интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Мощность и КПД солнечных батарей: 10 лучших производителей устройств. Мощность солнечных батарей на квадратный метр


Мощность солнечных батарей для дома: расчет, советы от экспертов

В сегодняшней статье мы поговорим с вами о том, как правильно рассчитать мощность солнечной батареи для дома и дачи. Итак, вы приняли решение установить на своём загородном доме или дачном участке солнечные батареи, дабы стать независимым от общей электрической сети, всегда иметь в доме электричество, а также сэкономить на оплате квитанций по коммунальным платежам.

Что ж это решение верно. Но, чтобы солнечные модули действительно принесли вам выгоду, надо предварительно в обязательном порядке правильно подобрать мощность солнечных батарей. А для этого следует взять листок и ручку и произвести необходимые подсчёты либо обратиться к грамотным специалистам, которые подберут вам необходимое оборудование, ориентируясь на ваши запросы.

 

Не важно, где вы хотите установить солнечные модули: в собственном доме или на даче. Первое, что следует сделать – это подсчитать, сколько вам необходимо электрической энергии в месяц и в сутки в среднем. Есть два варианта подсчёта: зафиксировать данные электросчётчика. Желательно записать данные за несколько месяцев, чтобы получить более точное усредненное значение. Либо подсчитать сумму мощности всех электроприборов, установленных в вашем доме. Мощность каждого из них можно посмотреть в технической документации или в интернете.

Итак, берем мощность каждого отдельного прибора и умножаем ее на время работы в сутки. Таким образом, мы получим данные по каждому прибору. Затем необходимо сложить эти данные и получим итоговую цифру, на которую будем ориентироваться. Необходимо помнить о том, что, если вы планируете установку контроллера и инвертора для солнечных панелей, то их также следует учитывать при определении суммы потребляемой вами электроэнергии.

Приведем пример: допустим, у вас есть следующие бытовые приборы: холодильник, телевизор, ноутбук, стиральная машинка, электрический котёл, утюг и некоторые другие вспомогательные приборы. Также ваш дом оборудован 10 энергосберегающими лампочками.

Потребитель Мощность Время работы за сутки Потребление за сутки Сезонность работы
Освещение 200 Вт Максимум 10 часов 2 кВт*ч Круглый год
Холодильник 500 Вт Максимум 3 часа 1,5 кВт*ч Круглый год
Ноутбук 100 Вт Максимум 5 часов 0,5 кВт*ч Круглый год
Стиральная машина 500 Вт Максимум 6 часов 3 кВт*ч Круглый год
Утюг 1500 Вт Максимум 1 час 1,5 кВт*ч Круглый год
Телевизор 150 Вт Максимум 5 часов 0,8 кВт*ч Круглый год
Электрический котёл (150 литров) 1,2 кВт Максимум 5 часов 6 кВт*ч Круглый год
Инвертор 20 Вт 24 часа 0,5 кВт*ч Круглый год
Контроллер 5 Вт 24 часа 0,1 кВт*ч Круглый год

Итак берем калькулятор и проводим вычисление, на питание основных потребителей электроэнергии вам необходимо 15,9 кВт*ч энергии в сутки. Добавим сюда работу дополнительных приборов, таких как электрический чайник, насос, кухонный комбайн, пылесос, фен и т.д. И получим среднюю цифру в 20 кВт*ч в сутки. На месяц вам необходимо 600 кВт*ч энергии. А это значит, что солнечные панели должны вырабатывать столько энергии для того, чтобы покрыть ваши текущие расходы. Конечно, если вы планируете установку солнечных панелей для дачи, так вам потребуется намного меньше электрической энергии. Тем более, если вы используете ее только посезонно, например, только в летний период.

О чём говорит мощность солнечной батареи? Пример расчета, вы выбрали солнечный модуль с мощностью в 240 Вт. На деле, это означает, что данная солнечная батарея выдаст вам 240 Вт энергии солнца при инсоляции 1000 Вт*м2. Конечно, солнечные лучи не падают на батареи круглые сутки и сезонность работы такой батареи также играет свою роль. Зимой батарея работает 4-6 часов. А, значит, максимально она может выработать 1440 Вт*ч электроэнергии. Летом батарея работает максимум 8-10 часов. Таким образом, максимальный показатель электроэнергии составит 2400 Вт*ч. Это идеальный случай, когда солнечная батарея постоянно выдает свою максимальную мощность. В реальности нужно учитывать уровень инсоляции.

Помните о том, что солнечные батареи вырабатывают энергию из полученных солнечных лучей. А значит, чем больше света попадёт на батареи, тем больше энергии она способна выработать. Максимальное количество энергии модуль выработает тогда, когда солнечные лучи падают на него под углом в 90° и при безоблачном небе. В темное время суток энергия не вырабатывается, т.к. нет солнца. Поэтому необходимо установить аккумуляторные батареи, где в дневное время энергия будет скапливаться, а затем равномерно расходоваться в течение суток.

Во время пасмурной погоды работоспособность любой солнечной системы падает в среднем на 15-20%. Аналогично, выработка снижается в вечерние и утренние часы, когда интенсивность излучения падает, а угол падения солнечных лучей на поверхность панелей наименее оптимален.

солнечные батареи для дома

При подборе необходимого вам оборудования следует также учитывать еще один немаловажный фактор: это уровень инсоляции именно вашего региона. Уровень инсоляции показывает, сколько конкретно энергии солнца попадает на отдельную единицу площади солнечного модуля. Может случиться так, что вы живете в таком городе, где солнечного света недостаточно, а значит те панели, которые вы выбрали для покупки, не смогут работать на всю свою заявленную мощность.

Уровень инсоляции индивидуален для каждого региона нашей страны. Найти необходимые цифры можно в специализированных справочниках, а также на разнообразных метеорологических сайтах. Для крупных городов сегодня можно найти актуальные данные по всем месяцам года. Понятно, что наибольший уровень инсоляции будет зафиксирован в летнее время, а зимой уровень инсоляции, конечно, существенно, снижается.

Итак, у вас есть данные по уровню инсоляции вашего региона, а также то, сколько энергии вы потребляете в сутки. Теперь возможно подсчитать, сколько панелей вам необходимо установить для полноценной работы всех электроприборов в доме.

Для начала необходимо норму по электроэнергии разделить на показатель инсоляции каждого конкретного месяца. Очень важно рассчитать все по месяцам, ведь уровень инсоляции в разные месяца существенно отличается.

Полученную цифру делим на мощность той установки, которую вы решите приобрести (эти данные можно посмотреть в техническом паспорте либо в Интернете). Таким образом, получаем искомую цифру. Приведём конкретный пример.

Допустим, в сутки вам необходимо 20 кВт*ч электроэнергии. Инсоляция в вашем регионе в июле (Москва) – 5,3 кВт*ч на квадратный метр площади. Мощность одной выбранной вами солнечной батареи составляет 240 Вт или 0,24 кВт. Итого: 20/5,3/0,24 = 15,7 солнечных панелей заявленной мощности вам потребуется.

Если вы планируете покупку солнечных панелей только для дачи, то там, в среднем, вам потребуется 5 Квт*ч*сутки электроэнергии. Возьмём панели мощностью 185 Вт или 0,185 кВт. Итого 5/5,3/0,185 = 5 панелей заявленной мощности необходимо будет установить.

