интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Параллельное соединение источников питания. Мощность параллельное соединение


Параллельное и последовательное соединение проводников — объяснение, примеры

Что было вначале — курица или яйцо?

Обычно все затрудняются ответить. А вот загадка эта в применении к электричеству решается вполне определенно.

Электричество начинается с закона Ома.

А уж если рассматривать дилемму в контексте параллельного или последовательного соединений — считая одно соединение курицей, а другое — яйцом, то сомнений вообще нет никаких.

Простейшая электрическая цепь Простейшая электрическая цепь

Потому что закон Ома — это и есть самая первоначальная электрическая цепь. И она может быть только последовательной.

Да, придумали гальванический элемент и не знали, что с ним делать, поэтому сразу придумали еще лампочку. И вот что из этого получилось. Здесь напряжение в 1,5 В немедленно потекло в качестве тока, чтобы неукоснительно выполнять закон Ома, через лампочку к задней стенке того же элемента питания. А уж внутри самой батарейки под действием волшебницы-химии заряды снова оказались в первоначальной точке своего похода. И поэтому там, где напряжение было 1,5 вольта, оно таким и остается. То есть, напряжение постоянно одно, а заряды непрерывно движутся и последовательно проходят лампочку и гальванический элемент.

И это обычно рисуют на схеме вот так:

Схема простейшей электоцепи Схема простейшей электоцепи

По закону Ома I=U/R

Тогда сопротивление лампочки (с тем током и напряжением, которые я написал) получится

R = 1/U, где R = 1 Ом 

А мощность будет выделяться  P = I * U , то есть P=2,25 Вm

В последовательной цепи, особенно на таком простом и несомненном примере, видно, что ток, который бежит по ней от начала до конца, — все время один и тот же. А если мы теперь возьмем две лампочки и сделаем так, чтобы ток пробегал сначала по одной, а потом по другой, то будет опять то же самое — ток будет и в той лампочке, и в другой снова одинаковым. Хотя другим по величине. Ток теперь испытывает сопротивление двух лампочек, но у каждой из них сопротивление как было, так и осталось, ведь оно определяется исключительно физическими свойствами самой лампочки. Новый ток вычисляем опять по закону Ома.

Схема последовательного подключения Схема последовательного подключения

Он получится равным I=U/R+R,то есть 0,75А, ровно половина того тока, который был сначала.

В этом случае току приходится преодолевать уже два сопротивления, он становится меньше. Что и видно по свечению лампочек — они теперь горят вполнакала. А общее сопротивление цепочки из двух лампочек будет равно сумме их сопротивлений. Зная арифметику, можно в отдельном случае воспользоваться и действием умножения: если последовательно соединены N одинаковых лампочек, то общее их сопротивление будет равно N, умноженное на R, где R — сопротивление одной лампочки. Логика безупречная.

Схема последовательного подключения с двумя сопротивлениями Схема последовательного подключения с двумя сопротивлениями

А мы продолжим наши опыты. Теперь сделаем нечто подобное, что мы провернули с лампочками, но только на левой стороне цепи: добавим еще один гальванический элемент, точно такой, как первый. Как видим, теперь у нас в два раза увеличилось общее напряжение, а ток стал снова 1,5 А, о чем и сигнализируют лампочки, загоревшись снова в полную силу.

Делаем вывод:

  • При последовательном соединении электрической цепи сопротивления и напряжения ее элементов суммируются, а ток на всех элементах остается неизменным.

Легко проверить, что это утверждение справедливо как для активных компонентов (гальванических элементов), так и для пассивных (лампочек, резисторов).

То есть это значит, что напряжение, измеренное на одном резисторе (оно называется падением напряжения), можно смело суммировать с напряжением, измеренным на другом резисторе, и в сумме получатся те же 3 В. А на каждом из сопротивлений оно окажется равным половине — то есть 1,5 В. И это справедливо. Два гальванических элемента вырабатывают свои напряжения, а две лампочки их потребляют. Потому что в источнике напряжения энергия химических процессов превращается в электроэнергию, принявшую вид напряжения, а в лампочках та же самая энергия из электрической превращается в тепловую и световую.

