным направлением э. д. с. общая э. д. с. равна алгебраической сумме э. д. с. всех источников. Суммирование э. д. с. одного направления берут со знаком плюс, а э. д. с. противоположного направления — со знаком минус. При составлении уравнений выбирают направление обхода цепи и про­извольно задаются направлениями токов.

·  Обычно замкнутая цепь является частью сложной цепи, как показано, например, на рис. 21. Замкнутая цепь обозначена буква­ми а, б, в и г. Ввиду наличия ответвлений в точках а, б, в, г токи I1, I2, I3  и I4, отличаясь по силе, могут иметь и различные направле­ния. Для такой цепи в соответствии со вторым законом Кирхгофа можно написать:

·  http://www.motor-remont.ru/books/1/index.files/image310.jpg

·  где r01, r02, r03  — внутренние сопротивления источников энергии,

·     r1, r2, r3 — сопротивления приемников энергии.

·  В частном случае при отсутствии ответвлений и последователь­ном  соединении  проводников  общее  сопротивление равно сумме всех сопротивлений.

·  Если внешняя цепь источника энергии с внутренним сопротив­лением r0 состоит, например, из трех последовательно соединенных резисторов с сопротивлениями, соответственно равными r1, r2, r3, то на основании второго закона Кирхгофа можно написать следующее равенство:

·  http://www.motor-remont.ru/books/1/index.files/image312.jpg

·  При  нескольких  источниках  тока  в левой части этого равенства была бы алгебраическая сумма

·  э. д. с. этих источников.

http://www.motor-remont.ru/books/1/index.files/image314.jpg

·  При параллельном включении двух или не­скольких источников энергии токи, протекающие в них, в общем случае неодинаковы.

·  Если два параллельно соединенных источника энергии (рис. 22), имеющих э. д. с. Е1 и Е2 и внутренние сопротивления r1 и r2,. замкнуть на какое-либо внешнее сопротивление r, то силу тока во внешней цепи I и в источниках I1 и I2 можно определить из следующих выражений:

·  http://www.motor-remont.ru/books/1/index.files/image316.jpg

·  http://www.motor-remont.ru/books/1/index.files/image318.jpg

·  Отсюда сила тока во внешней цепи

http://www.motor-remont.ru/books/1/index.files/image320.jpg

· 

·  Сила тока, протекающего через первый и второй источники энер­гии,:

·  http://www.motor-remont.ru/books/1/index.files/image322.jpg

·  Пример 1.  В схеме, изображенной на рис. 21, э. д. с. источников энергии и сопротивления  приемников энергии имеют следующие значения: Е1=6 в, Е2=12 в, Е3=9 в, r1=8 ом, r2=5 ом, r3=4 ом и r4=10 ом.Решение. Алгебраическая сумма э. д.с. в цепи

·  http://www.motor-remont.ru/books/1/index.files/image324.jpg

·  В этом выражении э. д. с. Е1 взята со знаком минус потому, что первый источник энергии включен встречно второму и третьему.

·  Общее сопротивление цепи

·  http://www.motor-remont.ru/books/1/index.files/image326.jpg

·  Сила тока в цепи

·  http://www.motor-remont.ru/books/1/index.files/image328.jpg

·  Напряжение между точками а и г

·  http://www.motor-remont.ru/books/1/index.files/image330.jpg

·  Пример 2. Два параллельно соединенных генератора (см. рис. 22), имеющие э. д. с. Е1=Е2=120 в и внутренние сопротивления r1=3 ом и r2=6 ом, замкнуты на сопротивление r=18 ом.

·  Определить силу тока во внешней цепи и токи в первом и во втором гене­раторах.

·  Решение. Внутреннее сопротивление двух параллельно соединенных гене­раторов.

·  http://www.motor-remont.ru/books/1/index.files/image332.jpg

·  Сила тока во внешней  цепи

·  http://www.motor-remont.ru/books/1/index.files/image334.jpg

·  Токи в первом и во втором генераторах обратно пропорциональны внутрен­ним сопротивлениям этих генераторов, т. е.

·  http://www.motor-remont.ru/books/1/index.files/image336.jpg

·  Таким образом, I1 + I2 =3I2 = 6 a,  откуда  I2  = 2 a, I1  = 2I2  = 4 a.

·  § 22. РАБОТА И МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА

·  Способность тела производить работу называется энергию тела.  Например, поднятый на высоту какой-либо груз обладает некоторым запасом энергии и при падении производит работу. Энергия тела тем больше, чем большую работу может произвести это тело при своем движении. Энергия не исчезает, а переходит из одной формы в другую. Например, электрическая энергия может быть превращена в механическую, тепловую, химическую, механи­ческая — в электрическую и т. д.

·  Для переноса зарядов  в замкнутой цепи источник электриче­ской энергии затрачивает известную энергию, равную произведению э. д. с. источника на количество электричества, перенесенного через эту цепь, т. е. EQ.

·  Однако не вся эта энергия является полезной, т. е. не вся работа,  произведенная  источником  энергии,  сообщается  приемнику энергии, так как часть ее расходуется на преодоление внутреннего сопротивления  источника  и  проводов.  Таким образом, источник энергии производит полезную работу, равную

·  http://www.motor-remont.ru/books/1/index.files/image338.jpg

·  где U — напряжение на зажимах приемника.

·  Так  как  количество  электричества равно произведению силы! тока в цепи на время его прохождения:

·  http://www.motor-remont.ru/books/1/index.files/image340.jpg

·  формулу работы можно представить в следующем виде

·  http://www.motor-remont.ru/books/1/index.files/image342.jpg

·  т. е. электрическая энергия или работа есть произведение напряже­ния, силы тока в цепи и времени его прохождения.

·  Если же выразить напряжение на зажимах участка цепи как произведение силы тока на сопротивление этого участка, т. е.

·  http://www.motor-remont.ru/books/1/index.files/image344.jpg

·  то формулу работы можно записать и таким образом:

·  http://www.motor-remont.ru/books/1/index.files/image346.jpg

·  Однако ни одна из указанных формул не определяет размеров генератора электрической энергии, от которого получена эта рабо­та, так как и большой и малый генераторы могут дать одинаковую работу, но в различные промежутки времени. Поэтому размеры генератора определяются не выполненной работой, а его мощно­стью. Это относится к любому электротехническому аппарату и ма­шине, хотя бы они были не поставляющими, а  потребляющими электрическую энергию (например, электродвигатели, электриче­ские лампы, нагревательные приборы и т. д.).

fiziku5.ru


Каталог товаров
    .