Но вы должны будете просчитать данные показатели по всем месяцам, когда планируется использование солнечных панелей для получения более точной цифры по количеству необходимых вам солнечных модулей.

Что можно сделать, чтобы повысить эффективность работы солнечных батарей:

- заменить в доме все обычные лампы накаливания на энергосберегающие;

- использовать бытовые приборы только класса А, А++, А+++.

- избегать затенения солнечного оборудования;

- правильно устанавливать угол наклона солнечных батарей в зависимости от вашего региона и времени года;

- своевременно очищать оборудование от пыли, грязи, особенно - наледи и снега, если вы используете солнечные модули в зимний период;

- правильно произвести монтаж оборудования, чтобы достигнуть максимальной производительности.

солнечные батареи

gws-energy.ru

эффективность панелей, мощность излучения на квадратный метр, самые эффективные

Эффективность солнечных батарей, как правило, рассчитывают с учетом КПД установки Эффективность солнечных батарей, как правило, рассчитывают с учетом КПД установки Солнечные батареи – это уникальная система, позволяющая преобразовывать солнечные лучи в электрическую и тепловую энергию. Растущий спрос на гелиопродукцию, на сегодня, обуславливается ее быстрой окупаемостью и долговечностью, доступностью теплоносителя. Но, какое напряжение способны вырабатывать солнечные батареи? О том, насколько эффективны гелиосистемы, и от чего зависит коэффициент их полезного действия – читайте в статье.

Солнечные батареи с высоким КПД: виды преобразователей

КПД солнечный батарей – это величина, которая равняется отношению мощности электроэнергии к мощности падающих на панель устройства солнечных лучей. Современные солнечные батареи обладают КПД в диапазоне от 10 до 45%. Такая большая разница обуславливается различиями между материалами изготовления и конструкцией пластин батарей.

Так, пластины солнечных батарей могут быть:

  • Тонкопленочными;
  • Многопереходными.

Солнечные батареи последнего типа, на сегодня, являются наиболее дорогими, но и наиболее продуктивными. Это связано с тем, что каждый переход в пластине поглощает волны с определенной длиной. Таким образом, устройство охватывает весь спектр солнечных лучей. Максимальный КПД батарей с многопереходными панелями, полученный в лабораторных условиях, составляет 43,5%.

Энергетики с уверенностью заявляют, что через несколько лет этот показатель возрастет до 50%. КПД тонкопленочных пластин зависит, в большей степени, от материала их изготовления.

Так, тонкопленочные солнечные батареи делятся на такие виды:

  • Кремниевые;
  • Кадмиевые.

Наиболее популярными солнечными батареями, которые можно использовать в бытовых целях, считаются установки с кремниевыми пленочными пластинами. Объем таких устройств на рынке составляет 80%. Их КПД достаточно низкий – всего 10%, но они отличаются доступностью и надежностью. На несколько процентов показатель полезного действия выше у кадмиевых пластин. Пленки с частицами селенида, меди, индия и галлия имеют более высокий КПД, который равняется 15%.

От чего зависит эффективность солнечных батарей

На КПД фотоэлектрических преобразователей влияет масса факторов. Так, как было отмечено выше, количество вырабатываемой энергии зависит от структуры панели преобразователя, материала их изготовления.

Эффективность солнечных батарей зависит от угла наклона устройства, погодных условий и, конечно же, от силы солнечного излученияЭффективность солнечных батарей зависит от угла наклона устройства, погодных условий и, конечно же, от силы солнечного излучения

Кроме того, эффективность солнечных преобразователей зависит от:

  • Силы солнечного излучения. Так, при снижении солнечной активности, мощность гелиоустановок снижается. Чтобы батареи обеспечивали потребителя энергией и в ночное время, их снабжают специальными аккумуляторами.
  • Температуры воздуха. Так, солнечные батареи с охлаждающими устройствами являются более продуктивными: нагрев панелей негативно сказывается на их способности преобразовывать энергию в ток. Так, в морозную ясную погоду КПД гелиобатарей выше, нежели в солнечную и жаркую.
  • Угла наклона устройства и падения солнечных лучей. Для обеспечения максимальной эффективности, панель солнечной батареи должна быть направлена строго под солнечное излучение. Наиболее эффективными считаются модели, уровень наклона которых можно менять относительно расположения Солнца.
  • Погодных условий. На практике отмечено, что в районах с пасмурной, дождливой погодой эффективность солнечных преобразователей значительно ниже, нежели в солнечных регионах.

Кроме того, на эффективность солнечных преобразователей влияет и уровень их чистоты. Для того, чтобы устройство могло работать продуктивно, его пластины должны потреблять как можно больше солнечного излучения. Сделать это можно лишь в том случае, если приборы чистые.

Скопление на экране снега, пыли и грязи может уменьшить КПД устройства на 7%.

Мыть экраны рекомендуется 1-4 раза в год в зависимости от степени загрязнений. При этом, для очистки можно использовать шланг с насадкой. Технический осмотр преобразовательных элементов следует проводить раз в 3-4 месяца.

Мощность солнечных батарей на квадратный метр

Как было замечено выше, в среднем, один квадратный метр фотоэлектрических преобразователей обеспечивает выработку 13-18% от мощности попадающих на него солнечных лучей. То есть, при самых благоприятных условиях, с квадратного метра солнечных батарей можно получить 130-180 Вт.

Мощность гелиосистем можно увеличивать, наращивая панели и увеличивая площадь фотоэлектрических преобразователей.

Получить большую мощность можно и, установив панели с более высоким КПД. Тем не менее, достаточно низкий (в сравнении, например, с индукционными преобразователями) коэффициент полезного действия доступных солнечных батарей является главной преградой на пути к их широкому использованию. Увеличение мощности и КПД гелиосистем является первостепенными задачами современной энергетики.

Самые эффективные солнечные батареи: рейтинг

Наиболее эффективные солнечные преобразователи, на сегодня, производит фирма Sharp. Трехслойные, мощные, концентрирующие солнечные панели имеют эффективность в 44,4%. Стоимость их невероятно высока, поэтому они нашли применение лишь в авиационно-космической промышленности.

Ознакомиться с рейтингом лучших и эффективных солнечных батарей можно самостоятельно, используя интернет Ознакомиться с рейтингом лучших и эффективных солнечных батарей можно самостоятельно, используя интернет

Наиболее доступными и эффективными являются современные солнечные батареи от компаний:

  • Panasonic Eco Solutions;
  • First Solar;
  • MiaSole;
  • JinkoSolar;
  • Trina Solar;
  • Yingli Green;
  • ReneSola;
  • Canadian Solar.

Компания Sun Power производят самые надежные солнечные преобразователи с КПД в 21,5%. Продукция этой компании пользуется абсолютной популярностью на коммерческих и производственных объектах, уступая, разве что, устройствам от Q-Cells.

КПД солнечных батарей (видео)

Современные солнечные батареи, как экологически чистые устройства преобразования энергии с неиссякаемым теплоносителем, набирают всю большую популярность. Уже сегодня девайсы с фотоэлектрическими преобразователями используют для бытовых целей (зарядки телефонов, планшетов). Эффективность солнечных установок пока уступает альтернативным способам получения энергии. Но, повышение КПД преобразователей – это первостепенная задача современной энергетики.