Последовательное и параллельное соединение проводников

Вернемся к первой схеме, подключим в ней еще одну лампочку, но иначе.

Теперь напряжение в точках, соединяющих две ветки, то же, что и на гальваническом элементе — 1,5 В. Но так как сопротивление у обеих лампочек тоже такое, как и было, то и ток через каждую из них пойдет 1,5 А — ток «полного накала».

Последовательное и параллельное соединение проводников Последовательное и параллельное соединение проводников

Гальванический элемент теперь питает их током одновременно, следовательно, из него вытекают сразу оба эти тока. То есть общий ток из источника напряжения будет равен 1,5 А + 1,5 А = 3,0 А.

В чем же отличие этой схемы от схемы, когда те же самые лампочки были включены последовательно? Только в накале лампочек, то есть только в токе.

Тогда ток был 0,75 А, а теперь он стал сразу 3 А.

Получается, если сравнить с первоначальной схемой, то при последовательном соединении лампочек (схема 2) току сопротивления оказывалось больше (отчего он уменьшался, и лампочки теряли светимость), а параллельное подключение оказывает МЕНЬШЕ сопротивления, хотя сопротивление лампочек осталось неизменным. В чем тут дело?

А дело в том, что мы забываем одну интересную истину, что всякая палка о двух концах.

Когда мы говорим, что резистор сопротивляется току, то как бы забываем, что он ток все-таки проводит. И теперь, когда подключили лампочки параллельно, увеличилось суммарное для них свойство проводить ток, а не сопротивляться ему. Ну и, соответственно, некую величину G, по аналогии с сопротивлением R и следовало бы назвать проводимостью. И должна она в параллельном соединении проводников суммироваться.

Ну и вот она

Закон Ома тогда будет выглядеть

I = U*G&

И в случае параллельного соединения ток I будет равен U*(G+G) = 2*U*G, что мы как раз и наблюдаем.

Замена элементов цепи общим эквивалентным элементом

Инженерам часто приходится узнавать токи и напряжения во всех частях схем. А реальные электрические схемы бывают достаточно сложными и разветвленными и могут содержать множество элементов, активно потребляющих электроэнергию и соединенных друг с другом в совершенно разных сочетаниях. Это называется расчет электрических схем. Он делается при проектировании энергоснабжения домов, квартир, организаций. При этом очень важно, какие токи и напряжения будут действовать в электрической цепи, хотя бы для того, чтобы выбрать подходящие им сечения проводов, нагрузки на всю сеть или ее части, и так далее. А уж насколько сложны бывают электронные схемы, содержащие тысячи, а то и миллионы элементов, думаю, понятно всякому.

Самое первое что, напрашивается — это воспользоваться знанием того, как ведут себя токи напряжения в таких простейших соединениях сети, как последовательное и параллельное. Делают так: вместо найденного в сети последовательного соединения двух или более активных устройств-потребителей (как наши лампочки) нарисовать один, но чтобы его сопротивление было таким же, как у обоих. Тогда картина токов и напряжений в остальной части схемы не изменится. Аналогично и с параллельным соединением: вместо них нарисовать такой элемент, ПРОВОДИМОСТЬ которого была бы такой же, как у обоих.

Теперь если схему перерисовать, заменив последовательные и параллельные соединения одним элементом, то получим схему, которая называется «схемой эквивалентного замещения».

Такую процедуру можно продолжать до тех пор, пока у нас не останется наипростейшая — которой мы в самом начале иллюстрировали закон Ома. Только вместо лампочки будет стоять одно сопротивление, которое и называют эквивалентным сопротивлением нагрузки.

Это первая задача. Она дает нам возможность по закону Ома рассчитать общий ток во всей сети, или общий ток нагрузки.

Далее обычно решают задачу обратную: идут в обратном порядке, все усложняя схему — возвращая элементы «на место» вместо эквивалентных, и рассчитывают токи во всех ветвях сети.

Вот это и есть полный расчет электрической сети.

Примеры

Пусть цепь содержит 9 активных сопротивлений. Это могут быть лампочки или что-то другое.

На ее входные клеммы подано напряжение в 60 В.

Цепь с активными сопротивлениями Цепь с активными сопротивлениями

Значения сопротивлений для всех элементов следующие:

Найти все неизвестные токи и напряжения.

Надо пойти по пути поиска параллельных и последовательных участков сети, рассчитывать эквивалентные им сопротивления и постепенно упрощать схему. Видим, что R3, R9 и R6 соединены последовательно. Тогда им эквивалентное сопротивление Rэ 3, 6, 9 будет равно их сумме Rэ 3, 6, 9= 1 + 4 + 1 Ом = 6 Ом.

Цепь с активными сопротивлениями Цепь с активными сопротивлениями

Теперь заменяем параллельный кусочек из сопротивлений R8 и Rэ 3, 6, 9, получая R э 8, 3, 6, 9. Только при параллельном соединении проводников, складывать придется проводимости.

Проводимость измеряется в единицах, называемых сименсами, обратных омам.

Если перевернуть дробь, получим сопротивление R э 8, 3, 6, 9 = 2 Ом

Совершенно так же, как в первом случае, объединяем сопротивления R2 , R э 8, 3, 6, 9 и R5, включенные последовательно, получая R э 2, 8, 3, 6, 9, 5= 1 + 2 + 1 = 4 Ом.

Цепь с активными сопротивлениями

Осталось два шага: получить сопротивление, эквивалентное двум резисторам параллельного соединения проводников R7 и R э 2, 8, 3, 6, 9, 5.

Оно равно R э 7, 2, 8, 3, 6, 9, 5 = 1/(1/4+1/4)=1/(2/4)=4/2 = 2 Ом

Цепь с активными сопротивлениями Цепь с активными сопротивлениями

На последнем шаге просуммируем все последовательно включенные сопротивления R1 , R э 7, 2, 8, 3, 6, 9, 5  и R4 и получим сопротивление, эквивалентное сопротивлению всей цепи Rэ и равное сумме этих трех сопротивлений

Rэ = R1 + R э 7, 2, 8, 3, 6, 9, 5 + R4 = 1 + 2 + 1 = 4 Ом

Ну и вспомним, в честь кого назвали единицу сопротивлений, написанную нами в последней из этих формул, и вычислим по его закону общий ток во всей цепи I

Цепь с активными сопротивлениями Цепь с активными сопротивлениямиЦепь с активными сопротивлениями Цепь с активными сопротивлениями

Теперь, двигаясь в обратном направлении, в сторону все большего усложнения сети, можно получать по закону Ома токи и напряжения во всех цепочках нашей достаточно простой схемы.

Так обычно и рассчитывают схемы электроснабжения квартир, которые состоят из параллельных и последовательных участков. Что, как правило, не годится в электронике, потому что там многое по-другому устроено, и все гораздо замысловатее. И вот такую, например, схему, когда не поймешь, параллельное это соединение проводников или последовательное, рассчитывают по законам Кирхгофа.

Цепь с активными сопротивлениями Цепь с активными сопротивлениями Похожие статьи:

domelectrik.ru

Напряжение, сила тока и мощность, последовательно параллельные соединения

Напряжение, сила тока и мощность, последовательно-параллельные соединения

Большинство солнечных батарей производят постоянный ток напряженностью примерно в 0,5 вольт, если к ним не подключена нагрузка. Если потребление электричества невелико, даже при достаточно сумрачном освещении можно получить максимальное выходное напряжение (Vв). С ростом потребления электричества для получения полного Vвых требуется более яркий свет.

Существует верхний предел силы тока, который может обеспечить солнечная батарея, и он не зависит от интенсивности освещения. Максимально достижимая сила тока обозначается Imax . Значение Imax для солнечной батареи зависит от размера площади p-n-перехода и от технологии, использованной при ее производстве.