Добавить комментарий

teploclass.ru

Отопление дома солнечными батареями. Установка.

Последнее время все больше владельцев загородной недвижимости для создания комфортных условий проживания стараются использовать солнечную энергию. В данной статье попробуем рассказать, как можно эффективно организовать отопление дома солнечными батареями.

Содержание этой статьи

Солнечные батареи – это.

Специальная рамка, объединяющая соединенные между собой в единое целое несколько фотоэлектрических элементов. Каждая ячейка предназначена для преобразования энергии солнечного потока в электрическую.

Солнечные батареи для отопления частного дома

Виды солнечных батарей.

Сегодня производители предлагают в основном три вида солнечных батарей.

По данной теме есть похожая статья - Строительство бани от Фундамента до Крыши.

Монокристаллические.

Позволяют создать наиболее эффективное отопление загородного дома солнечными батареями. Они набираются из большого количества силиконовых ячеек. При попадании солнечного потока на поверхность этих фотоэлементов, внутри активируются электрохимические процессы. В основном монокристаллические батареи содержат 36 ячеек. Это оптимальное количество позволяет создавать легкие и компактные панели. Оригинальное соединение фотоэлементов обеспечивает небольшую гибкость рамке. Благодаря этому параметру монокристаллические батареи легко устанавливаются на неровных поверхностях, обеспечивая правильный угол наклона к световому потоку. Максимальная их мощность достигается при средней температуре окружающего воздуха около 15–25 °C.

Тонколистовые.

В отличие от аналогов предоставляют ряд неоспоримых преимуществ:

  • для активации фотосинтеза необязательно обеспечивать поток света, перпендикулярно направленный на поверхность солнечных панелей;
  • благодаря этому их можно устанавливать в любом удобном пользователю месте: крыше, стене здания, на отдельной конструкции;
  • максимальные потери на тонколистовых батареях в пасмурную погоду составляют всего 15%;
  • тонкая пленка обеспечивает отличную работу панелей в условиях повышенной запыленности;
  • прекрасное отопление частного дома солнечными батареями тонколистового типа можно организовать в любом регионе.

Поликристаллические.

Для создания элементов приема солнечного потока на батареях используют поликристаллы кремния яркого синего цвета. Монокристаллические панели применяются при освещении улиц, парков, для электрического снабжения частного дома или дачи, кафе и ресторанов.

Что лучше - поликристаллические или монокристаллические батареи

Принцип работы.

Специальные панели с большим количеством фотоэлементов поглощают энергию солнечного потока. При попадании лучей на поверхность принимающих устройствах, в них активируется электрохимическая реакция. Выделяемая каждым элементов электрическая энергия концентрируется и выводится на общий накопитель.

С одной солнечной панели стандартных размеров выводится около 250 Вт. Вследствие этого понятно, что для обеспечения нормального функционирования загородного дома необходимо объединить несколько панелей в единую систему. Практические данные показывают, что площадь солнечных батарей 20–30 кв.метров вполне достаточно для полноценного функционирования электрических приборов в доме обычной семьи.

Понятно, что в ночное время фотосинтез на солнечных батареях не протекает. Вследствие этого для накопления электроэнергии необходимо наличие аккумуляторов. Количество их напрямую зависит от интенсивности расхода электричества в темное время. Подзарядка аккумуляторов осуществляется за счет избыточной электроэнергии, вырабатываемой при фотосинтезе в светлое время суток.

Для преобразования постоянного тока, полученного в результате синтеза солнечного потока, в рабочее электричество в комплекте оборудования предусмотрен инвертор. Все современные электроприборы функционируют от переменного тока. Электрические котлы также работают на этом виде электричества.

Достоинства применения солнечных батарей.

Использование этих источников электрической энергии для водонагревателей в частном доме предоставляет широкий спектр преимуществ перед другими отопительными устройствами:

  • нет токсичных выбросов в окружающую атмосферу благодаря отсутствию процесса сжигания энергоносителей;
  • изготовление их различной мощности дает возможность получить от солнечных батарей достаточное количество электрической энергии для полноценного функционирования отопительной системы и других электрических приборов;
  • отсутствие горючих энергоносителей исключает возможность случайного возгорания, конечно, если электрические соединения и проводка выполнены с соблюдением всех требований безопасности;
  • применение фотоэлементов, преобразующих инфракрасное излучение, позволяет получать электроэнергию даже при большой плотной облачности;
  • обеспечивается полная электрификация дома независимо от других энергоносителей;
  • установленное оборудование не требует дополнительных вложений на протяжении длительного периода;
  • технология отопления с помощью солнечных батарей предоставляет возможность полной автоматизации всего цикла рабочих процессов: получения электрической энергии, отапливания дома, контроль и поддержание необходимой температуры;
  • производители гарантируют надежную эксплуатацию солнечных батарей без дополнительных вложений в течение 30 лет.

Особенности выбора.

Выбирая солнечные батареи для отопления дома необходимо учесть несколько нюансов:

Мощность – один из основных параметров, влияющий на стоимость солнечных панелей. Поэтому перед их приобретением необходимо определить ориентировочное потребление электроэнергии. В сопроводительной документации всегда указывается максимальная мощность, вырабатываемая батареями за час в ваттах. Но необходимо учитывать, что в пасмурную погоду она будет немного меньшая. Также мощность зависит от вида солнечных батарей.

Размер – существенно зависит от мощности панелей и типа их фотоэлементов. Крыша должна иметь необходимые размеры для монтажа нужного количества панелей.

В среднем 1 кв. метр солнечных батарей дает за 1 час около 120 Вт.

Панели суммарной площадью в 20 кв. метров обеспечат электроэнергией одноэтажный загородный дом в полном объеме.

Тип – поли- и монокристаллические солнечные батареи имеют значительно высшую стоимость, чем кремневые тонколистовые. Но вырабатывают больше электроэнергии и требуют меньшей поверхности крыши.

Возможность при необходимости наращивания мощности. Ее можно легко увеличить за счет добавления дополнительных солнечных панелей. Замена батарей путем приобретения новых более эффективных экономически невыгодно. Поэтому необходимо учесть небольшой запас поверхности крыши.

Солнечные батареи от ведущих производителей гарантировано выдержат срок эксплуатации больше 25 лет. Надежность их зависит от фирмы производителя. Желательно отдать предпочтение известному производителю. Он обеспечивает бесплатную замену панелей по гарантии, оказывает помощь при монтаже, наладке, ремонте, наращивании мощности.

Особенности установки.

Отопление от солнечных батарей в значительной мере зависит от правильности их установки. Предлагаем несколько советов, которые помогут обеспечить получение максимальной электроэнергии:

  • необходимо проверить прочность поверхности, на которую планируется монтировать солнечные батареи;
  • должна быть выполнена правильная их ориентация относительно солнца;
  • необходимо установить правильный угол наклона;
  • проверить, чтобы их не затеняли другие предметы.