Максимальная мощность Рmax кремниевого фотогальванического элемента в ваттах эквивалентна произведению Vвых в вольтах на Imax в амперах. Таким образом,

Рmax =0,5 Imax

Последовательно-параллельные соединения

Фотоэлектрические ячейки часто объединяют в последовательно-параллельные соединения, повышая таким образом выходную мощность. Когда несколько фотоэлементов (или параллельных соединений нескольких фотоэлементов) соединяются в цепь последовательно, их выходное напряжение (Vвых) увеличивается. Когда несколько фотоэлементов (или последовательных соединений нескольких фотоэлементов) подсоединяются параллельно, максимальная сила тока (Vвых) всех соединенных в цепь ячеек эквивалентна произведению Imax одной ячейки или их комбинации на количество ячеек или их комбинаций. При этом максимальная мощность (Рmax) последовательно-параллельного соединения одинаковых ячеек эквивалентна произведению Рmax каждой ячейки на количество ячеек. Иными словами, максимальная мощность (Рmax) такого соединения эквивалентна произведению Vвых и Imax всего соединения.

Для примера рассмотрим десять параллельно соединенных комбинаций из 36 последовательно соединенных фотоэлектрических ячеек каждая. Предположим, максимально достижимая сила тока для каждой ячейки составляет Imax = 2,2 ампера. Тогда

Vвых = 36 х 0,5 В = 18 В;Imax = 10 х 2,2 А = 22 А;Рmax = 18 В х 22 А = 396 Вт.

Это значение можно округлить до 400 ватт. Однако это лишь теоретический результат. На деле при подключенной к системе гротоэлектрических ячеек нагрузке ее выходная мощность будет ниже расчетной. Это происходит потому, что напряжение всей системы последовательно соединенных ячеек при подключении нагрузки падает на несколько процентов из-за возникающего внутреннего сопротивления в самой системе. В описанном выше случае реальное выходное напряжение (Vвых) системы при потреблении электричества, близком к Imax, составит только 14 вольт.

Таким образом, реальная выходная мощность составит:

Рmax = 14 В х 22 А = 308 Вт, что можно округлить до 300 ватт.

www.enersy.ru

Параллельное соединение источников питания | Техника и Программы

Необходимость в параллельном соединении источников питания (ИП) возникает обычно по одной из следующих причин:

•         резервирование ИП для увеличения надежности работы радиоэлектронной аппаратуры;

•         увеличение общей выходной мощности ИП.

Примеры для обоих случаев очевидны и известны из практики. Так, резервирование ИП применяют в военной технике, на конвейерных линиях, в железнодорожном и электротранспорте. В быту резервированием ИП можно назвать применение источников бесперебойного питания (ИБП) в устройствах охраны и сигнализации, а также в компьютерной технике. Увеличение выходной мощности

путем параллельного подключения ИП оправдано для питания мощной нагрузки, например радиопередатчика (трансивера) с максимальным током потребления более 20 А.

В большинстве случаев параллельное соединение источников требует реализации функции распределения тока между ними.

Защита источников без распределения тока

Такая защита часто необходима, когда требуется избежать нежелательной поломки электронных устройств вследствие отказа ИП. С этой целью соединяют два ИП в параллель способом, представленным на рис. 1.32.

Рис. 1.32. Способ параллельного соединения ИП

Допустим, ИП-2 настроен на более низкое выходное напряжение относительно ИП-1. Поэтому только первый источник питания PS1 поставляет ток в нагрузку, так как только его последовательный диод проводит ток.

Мощность на нагрузке создается только одним ИП, а не является удвоенной. Напряжение нагрузки равно напряжению источника питания минус падение напряжения на диоде (U„ – Un.uVDi)-

ИП-2 при этом находится в режиме ожидания под более низким напряжением и в случае прекращения работы ИП-1 вместо него поставляет ток в нагрузку.

При такой схеме соединения источников напряжение на нагрузке снижается при росте тока нагрузки (LOAD REGULATION), а паде-

ние напряжения на проводящем диоде растет по мере повышения тока («естественное распределение тока»).

Главным недостатком данной схемы является нестабильность напряжения на нагрузке. При изменении тока нагрузки (LOAD REGULATION) падение напряжения на диоде колеблется от О В без нагрузки до 0,6 В под нагрузкой.

Это падение напряжения уменьшает напряжение на нагрузке в зависимости от выходного тока. Поэтому эта конфигурация не используется при напряжениях ниже 12 В, когда падение напряжения на диоде составляет значительную долю от напряжения на выходе.