Солнечные батареи для отопления дома рекомендуется монтировать на южном склоне крыши. В идеальном варианте их наклон желательно обеспечить в соответствии с географической широтой местности. Поверхность панелей в таком положение будет получать под прямым углом максимальный поток света. Тень от деревьев, соседних сооружений, от антенны. Ведь даже небольшой затененный участок будет значительно снижать эффективность выработки электроэнергии.

Экран на батарею отопления своими руками. - здесь больше полезной информации.

Определившись с участком монтажа солнечных панелей, необходимо проверить прочность кровельной конструкции. Если возникнут сомнения, тогда лучше усилить ее.

Во время эксплуатации производители рекомендуют производить периодическую очистку поверхности солнечных батарей от пыли, грязи, снега зимой. Так как это существенно влияет на их производительность.

Вас заинтересует эта статья - Как выбрать электрокотел для отопления?

Установка солнечных батарей, видео:

Правила установки солнечных панелей.

Производители солнечных батарей в основном поставляют в комплекте все необходимые элементы крепления для любого варианта монтажа. Поэтому установку панелей можно выполнить своими руками. Учитывая конструктивные особенности кровельной поверхности, существует несколько способов монтажа:

  • наклонный – при любом угле наклона ската;
  • горизонтальный – если плоская крыша;
  • свободностоящий – располагают их на опорных специальных конструкциях;
  • интегрированный – солнечные панели являются элементами конструкции здания.

При установке солнечных батарей на плоскую крышу необходимо обеспечить зазор между ними и поверхностью кровли. Это исключит нагрев светоприемных элементов и существенное снижение их производительности. На темных крышах желательно проложить светлое покрытие. Это обеспечит хорошее дополнительное рассеивание светового потока и будет препятствовать перегреву панелей. При установке батарей в несколько рядов между ними должно быть расстояние, составляющее 1,7 от высоты панелей.

Несмотря на простоту установки для ее выполнения желательно обратиться к специалистам. В этом случае вы получите качественный монтаж по всем правилам и главное – гарантийное сервисное обслуживание и ремонт на весь период эксплуатации, что немаловажно при высокой стоимости солнечных батарей.

You need to enable JavaScript to vote

Понравилась статья ? Покажите её друзьям:

Смотрите дальше на DimDom.ru:

Дополните статью вашими комментариями , фото и видео :

dimdom.ru

схема оборудования, расчет стоимости комплекта

Солнечные батареи для дома: схема оборудования, расчет стоимости комплекта

Глядя на океан энергии, льющейся с небес на землю, мы остаемся зависимыми от электросетей.

Если в городе поставка тока более-менее стабильна, то за его пределами жители регулярно становятся участниками «конца света».

Как обеспечить свой дом надежным источником электроэнергии и не лишить себя комфорта, невозможного без «направленного движения электронов»? Ответ достаточно прост в теории, но почти незнаком многим на практике.

Это солнечные батареи для частного дома они являются главным условием автономного существования.

Что представляют собой эти устройства, их виды, характеристики и эффективность применения мы рассмотрим в данной статье.

Виды солнечных батарей

Из школьного курса физики нам знаком фотоэлектрический эффект. Он возникает в полупроводниках под действием света. На этом принципе работают все солнечные батареи.

Не будем углубляться в теорию процесса, а отметим лишь самые важные практические моменты:

  • Существует три вида солнечных батарей: монокристаллические и поликристаллические и панели из аморфного кремния (гибкие).
  • Все они вырабатывают постоянный ток (напряжением 12 или 24 В).
  • Срок службы данных устройств превышает 20 лет.
  • Мощная батарея не может эффективно работать без дополнительного оборудования (контроллера, аккумулятора, инвертора).

Теперь пройдем подробно по каждому пункту. Монокристаллическая панель по сравнению с поликристаллической выдает более высокую мощность с единицы поверхности. При этом цена у нее существенно выше.

Производительность поликристаллической ячейки на 15-20% меньше, но зато при облачной погоде она снижается незначительно. У монокристалла, напротив, при рассеянном освещении резко уменьшается выработка электричества. Солнечная батарея из аморфного кремния дешевле поликристаллической, но срок ее службы в 2-3 раза меньше. Исходя из перечисленных фактов, выгоднее покупать поликристаллические панели.

Набор оборудования для солнечной станции

Мощная солнечная батарея для дачи – устройство не самодостаточное. Полученную энергию нужно где-то запасти, чтобы вечером и в пасмурную погоду полноценно пользоваться бытовыми электроприборами.

Поэтому емкий и живучий аккумулятор нам в любом случае потребуется. В его выборе есть один важный нюанс: не пытайтесь сэкономить, покупая стартовый автомобильный аккумулятор. Он плохо подходит для цикличного запасания энергии и не переносит глубокого разряда. Его главное предназначение – дать мощный, но кратковременный ток для пуска двигателя.

Для запасания и медленного расходования энергии нужны аккумуляторы другого типа: AGM или гелевые. Первые дешевле, но имеют небольшой срок службы (до 5 лет). Гелевые аккумуляторы дороже, но зато работают значительно дольше (8-10 лет).

Контроллер – еще один важный элемент автономной гелиостанции. Он выполняет несколько задач:

  • Отключает батарею от аккумулятора в момент полного заряда и включает ее для новой закачки электричества.
  • Выбирает оптимальный режим зарядки, повышая количество запасаемой энергии.
  • Обеспечивает максимальный срок службы аккумулятора.

Существует несколько типов контроллеров, используемых в солнечных станциях:

  • ON/OFF «включил-выключил»;
  • PWM;
  • MPPT.

Самый дешевый прибор просто отключает солнечную панель от аккумулятора при возрастании напряжения на его клеммах до максимального уровня. Это не лучший вариант, поскольку в этот момент аккумулятор еще не полностью заряжен.

Более дорогой PWM-контроллер действует «умнее». После набора максимального напряжения, он понижает его до заданного уровня и держит еще пару часов. Так достигается более полный уровень накопления энергии.

И наконец, самый интеллектуальный контроллер MPPT- типа максимально эффективно использует мощность солнечной панели на всех режимах ее работы. Это позволяет запасти в аккумуляторе дополнительно от 10 до 30 % электричества.

Независимо от вида используемых полупроводниковых материалов (поликристаллы, монокристалл, аморфный кремний) устройство солнечной батареи представляет собой цепочку последовательно соединенных ячеек-модулей. Каждый из них генерирует небольшое напряжение (в пределах 0,5 вольт) и слабый ток (десятые доли ампера). Работая вместе, они «сливают» накопленную энергию в общий канал и на выходе из батареи мы получаем ток большой силы и постоянного напряжения (12 или 24 Вольт).

Структурная схема оборудования солнечной станции

Структурная схема оборудования солнечной станции

Стандартные бытовые электроприборы рассчитаны на 220 Вольт, поэтому работать от «постоянки» не будут. Преобразование постоянного тока в переменный выполняет отдельное устройство-инвертор. Им завершается цепочка оборудования, необходимого для солнечной батареи.

Несмотря на относительно высокую стартовую стоимость компонентов солнечной станции, ее эксплуатация получается выгодной благодаря большому ресурсу «жизни» главных элементов: фотокристаллической панели и аккумулятора.

Сколько нужно солнечных батарей для дома и дачи?