В этой схеме из-за отличия напряжений источников нет возможности применять корректирующие линии SENSE, так как ИП, настроенный на более низкое напряжение и находящийся в режиме ожидания, обнаружив в своих линиях SENSE повышенное по отношению к своей настройке напряжение, сразу прекратит процесс преобразования.

Защита источников с распределением тока

В этой схеме линии SENSE обоих источников подсоединены к нагрузке и между источниками питания включена линия распределе-

Для того чтобы при защите иметь стабильное напряжение на нагрузке, необходимо ввести «активное распределение тока» между ИП. При параллельном соединении источников добавляется специальная линия распределения тока, которая соединяет между собой соответствующие терминалы источников питания. Такое соединение выполняется по схеме на рис. 1.33.

Рис. 1.33. Схема с линией распределения тока

ния тока (PC). Каждый из источников питания отдает нагрузке половину своей мощности.

Источники должны быть настроены по напряжению как можно ближе друг к другу, а сопротивления соединительных проводов от каждого из источников к нагрузке должны быть равны друг другу.

Эта конфигурация позволяет соединять в параллель более ИП (N+1), когда дополнительно включается еще один резервный ИП, который в случае неисправности одного из источников начинает работать вместо отказавшего источника.

Принцип работы устройства с активным распределением тока

ИП на выходе контролирует напряжение путем сравнения напряжения, измеряемого на линиях SENSE, с внутренним эталонным напряжением. Для того чтобы источник мог эффективно делить ток с другим источником, он должен непрерывно получать информацию о своем токе и о токе другого источника. Эту информацию источник обрабатывает и использует во время контроля и регулирования выходного напряжения. При этом если ток источника слишком велик, его выходное напряжение начнет снижаться, и наоборот. Фактически поступает информация о разности токов двух источников, в случае положительной разности токов следует понизить напряжение источника, в случае отрицательной разности – повысить это напряжение. В это же время соседний источник питания получает информацию, обратную по знаку, и выполняет обратные действия. Так осуществляется балансировка токов источников.

При параллельном соединении более чем двух ИП число переменных, участвующих в процессе распределения тока между ними, велико (каждый источник нуждается в информации о своем токе и токе всех остальных). Поскольку каждый из источников осуществляет контроль и регулирование выходного напряжения и тока на основании всех переменных, то появляется опасность, что такой сложный контур регулирования может потерять стабильность, поэтому количество источников, включаемых параллельно по такой схеме соединения, ограничено.

Особенности электрической цепи

Фактически каждый источник питания представляет источник напряжения, зависящий от его тока. Положительный терминал выходного напряжения соединен с точкой контроля выходного напряжения, а отрицательный терминал выходного напряжения – с отрицательным терминалом выходного напряжения соседнего источника питания. Разность между V(I1) и V(I2) влияет на распределение напряжения между источниками так, что если она положительна, выходное напряжение первого источника должно падать, чтобы сохранять положение, когда точка контроля равняется эталонному напряжению.

Соединение для получения большей мощности

Для получения высокой мощности от двух ИП их соединение выполняется по схеме на рис. 1.34.

Рис. 1.34. Электрическая схема соединения двух ИП в параллель

В этой схеме, так же как и в предыдущей, ИП соединяются между собой линией распределения тока. Без активного распределения тока параллельное соединение источников не будет нормально функционировать из-за очевидной разницы выходных напряжений ИП. Вследствие этой разницы ИП с более высоким выходным напряжением выдает на выходе максимально возможный для него ток.

Подключение к мощной нагрузке приводит к тому, что в какой-то момент времени максимальный ток ИП оказывается недостаточен. При ограничении тока напряжение источника начинает снижаться.

Это заставит источник питания с более низким выходным напряжением поставлять необходимый остаток тока. При введении активного распределения тока необходимо следить за тем, чтобы общая мощность ИП была таковой, чтобы ни от одного из источников не требовалось более 90% от расчетного (для него) максимального тока.

nauchebe.net


Каталог товаров
    .