Здесь все просто. Покупателю не нужно заниматься сложным расчетом мощности солнечной станции и подбирать для нее батареи. Эту работу уже проделали специалисты компаний, выпускающих и продающих данное оборудование.

Потребителю остается лишь выбрать из предложенного ряда готовый комплект, исходя из своих потребностей. В качестве примера рассмотрим несколько стандартных вариантов, которые представлены на сайтах продавцов (актуально на 2016 год).

Гелиостанция, построенная на одной панели мощностью 250 Ватт, рассчитана на энергоснабжение потребителей, перечисленных в таблице №1.

Таблица №1 Набор потребителей для солнечной станции мощностью 250 Ватт

Таблица №1 Набор потребителей для солнечной станции мощностью 250 Ватт

Ее ориентировочная цена складывается из стоимости устройств, указанных в таблице №2.

Таблица №2 Стоимость оборудования для 250-ти ваттной станции

Таблица №2 Стоимость оборудования для 250-ти ваттной станции

Солнечная станция мощностью 500 Ватт способна обеспечить электричеством набор бытовых приборов, указанный в таблице №3.

Таблица №3 Энергетический потенциал гелиостанции мощностью 500 Ватт

Таблица №3 Энергетический потенциал гелиостанции мощностью 500 Ватт

Ее ориентировочную стоимость (с разбивкой по видам и моделям оборудования) вы найдете в таблице №4.

Таблица №4

Таблица №4

Гелиостанция на 1000 Ватт способна питать током не только экономные светодиодные лампочки, телевизор, ноутбук и спутниковую антенну. Одновременно с ними она «потянет» микроволновку, водяной насос или мощную электроплиту (таблица №5).

Таблица №5

Таблица №5

Основа данной гелиостанции – 4 солнечные панели мощностью по 250 Ватт каждая. За весь комплект оборудования (без стоимости монтажа, соединительных муфт и кабеля) нужно заплатить сумму, указанную в таблице №6

Таблица №6 Ориентировочная стоимость оборудования гелиостанции мощностью в 1 КВт

Таблица №6 Ориентировочная стоимость оборудования гелиостанции мощностью в 1 КВт

Изучая представленные комплекты оборудования, нетрудно заметить, что стоимость инвертора сравнима с ценой солнечной батареи. Поэтому некоторые владельцы солнечных станций предпочитают обходиться без инверторного преобразователя. Они покупают для своего дома бытовые приборы, работающие от постоянного тока напряжением 12 Вольт. Помимо высокой цены инвертор при работе потребляет около 10% энергии, получаемой от солнечной батареи. Поэтому его исключение из цепочки оборудования дает неплохую экономию.

Особенности монтажа

Установка солнечных батарей – процесс технически несложный, но весьма ответственный. Площадь и вес мощных панелей достаточно большие, поэтому им требуется надежное крепление с помощью направляющих и специальных крепежных элементов. Кроме этого на крыше необходимо предусмотреть возможность легкого доступа к батареям для очистки от пыли и снега.

От величины угла, под которым солнечные лучи падают на фотоэлементы, напрямую зависит выработка энергии. Поэтому солнечные батареи не фиксируют в одном положении, а монтируют на поворотных устройствах.

Рекомендуемые углы наклона солнечных батарей

Рекомендуемые углы наклона солнечных батарей

Существует два основных позиции гелиопанелей: летняя и зимняя. Меняя угол наклона, от солнечной станции получают максимальный КПД.

Характерные отзывы

Их можно разделить на две группы: отзывы тех, кто уже пользуется данными устройствами и мнения всех, кто только изучает вопрос автономного энергоснабжения.

Большинство владельцев солнечных станций довольны своим выбором. Оснастив ими свой загородный дом, они отмечают надежность, всесезонность и эффективность гелиопанелей. Размышляющие о покупке, высказывают сомнения в экономической целесообразности, опасаясь долгого срока окупаемости оборудования.

Мы выскажем свои соображения по данной теме. Принимая в расчет стабильный рост стоимости электроэнергии, получаемой из внешних сетей, использование гелиостанции нельзя назвать убыточным. Если же речь идет о районах, где энергоснабжение полностью отсутствует или характеризуется частыми отключениями, то гелиостанция – безальтернативный вариант.

Самостоятельная сборка

Попробовать свои силы в сфере солнечной энергетики домашних умельцев побуждают два фактора: стремление снизить стоимость гелиопенелей и новизна данной работы.

Экономия, получаемая при самостоятельной сборке, впечатляет. Комплект «сделай сам», состоящий из фотоячеек и монтажной токопроводящей ленты почти на 50% дешевле батареи, собранной на заводе. Купить его можно на российских торговых интернет-площадках или заказать прямую доставку из страны-производителя.

Ответов на вопрос как сделать солнечную батарею для дома своими руками во всемирной сети можно найти очень много. Кроме устного описания процесса, здесь можно найти толковые видеоролики, наглядно демонстрирующие основные его этапы.

Практические советы, которые содержатся в подобных руководствах, основаны на бесценном опыте проб и ошибок. Они помогают новичкам без серьезных финансовых потерь успешно выполнить данную работу.

Сборка солнечной батареи включает следующие этапы:

  • последовательную пайку фотоячеек в единую энергоцепочку с помощью токопроводящей ленты;
  • изготовление рамки корпуса со стеклом.

Самый ответственный момент – заливка фотоячеек прозрачным герметиком и их объединение с остекленной рамкой. Здесь существует отработанная технология, основой которой служит толстый лист поролона, предохраняющий хрупкие фотоэлементы от разрушения.

Знатоки ручной сборки рекомендуют не экономить на герметике. Если он положен слишком тонким слоем, то в батарею может проникнуть влага. Она разрушает гелиоячейки и токопроводящие дорожки.

stroitelstvo.domov.resant.ru

Расчет солнечных панелей: подробная инструкция для установки

Расчет солнечных панелей

Содержание:

  • Рассчитываем мощность батарей
  • Рассчитываем емкость аккумулятора для панелей
  • Просчет солнечных панелей для дачи или частного дома

Солнечные батареи с каждым годом становятся все более востребованной альтернативой традиционного энергоснабжения. Первое, что предстоит сделать человеку, решившему установить солнечные панели – правильно оценить потребности своих владений, произвести расчеты.

Рассчитываем мощность батарей

Выяснить необходимую мощность нужно на основании количества потребляемой вами энергии  (показания посмотрите по счетчику).

Нужно понимать, что солнечные батареи вырабатывают электричество исключительно в светлое время суток. Кроме того, лишь чистое небо и падение лучей под прямым углом гарантирует выдачу паспортной мощности. В противном случае выработка электроэнергии падает. Так, при пасмурной погоде мощность батарей подает в 15-20 раз.

расчет мощности солнечных панелей

Производя расчет, берите рабочее время, при котором панели функционируют на всю – с 9 до 16 часов. Летом батареи работают от рассвета до заката, но вечером или утром выработка составляет 20-30% от всей дневной.

Следовательно, массив батарей мощностью 1 кВт при солнечной погоде летом за 7 часов выдает 7 кВт/ч энергии, т.е. 210 кВт в месяц. Те 3 кВт, которые вырабатываются утром и вечером, оставьте про запас на случай пасмурной погоды. Кроме того, панели устанавливают стационарно, из чего следует, наклон солнечных лучей тоже будет меняться, что не позволит 100% выработку.

Однако даже на 210 кВт/ч за месяц не стоит полностью полагаться. Существует ряд факторов, которые могут снизить показатели:

  • Географическое положение – не может в нашем регионе в месяце быть 30 солнечных дней. Нужно просмотреть архивы погоды и узнать примерное количество пасмурных дней. Не менее 5-6 дней точно окажутся несолнечными, солнечные панели не дадут и половины обещанной электроэнергии. Вычеркиваем 4 дня, получаем уже не 210 кВТ/ч, а 186.
  • Смена сезонов – осенью и весной световой день короче, а пасмурных дней больше. Если собираетесь пользоваться энергией солнца с марта по октябрь, увеличьте массив модулей на 30-50% в зависимости от места жительства.
  • Дополнительно оборудование – происходят серьезные потери в инверторе, а также аккумуляторах.

Рассчитываем емкость аккумулятора для панелей

расчет мощности солнечной энергии

Минимальный запас емкости должен быть таким, чтобы его хватало на работу ночью. Например, если с вечера до утра вы потребляете 3кВт/ч энергии, то запас энергии для аккумулятора должен быть именно таким.

Аккумулятор нельзя разряжать полностью.

Специализированные АКБ можно разрядить до 70% максимум. В противном случае они быстро выходят из строя. Обычные автомобильные АКБ нельзя разряжать более чем на 50%. Поэтому аккумуляторов нужно ставить вдвое больше, чем требуется, чтобы не менять их каждый год.

Оптимальный запас емкости АКБ – суточный запас энергии. Так, 10 кВТ/ч за 24 часа требует такой же рабочей емкости АКБ. Лишь тогда вы сможете прожить пару пасмурных дней без перебоев. В обычные дни аккумуляторы будут разряжаться частично (на 20-30%), что продлит срок эксплуатации АКБ.

Немаловажная деталь – КПД свинцово-кислотных аккумуляторов, равный 80%.  Т.е. при полном заряде аккумулятор берет на 20% больше, чем сможет отдать. Кроме того, КПД зависит от разряда и заряда тока, чем они больше, тем ниже КПД. Например, подключая чайник на 2кВт через инвертор и аккумулятор на 200Ач, то в последнем напряжение резко упадет, т.к. ток разряда будет около 250А, а КПД отдачи упадет до 40-50%.

С учетом потери полученной от батарей энергии в аккумуляторе и преобразовании постоянного напряжения в переменный ток 220 В, потери составляют 40%. Поэтому запас емкости АКБ и массив батарей нужно увеличить на 40%, чтобы перекрыть затраты.

Существует еще один похититель энергии – контроллер заряда аккумулятора. Их производят двух типов: PWM(ШИМ) и МРРТ. Первые более простые и дешевые, но они не трансформируют энергию, а потому панели не отдают в АКБ всю мощность (максимум 80% от паспортной мощности). МРРТ отслеживает пик мощности и может преобразовать энергию, понижая напряжение и поднимая ток зарядки, что увеличивает отдачу до 99%.

Ставя дешевый PWM, прибавьте массив солнечных батарей еще на 20%.

Просчет солнечных панелей для дачи или частного дома

солнечные батареи для дома

Если вы не знаете потребление, а только планируете питать дачу энергией солнца, то рассчитать расход достаточно просто. Холодильник, потребляющий 370 кВт/ч, значит, в месяц он потребит 30,8 кВТ/ч энергии (1,02 кВт/ч).          Считаем свет: энергосберегающие лампочки по 12 ватт каждая, а их у вас 6 штук и светят они около 6 часов за сутки. Значит, вам необходимо 12*6*6 =432 Вт/ч.

По такому же принципу посчитайте потребление телевизора, насоса и других приборов. Сложив все, вы получите суточное потребление энергии, умножайте на количество дней в месяц и получите примерную цифру. Например, вы получили расход 70 кВт/ч, прибавляем 40% энергии, теряющейся в инверторе и АКБ. Значит, вам нужны батареи, вырабатывающие 100 кВт/ч (100/30/7 = 0,476 кВт в день). Нужен комплект батарей мощностью 0,5 кВт. Но этого массива хватит только летом, даже осенью и весной в пасмурные дни могут быть перебои с электричеством. Поэтому нужно удвоить массив панелей.

Стоимость системы может отличаться в зависимости от комплектующих: фотомодулей, батарей и инверторов. Примерная цена 1 кВт мощности колеблется в пределах 2,5-3 евро.

Имея расчет стоимости системы, легко и быстро можно посчитать окупятся ли затраты на ее приобретение.

Подписаться на рассылку

Подписаться

ekobatarei.ru

Мощность солнечного излучения на квадратный метр

 

Энергия нашего Солнца

Почти вся энергия на Землю, приходит от Солнца. Если бы не оно, Земля была бы холодной и безжизненной. Растения растут, потому что получают необходимую энергию. Солнце ответственно за ветер, и даже ископаемое топливо это энергия нашей звезды, запасенная миллионы лет назад. Но сколько энергии на самом деле, приходит от него?

Как вы, наверное, знаете, в его ядре, температура и давление настолько высоки, что атомы водорода сливаются в атомы гелия.

Излучение Солнца

В результате этой реакции синтеза, звезда производит 386 миллиардов мегаватт. Большая часть излучается в пространство. Вот почему мы видим звезды, которые удалены на десятки и сотни световых лет от Земли. Мощность излучения Солнца равна 1,366 киловатт на квадратный метр. Около 89000 тераватт проходит через атмосферу и достигает поверхности Земли. Получается его энергия на Земле составляет около 89000 тераватт! Просто для сравнения, общее потребление каждого человека составляет 15 тераватт.

Так что Солнце дает в 5900 раз больше энергии, чем люди в настоящее время производят. Нам просто нужно научится использовать ее.

Наиболее эффективный способ использовать излучение нашей звезды это фотоэлементы. Как таковое, это преобразование фотонов в электричество. Но энергия создает ветер, который заставляет работать генераторы. Солнце помогает расти культурам, которые мы используем для производства биотоплива. И, как мы уже говорили, ископаемые виды топлива, такие как нефть и уголь это концентрированное солнечное излучение, собранное растениями в течение миллионов лет.

Мощность излучения Солнца и использование энергии на Земле

Мощность излучения Солнца равна 1,366 киловатт на квадратный метр. Получается его энергия на Земле составляет около 89000 тераватт

Источник: spacegid.com

 

Солнце:

НАШ САМЫЙ КРУПНЫЙ И САМЫЙ ЩЕДРЫЙ ИСТОЧНИК ЭНЕРГИИ

Солнце – первопричина всей жизни на Земле и наш важнейший поставщик энергии. Оно – невероятный сгусток энергии. Энергия, излучаемая с поверхности Солнца и попадающая на земной шар, примерно в 10.000 раз превышает сегодняшнюю мировую потребность в энергии. Однако используемая доля исходящей от Солнца энергии сейчас еще очень мала.

Максимальная мощность солнечного излучения составляет 1.000 ватт на один квадратный метр земной поверхности:

Ясное синее небо

Общая мощность излучения или так называемая глобальная радиация представляет собой сумму прямого и рассеянного излучения. Важно различать эти виды излучения, т.к. современные солнечные установки рассчитаны на различное излучение. Так, например, термические солнечные установки, предназначенные для подогрева воды, используют как прямое, так и рассеянное излучение солнца. Они преобразуют энергию излучения в тепло даже при облачной погоде.

На графике показаны годовые колебания усредненного общего излучения в г. Карлсруэ, Германия

КАК СОЛНЕЧНЫЕ ЛУЧИ ПРЕВРАЩАЮТСЯ В ЭЛЕКТРИЧЕСКИЙ ТОК: ИНФОРМАЦИЯ О СИСТЕМЕ «ФОТОВОЛЬТАИК»

«Фотовольтаик» – специальный термин, обозначающий непосредственное преобразование солнечного излучения в электрический ток с помощью так называемых солнечных батарей (фотогальванической установки). В настоящее время они изготавливаются почти исключительно из кремния – материала, получаемого из кварцевого песка, имеющегося почти в неограниченном количестве.

Солнечные батареи изготавливаются из разного кремния:

Если солнце светит в условиях тумана, облачности или же находится низко над горизонтом, то оно светит «вполсилы», а это значит, что и солнечная батарея работает лишь вполовину своей производительности. Наибольшего КПД фотогальваническая установка достигает при перпендикулярном облучении. Установка с жестким креплением должна быть расположена по возможности под углом в 30 о и направлена на юг.

ФОТОГАЛЬВАНИЧЕСКИЕ УСТАНОВКИ: ПОДСОЕДИНЕННЫЕ К СЕТИ ИЛИ НЕ ЗАВИСЯЩИЕ ОТ НЕЕ

Фотогальванические установки, отдающие ток в общую энергосеть , подсоединены к ней через инвертор, который преобразует производимый солнечными батареями постоянный ток в переменный и подает его в сеть

Номинальная мощность фотогальванических установок указывается в ваттах пик. Подсоединенная к сети установка с номинальной мощностью в 1 киловатт пик имеет площадь примерно 10 квадратных метров и стоит, считая и монтаж, около 10.000 Евро. Такая установка может произвести примерно 900 киловатт-часов электроэнергии в год. Для сравнения – одна семья из 3 человек ежегодно потребляет в среднем 3.000 киловатт-часов энергии.

Автономные фотогальванические установки работают в так называемом «островном режиме», т.е. они не подсоединены к общественной энергосети. Для работы в мало солнечное время и ночью для них необходимы подзаряжаемый аккумулятор для накопления энергии. Величина солнечного генератора зависит от режима потребления тока и емкости аккумулятора, причем это должен быть обязательно специальный солнечный аккумулятор. Использование автономных установок имеет смысл только в тех случаях, когда подключение к общей сети невозможно или если стоимость такого подключения намного превосходит стоимость самой установки.

ОСОБЕННО ЦЕЛЕСООБРАЗНО: НАГРЕВАНИЕ ВОДЫ СОЛНЕЧНЫМИ КОЛЛЕКТОРАМИ

С помощью солнечных термоустановок солнечную энергию в наших широтах можно эффективно использовать для подогрева воды и в помощь отопительной системе. Хорошие коллекторы и правильно подобранная по размеру установка могут покрыть до 25 % годового потребления тепла за счет солнечной энергии и к тому же уберечь окружающую среду и сэкономить энергоресурсы.

Для подогрева воды солнечное тепло улавливается плоскими коллекторами или коллекторами с вакуумными трубками. Между солнечными коллекторами и отдельным накопителем горячей воды в доме циркулирует жидкость с антифризом, нагреваемая лучами солнца. Это тепло затем отдается воде через теплообменник. В пасмурные дни вода для бытовых нужд нагревается от отопительного котла.

Для подогрева воды достаточно 1,3 кв. м площади коллектора в расчете на одного человека. Эксперты подсчитали, что объем водонакопителя при температуре воды 50 о должен составлять 80 литров на человека, но не менее 300 литров .

КОМБИНИРОВАННЫЕ СОЛНЕЧНЫЕ УСТАНОВКИ ГРЕЮТ ВОДУ И РАЗГРУЖАЮТ СИСТЕМЫ ОТОПЛЕНИЯ

Количество солнечных установок, которые только нагревают бытовую воду, уже довольно велико. Комбинированные же солнечные установки, которые и воду для бытовых нужд греют, и участвуют в отоплении – это новое, еще более прогрессивное и эффективное решение. Весной и осенью такие установки могут сделать заметный вклад в отопление помещений и разгрузить систему отопления. Для домов на одну — две семьи хорошо проявили себя на практике комбинированные установки с поверхностью коллектора от 8 до 15 кв. м и с комбинированным накопителем – для нагрева бытовой воды и для создания запаса воды на отопление – емкостью от 500 до 1000 литров .

Возобновляемые источники энергии - Солнце-ЗАО Технологический парк Могилев

Солнце: НАШ САМЫЙ КРУПНЫЙ И САМЫЙ ЩЕДРЫЙ ИСТОЧНИК ЭНЕРГИИ Солнце – первопричина всей жизни на Земле и наш важнейший поставщик энергии. Оно – невероятный сгусток энергии. Энергия,

Источник: www.technopark.by

 

Мощность солнечного излучения на квадратный метр

С олнце составляет 99,98% всей энергии нашей планеты (остальная энергия — геотермальная). Солнце состоит из водорода (71%), гелия (27%) и твердой материи (2%). Температура вблизи ядра приблизительно 16 000 000 градусов, а на его поверхности-фотосфере — около 5770 К. Мощность энергии, излучаемой Солнцем, составляет

63 МВт с каждого квадратного метра его поверхности, всего около 3,72 х 10 20 МВт.

Единицей измерения потока солнечной энергии в системе СИ является ватт на квадратный метр (Вт/м 2 ). При среднем расстоянии от Земли до Солнца — 150 000 000 км — плотность энергии солнечного излучения, которое достигает атмосферы Земли, составляет в среднем 1,367 КВт/м 2 . Эта величина называется солнечной постоянной. Различные процессы внутри Солнца и на его поверхности (солнечные пятна и вспышки) приводят к флуктуациям этой величины, но они не превышают 0,1%.

Расстояние от Земли до Солнца изменяется из-за эллиптичности его орбиты Земли, поэтому солнечное излучение в верхней границе атмосферы на 6,6% больше 4 января (когда Земля ближе всего к Солнцу, в перигелии), чем 4 июля (когда Земля наиболее удалена от Солнца, в афелии). Эти даты не совпадают с датами зимнего и летнего солнцестояния потому, что ось вращения Земли наклонена к плоскости эклиптики на 23,5 о .

Из-за большого расстояния между Солнцем и Землей солнечное излучение, которое достигает верхней границы атмосферы, падает в виде почти параллельных лучей. Это излучение включает в себя ультрафиолетовое излучение (УФ), видимый свет и ближнее инфракрасное излучение (БИК). Максимальная интенсивность излучения приходится на диапазон видимого спектра — излучение с длиной волны от 400 до 800 нм. Интенсивность ультрафиолетового и инфракрасного излучения, приходящего от Солнца, очень мала, однако, когда Земля нагревается под действием солнечного излучения, она излучает ближнее и дальнее ИК излучение, которое, в свою очередь, поглощается и отражается газами, частицами и облаками в атмосфере.

При прохождении через атмосферу часть солнечного излучения достигает поверхности Земли, а часть рассеивается молекулами газов, аэрозольными частицами, каплями воды и кристаллами льда. Молекулы газов и аэрозоли отвечают за большую часть поглощения излучения. Рассеивание солнечного излучения на каплях воды и кристаллах льда происходит во всем спектральном диапазоне. Молекулы же в основном рассеивают излучение коротких длин волн, а аэрозоли — более длинных.

Рис. 2. Участки спектра излучения. Синим цветом обозначено длинноволновое УФ-излучение, желтым — средневолновое УФ-излучение, белым — видимый свет, кремовым — ближнее инфракрасное излучение и розовым — дальнее инфракрасное излучение. Синяя линия показывает солнечное излучение на земной поверхности, черная — чувствительность человеческого глаза, зеленая — спектральную чувствительность типичного фотоэлемента, красная — чувствительность пиранометра со стеклянным куполом и розовая — чувствительность пиргеометра. Для сравнения все приведено к условному максимуму 1,0.

Эти процессы в значительной степени влияют на спектр излучения, которое достигает земной поверхности. Когда Солнце находится прямо над головой, оптическая масса атмосферы является минимальной и по определению имеет для этой местности атмосферную массу, равную 1,0. Когда Солнце опускается к горизонту, оптическая масс атмосферы увеличивается приблизительно в 11 раз и ее влияние на поглощение и рассеивание солнечного излучения становится значительно больше.

Некоторые из этих процессов легко наблюдать. Молекулы атмосферы намного сильнее рассеивают короткие иволны, чем более длинные — рэлеевское рассеивание. Поэтому, когда Солнце находится высоко, небо выглядит синим. Когда же Солнце находится вблизи горизонта, короткие волны, проходя через толстый слой атмосферы, испытывают полное рассеивание, и небо по утрам и вечерам выглядит красным.

В безоблачный день поток солнечной энергии, достигающий земной поверхности в местный полдень, обычно находится в интервале от 700 до 1300 Вт/м 2 в зависимости от широты, долготы, высоты над уровнем моря и времени года.

Наблюдения за солнечным излучением на земной поверхности ведут в двух диапазонах длин волн: коротковолновом излучении с длиной волны от 300 до 4000 нм и длинноволновом — от 4500 нм (4,5 мкм) до 40 мкм. Коротковолновое излучение включает ультрафиолетовое, видимое, и ближнее, инфракрасное излучение.

Часть солнечного излучения, которая достигает земной поверхности, отражается от нее, а другая часть поглощается. Снег и лед имеют высокую отражательную способность (альбедо), темные и/или неровные поверхности — более низкую. Часть излучения, которая поглощается земной поверхносьтю, излучается обратно в атмосферу в ближнем (инфракрасном) диапазоне. Углекислый газ (СО2), метан (СН4) и водяной пар (Н2О) в атмосфере способны поглощать это излучение, нагревая, в свою очередь, земную атмосферу. Это — так называемый «парниковый эффект». В целом же существует равновесие: Земля получает столько же солнечного излучения, сколько излучает обратно в Космос. Иначе Земля нагревалась бы или остывала.

Метеорологическое оборудование МТР-5 фирмы АТТЕХ, актинометрические датчики фирмы Kipp & Zonen

НПО АТТЕХ предлагает метеорологическое оборудование — температурные профилемеры МТР-5 (МТП-5), актинометрические датчики Kipp & Zonen

Источник: attex.net

 

avtonomny-dom.ru

Как рассчитать мощность солнечных батарей для дома. Жми!

Невысокий КПД солнечных батарей – один из основных недостатков современных гелиосистем. На сегодняшний день один квадратный метр фотоэлемента способен вырабатывать около 15-20 % от мощности падающего на него излучения.

Такая выработка требует установку батарей больших размеров для полноценного электроснабжения. Более того, чтобы достичь необходимого выходного напряжения, панели соединяются между собой последовательно или параллельно. Их площадь при этом может достигать от нескольких квадратных метров.

КПД солнечных панелей зависит от целого ряда причин:

  • материал фотоэлемента;
  • плотность солнечного потока;
  • время года;
  • температура;
  • и др.

Давайте подробнее поговорим о каждом факторе.

Материал фотоэлемента

Виды солнечных батарейСолнечные преобразователи делятся на три вида, в зависимости от метода образования атома кремния:

  • поликристаллические;
  • монокристаллические;
  • панели из аморфного кремния.

Поликристаллические панели изготовлены из чистого кремния и отличаются сравнительно высоким КПД – 14-17%.

Монокристаллические панели менее эффективны в преобразовании солнечной энергии. Их коэффициент полезного действия около 10-12 %. Но невысокие энергозатраты на изготовление таких преобразователей делает их более доступными.

Панели из аморфного кремния (или тонкопленочные) просты и недороги в производстве, как следствие, доступны по цене. Однако, эффективность их значительно ниже, чем у предыдущих двух видов – 5-6%. К тому же элементы тонкопленочных преобразователей из кремния со временем утрачивают свои свойства.

Тонкопленочные батареи также изготавливают с нанесением частиц меди, индия, галлия и селена. Это немного увеличивает их производительность.

Работа в любую погоду

График зависимости мощности от погодных условийДанный показатель зависит от географического расположения панели: чем ближе к экватору, тем выше плотность солнечного излучения.

Зимой производительность фотоэлементов может снизиться от 2 до 8 раз. Это объясняется, прежде всего, скоплением на них снега, сокращением продолжительности и количества солнечных дней.

Важно помнить: в зимнее время следить за наклоном панелей т. к. солнце находится ниже обычного.

Условия эффективной работы

Чтобы батарея работала эффективно, нужно учесть несколько нюансов:

  • угол наклона батареи к солнцу;
  • температуру;
  • отсутствие тени.

Угол между рабочей поверхностью преобразователя и солнечными лучами должен быть близок к прямому. В таком случае эффективность фотоэлементов при прочих равных условиях будет максимальна. Чтобы увеличить КПД дополнительно к ним устанавливают систему слежения за солнцем, которая меняет наклон относительно положения светила. Но подобное встречается нечасто из-за дороговизны оборудования.

В процессе работы многие батареи нагреваются, что плохо сказывается на качестве преобразования энергии солнца в электрическую. Во избежание потерь необходимо оставлять пространство между устройством и опорной поверхностью. Это позволит потоку воздуха свободно проходить и охлаждать преобразователи.

Важно знать: необходимо протирать панели 2-3 раза в год, очищая их от пыли и тем самым увеличивая проходимость лучей солнца.

КПД фотоэлементов непосредственно зависит от количества попадающего на них солнечного света. И очень важно предусмотреть правильный монтаж преобразователей с полным отсутствием теней, падающих на рабочую поверхность. В противном случае может пострадать эффективность всей системы в целом. Как правило, батареи устанавливаются с южной стороны.

Есть батареи с 40% кпд, о них смотрите в следующем видео:

Оцените статью: Поделитесь с друзьями!

teplo.guru


Каталог товаров
    .